
#RSAC

#RSAC

Securing Secure Browsers

Prashant Kumar Verma
Sr. Consultant & Head (Security Testing)

Paladion Networks
@prashantverma21

SESSION ID: TRM-T11

#RSAC

Agenda

 Browser Threats
 Secure Browsers to address threats
 Secure Browsers Hacks
 Securing Secure Browsers, fixing the hacks

2

#RSAC

Insecurities/Threats at Browser

 Compromised browser executables.
 Corrupted browser components.
 Acceptance of fake SSL certificates for traffic sniffing.
 Malwares can read/modify browser memory space.
 Malicious 3rd party plugins.
 Other web app attacks-

 XSS- javascripts to steal session cookies.
 Phishing.

3

#RSAC

Secure Browsers/Browsing solutions

 Commercial products
 Specially considered by Banking (and Finance)

organizations
 Offers security features like-

 Sandbox environment
 Protection against-

 MITM
 MITB
 Malwares/key-loggers
 Phishing
 DNS attacks

4

#RSAC

Secure Browser Types

 Customized – specially developed Browser with Security
as key goal.

 Solutions build to secure the existing open-source
browsers like Mozilla, Chrome.

 Browsers/Browsing Solutions that boot from an external
media (like USB stick) which is write-protected.

5

#RSAC

Secure Browsers: underlying functionalities

 Sandbox environment

 Each browser opens up as a separate instance, within its own sandbox.

 Applications/Processes/Malwares external to the sandbox shouldn’t be able to interfere.

 Non-Tamperable browser installation/component files

 Some Secure Browsing solutions are offered hardcoded in a USB drive, with write protections.

 USB drive only allows launching the browser.

 Monitoring of browser executables

 Certain processes monitor the browser launch executables, for any unusual activities.

 Privileged process monitoring should protect against corrupted browser executables.

6

#RSAC

Secure Browsers: underlying functionalities..

 Maintains a white-list of allowed websites.
 A phishing website can be flagged.

 Maintains a white-list of SSL certificates to connect to.

 A MITM attack can be flagged and connection attempt can be
dropped.

 Protects memory space.
 Key-loggers & screen-capturing attacks safeguard.

 Non-whitelisted 3rd party plugins cannot be installed.

7

#RSAC

#RSAC

Secure Browser
Attacks

#RSAC

Secure Browser Attacks

 MITB: DLL Proxying
 MITB: Proxying Windows DLL
 MITB: Function Hooking
 Stealing Data in Browser Memory
 Inject Malicious Browser Plug-ins
 Keyloggers
 Bypass monitoring of browser executables
 Man-in-the-Middle attacks
 Screen-scraping
 Re-direction using hosts file on Windows system

9

#RSAC

1. MITB: DLL Proxying

 Proxy tool like Burp or Fiddler cannot be used with the
Secure Browsers.
 SSL Certificate validation controls do not allow proxy’s certificates

to be accepted at Secure Browsers.

 DLL Proxying bypasses it.
 Proxy DLL replaces the actual DLL.
 Data intended for original DLL is sent to proxy DLL.
 View/Tamper Data via Proxy DLL.

#RSAC

1. MITB: DLL Proxying

 DLL Proxying
 Find out the correct DLL to proxy.
 DLL associated with SSL implementation to be proxied.

 Case: Target wininet.dll

11

#RSAC

1. MITB: DLL Proxying

 WinINet API is used to allow applications
to access internet based resources using
protocols like HTTP.

 It is a system DLL and is found in the
%SystemRoot%/system32.

 Create a proxy DLL for wininet.dll and
rename the original DLL to wininet_.dll.

 Create a manifest file named
iexplore.exe.manifest that instructs the
application to look for the DLL in its
native folder.

 Place these three files in the application
folder of Internet Explorer.

12

#RSAC

1. MITB: DLL Proxying

File.txt created with captured
traffic

File.txt contents

13

#RSAC

1. MITB: DLL Proxying

 The function that we are monitoring and spying on is:
InternetReadFile(). Reads data from a handle opened by the
InternetOpenUrl, FtpOpenFile, or HttpOpenRequest function.
The InternetReadFile function has the following prototype:

 BOOL InternetReadFile(HINTERNET hFile,LPVOID
lpBuffer,DWORD dwNumberOfBytesToRead,LPDWORD
lpdwNumberOfBytesRead)

 The parameter of interest to us is: lpBuffer. lpBuffer is a pointer
to a buffer that receives the data. The proxy DLL writes the
buffer pointed to by lpBuffer, to a file:

14

#RSAC

1. MITB: DLL Proxying

15

#RSAC

2. MITB: Proxying Windows DLL

 A browser which is booted directly from the write-protected USB, it is
not possible to inject a proxy DLL in the browser’s local folder.

 Create a proxy for the DLL file ws2_32.dll.
 This DLL is responsible for handling the network connections for windows

based applications. The original DLL is present in the
%SystemRoot%system32 folder of every machine.

 However, this way of attacking is not very feasible. Tampering the
system DLLs is prohibited by almost all antivirus systems. Also,
Windows itself has a self-defense mechanism to prevent system
DLLs from getting tampered. Windows creates backup copies of the
DLLs and stores them in a separate location. So, in order to replace a
system DLL, we need to replace the original as well as the backup
copies simultaneously.

16

#RSAC

3. MITB: Function Hooking

 Function Hooking
 Common attack technique employed by malwares.
 Malwares hook into the browser’s network stack functions.

 Decide which function to hook.

 Use a debugger like PyDbg.

 Case: Target nspr4.dll

17

#RSAC

3. MITB: Function Hooking

 nspr4.dll is responsible for encrypting network based
communication in these browsers.

 We wrote a script which monitors for the application
instance, in this case the browser process, to start.

 As soon as the process is found, the process is
terminated and is booted again but this time by using a
debugger.

 This allows us to hook the function calls and in turn the
data being transmitted.

 The script we wrote was designed to capture the user
credentials.

18

#RSAC

3. MITB: Function Hooking

19

#RSAC

4. Stealing Data in Browser Memory

 Secure Browsers’s objective is to secure sensitive data at client side.

 Memory Scanning technique:

 In a 32-bit Windows system the address space for any given process ranges from
0X00000000 to 7FFFFFFFF.

 We noticed the field ‘fldLoginIUserId’ is a part of the query string for all login
submissions, we decided to monitor for this string in all the browsers.

 We wrote a script which scans for sensitive data patterns in fixed time intervals.

20

#RSAC

4. Stealing Data in Browser Memory

Memory Scanning Script

Sensitive Data found in the
browser memory

21

#RSAC

5. Inject Malicious Browser Plug-ins

 Secure Browsers only allow white-listed plug-ins to be installed
in the browsers.

 Inject malicious plug-ins:
 We wrote a script that monitors the system for a specific process, in

our case it monitors for the browser process.
 As soon as the browser process is started, the script is designed to kill

the browser process.
 We then restart the browser with a pre-saved profile which contains

plug-ins not originally present in the browser.
 These extensions are even loaded when Firefox boots in safe mode.

22

#RSAC

5. Inject Malicious Browser Plug-ins

Launching Firefox with a pre-defined
profile containing malicious plug-in

Broswer before and after launch with malicious

profile; successful install of plug-in depicted as S

23

#RSAC

6. Keyloggers

 Some Secure Browsers offer protections against
keyloggers.

 We created a keystroke logger and let it run on the
system.
 We found that some browsers defends against keylogging by

adding ‘noise’ to the data.
 While some browsers were found vulnerable to key logging.

24

#RSAC

6. Keyloggers

2FA token capture Banking user credentials capture

25

#RSAC

7. Bypass monitoring of browser executables

 Some Secure Browsers implement privileged processes
attached to browser executables, to monitor them against
unusual behavior.

 Bypass monitoring-
 We wrote a script which monitors for the browser process and kills

the browser process as soon as it is found.
 It then renames the browser process and boots it so that the

monitoring process cannot detect the browser process.

26

#RSAC

7. Bypass monitoring of browser executables

 Start the script to monitor for firefox.exe process. When
the script detects ‘firefox.exe’, it terminates the process,
renames ‘firefox.exe’ to ‘irefox.exe’ and starts the process
again.

27

#RSAC

7. Bypass monitoring of browser executables

 The renamed process starts the Firefox browser without
monitoring protection.

28

#RSAC

8. Man-in-the-Middle attacks

 Some browsers maintain a white-list of SSL certificates.

 Any deviations from white-list-
 Either no response
 Or, SSL certificate black-listed error

29

#RSAC

9. Screen-scraping

 Act of gathering visual data on the user’s screen.

 Done by capturing snapshots of the user’s screen.

30

#RSAC

10. Re-direction using hosts file on Windows
system
 The hosts file is a computer file used in an operating

system to map hostnames to IP addresses.

 This can be used to mislead a user to a fake site instead
of the actual site.

31

#RSAC

#RSAC

Secure the Secure
Browsers

32

#RSAC

Case Study of 4 Secure Browsers

Test Name Browser A Browser B Browser C Browser D

Proxy DLL Vulnerable Vulnerable Partially Safe Vulnerable

Function

Hooking

Vulnerable Vulnerable Vulnerable Safe

MITM attacks Safe Safe Safe Safe

Key Logging Safe Vulnerable Vulnerable Safe

Sensitive Data in

Memory

Vulnerable Vulnerable Vulnerable Vulnerable

Arbitrary

Browser Plug-in

Vulnerable Vulnerable Vulnerable Safe

#RSAC

Recommendations

 Proxy DLL Protection
 Maintain a white list of DLLs. Periodically check for loaded DLL list.

If there's any DLL present in the process address space that does
not belong to the whitelist, terminate the process immediately.

 Do a checksum validation of DLLs. If the validation fails for any
DLL, terminate the process immediately.

 Function Hooking Protection
 Use protection library like ACLib to detect and monitor the browser

process against debugging and tracing.
 Make sure that the browser process cannot be run independently

without the monitoring process.

#RSAC

Recommendations

 Keylogger Protection
 Prevent all calls that set up hooking and callback functionality - for

e.g. SetWindowsHookEx() function (SetWindowsHookEx is the
most common function used by keyloggers to monitor all the key
events).

 Protecting Data in Memory
 All memory allocation operations (e.g. malloc, calloc etc.), should

always have corresponding functions for freeing and zeroing out
the memory after use.

35

#RSAC

Recommendations

 Protection against Malicious Browser Plug-ins
 If possible, don't set profile parameter at all.
 If profile parameter is used, then on browser process startup check

whether the profile parameter path set is a valid path. If not,
terminate the browser process immediately.

 Safeguarding processes monitoring browser exes
 Monitoring Processes should monitor for browser process not just

by the process name itself. The validation of browser process
should be done by parsing the header values in the PE file of the
running processes. If there is any match with the known signature
of the browser PE file then that process should be terminated. This
monitoring function should be performed periodically.

36

#RSAC

Recommendations

 Secure Browsing solution should ensure integrity of all
the browser components including all the program DLLs.
A validation similar to checksum validation should be
done for all program DLLs for a given version release of
the open source browser being protected.

37

#RSAC

Acknowledgements

 Jaideep Jha

 Harshvardhan Parmar

38

#RSAC

#RSAC

Thank you

prashant.verma@paladion.net

	Securing Secure Browsers
	Agenda
	Insecurities/Threats at Browser
	Secure Browsers/Browsing solutions
	Secure Browser Types
	Secure Browsers: underlying functionalities
	Secure Browsers: underlying functionalities..
	Secure Browser Attacks
	Secure Browser Attacks
	1. MITB: DLL Proxying
	1. MITB: DLL Proxying
	1. MITB: DLL Proxying
	1. MITB: DLL Proxying
	1. MITB: DLL Proxying
	1. MITB: DLL Proxying
	2. MITB: Proxying Windows DLL
	3. MITB: Function Hooking
	3. MITB: Function Hooking
	3. MITB: Function Hooking
	4. Stealing Data in Browser Memory
	4. Stealing Data in Browser Memory
	5. Inject Malicious Browser Plug-ins
	5. Inject Malicious Browser Plug-ins
	6. Keyloggers
	6. Keyloggers
	7. Bypass monitoring of browser executables
	7. Bypass monitoring of browser executables
	7. Bypass monitoring of browser executables
	8. Man-in-the-Middle attacks
	9. Screen-scraping
	10. Re-direction using hosts file on Windows system
	Secure the Secure Browsers
	Case Study of 4 Secure Browsers
	Recommendations
	Recommendations
	Recommendations
	Recommendations
	Acknowledgements
	Thank you��prashant.verma@paladion.net

