RSACONFERENCE C H I N A 2012 RSA信息安全大会2012

THE GREAT CIPHER

MIGHTIER THAN THE SWORD 伟大的密码胜于利剑

Sharing Threat Intelligence Analytics for Collaborative Attack Analysis

Samir SaklikarRSA, The Security Division of EMC

Agenda

- Advanced Targeted Threats & Challenges
- Need for Collaboration and Threat Intelligence Sharing
 - Existing Standards
- Limitations in sharing incident analysis process details
- Proposals Extend Threat Intelligence Sharing with
 - Machine-based Analytics Representation
 - Leverage existing standards
 - Human Analyst Actions Representation
 - Propose new standards
- Conclusions

The Attack

- Advanced Targeted Threats
 - Determined Cyber Adversaries
 - Custom Malware, 0-days, Social Engineering
 - Low-and-Slow Multi-Stage Lateral Movement
 - Diverse Concurrent Attack Vectors
 - P2P Encrypted C&C activity
 - Hidden in plain-sight (http, social media)

The Target

- Evolving and Complex IT Landscape
 - Movement to the Cloud
 - Large interdependent stacks, Newer points of attack insertion
 - More Layers in the IT stack
 - Virtualization (Server/Network)
 - Mobile Clients "Bring Your Own Device"
 - More Layers → More Logs
 - Newer Security Data sources
 - Netflow, Full Packet Capture, Sandbox Indicators

The Defense

- The Tools
 - Intrusion Detection
 - Host and Endpoint-based tools
 - Security Incident Event Management
 - Vulnerability Scanners
 - Memory/Disk Analysis
- The Expertise
 - CIRT/SOC teams overburdened
 - Lack of sufficient in-house expertise
 - Malware Analysis, Network Intrusion Detection, Remediation

Collaboration is the key

RSACONFERENCE C H I N A 2012

Enterprise 1

Enterprise 2

Threat Intelligence Sharing Challenges

- Lack of interoperable standards
- Challenges in validating data quality and reliability
- Risk of information leakage
- Untested methods for governing use of sensitive information
- Shortage of skilled security expertise
- Legal and Data confidentiality requirements

RSACONFERENCE

Standards to the Rescue

- Incident Object Description Exchange Format (IODEF)
 - Encoding Threat Information
- Real-time Internetwork Defense (RID)
 - "Envelopes" for IODEF and other electronic incidents
- Malware Attribute Enumeration and Classification
 - Describe malware and its behavior
- Common Attack Pattern Enumeration and Classification (CAPEC)
 - Common methods for subverting software etc
- Cyber Observable eXpression (CybOX)
 - Any observable event; Abstract schemas of activity
- Advanced Forensics Framework (AFF4)
- Security Content Automation Protocol (SCAP)

IODEF - Data Model

```
Incident
                                                      Method
ENUM purpose
                   |<>----[ IncidentID
                                                      ENUM restriction | <>--{0..*}--[ Reference >
STRING ext-purpose |<>--{0..1}--[ AlternativeID
                                                                       |<>--{0..*}--[ Description
ENUM lang
                  |<>--{0..1}--[ RelatedActivity ]
                                                                       |<>--{0..*}--[ AdditionalData
ENUM restriction
                 |<>--{0..1}--| DetectTime
                   |<>--{0..1}--[ StartTime
                   |<>--{0..1}--[ EndTime
                   |<>----[ ReportTime
                   |<>--\{0..*\}--[ Description]
                   |<>--{1..*}--[ Assessment
                                                                        |<>--{0..*}--[ Method 
                                                                        |<>--{0..*}--[ URL
                   |<>--{1..*}--[ Contact
                                                                        |<>--{0..*}--[ Description
                   |<>--{0..*}--[ EventData >
                   |<>--{0..1}--[ History
                   |<>--\{0..*\}--[ AdditionalData
                                                      EventData
                                                      ENUM restriction | <>--{0..*}--[ Description
                                                                       |<>--{0..1}--[ DetectTime
                                                                       |<>--{0..1}--| StartTime
ENUM occurrence | <> -- {0..*} -- [ Impact
                                                                       |<>--{0..1}--| EndTime
ENUM restriction |<>--{0..*}--[ TimeImpact
                                                                       |<>--{0..*}--[ Contact
                  |<>--{0..*}--[ MonetaryImpact ]
                                                                       |<>--\{0...1\}--[ Assessment
                  |<>--{0..*}--[ Counter
                                                                       |<>--\{0..*\}--[ Method
                  |<>--{0..1}--[ Confidence
                                                                       |<>--{0..*}--[Flow]
                  |<>--{0..*}--[ AdditionalData ]
                                                                       |<>--\{0...*\}--[ Expectation
                                                                       |<>--{0..1}--| Record
                                                                       |<>--{0..*}--[ EventData
                                                                       |<>--{0..*}--[ AdditionalData ]
```


Existing Threat Intelligence Sharing

- Answering questions such as
 - What was the attack
 - When did it happen
 - Where was it found
 - What does the attack look like
 - Who found it
 - How is it affecting the environment
 - How quickly was it solved
 - What was the impact
 - What was the surrounding context
 - ...

Opportunities - Extend Indicator Sharing to

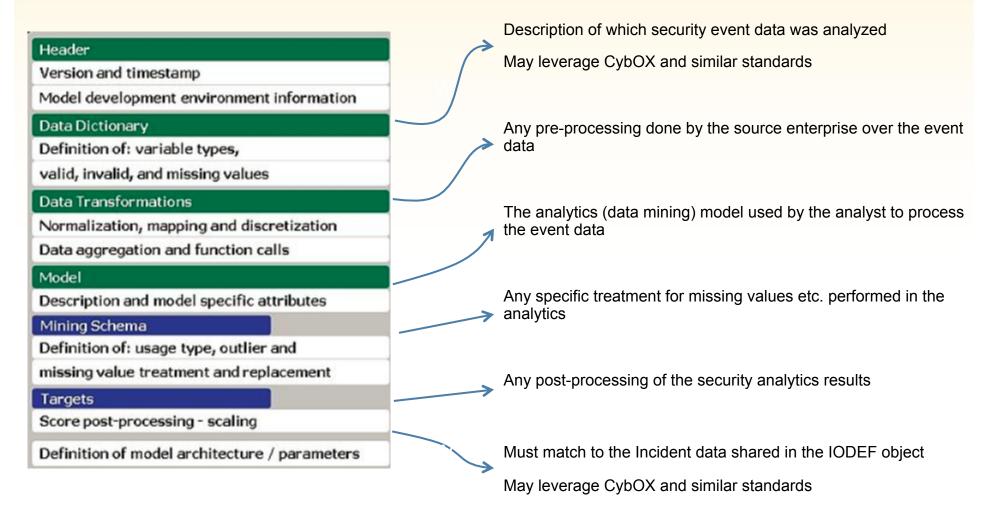
- Convey Indicator Identification Process
 - How was the Indicator identified Machine-based Analytics, Analyst Expertise
 - Which analytics worked better and why? Analyst Opinion, Comparative Results
 - What changed which helped in attack identification? Analyst Strategy
 - What was the confidence level in the indicator? Analyst Opinion
- Validation of Indicator Authenticity
 - No means of conveying indicator authenticity with Supporting Data Sets backing data
- Guidelines for Indicator Portability
 - Porting Indicator detection requires mostly human Mapping between Analytics consumption of threat feed
 and Environment
- Composition of multiple Indicators multistage attacks
 - Requires human presence to understand and write Analytics, Expertise Markup higher-level indicators
 enabling composition

Proposal - Indicator Sharing Extensions A 2012

- Extend Indictor Sharing Description with
 - Machine Analytics Representation to
 - Describe which and how machine-based analytics techniques were used to identify the attack
 - For e.g. rule-based, or data-mining or machine-learning techniques
 - Include a sampling of the input data to help in easier portability of machine analytics techniques
 - Analyst Actions Representation to
 - Describe what actions were manually performed by the human analyst to identify the attack
 - How did the analyst interpret the results from machine-based analytics
 - What was the analyst's opinion about the attack

Analytics and Actions Representation A 20

- Machine Analytics Representation
 - Leverage and extend existing standards
 - Predictive Modeling Markup Language (PMML)
 - For representing data-mining and machine learning techniques
- **Analyst Actions Representation**
 - Develop/Propose new standard



Predictive Modeling Markup Language NA 2012

- Standardized Representation of mining models and data
- Encompasses the various stages in a typical data-mining/analytics task
 - Data Dictionary definition
 - **Data Transformations**
 - Handling missing or outlier data values
 - Model Definition
 - Outputs
 - Post-Processing steps
 - Model Explanation
 - Model Verification
- Supported by leading Data analytics tools vendors (commercial and open-source likewise)

PMML - Mapping to Threat Intelligence

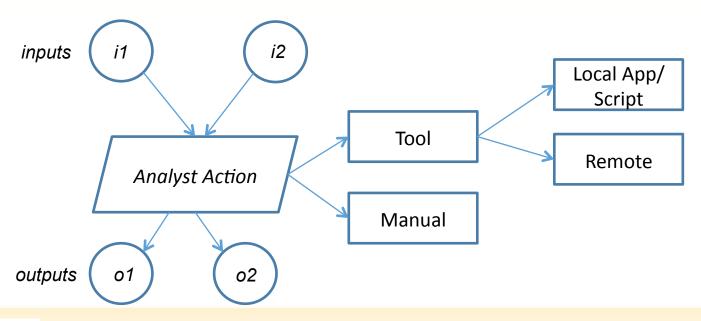
Proposed Extensions to PMML

- Allow incomplete data and mining models for privacy reasons
 - For e.g. Allow Mining models to show only Data Relationships without actual weights.
 - Enables sharing the relevant security event data which was used in the incident detection, but NOT how it is related to the sharing enterprise
- Allow wild-carded/pattern-matched data-model and mining-model representations
 - Enables recipient enterprise to leverage the mining model to their own enterprise network architecture
- Enable versioning of the shared data and mining-model
 - Enables the source organization to share multiple versions of the data and miningmodel over time.
 - Enables the recipient organization to learn the evolution of the mining model and make suitable changes to self network model
- Allow Model Filter templates typically intelligence sharing handled via a separate sub-org

Machine-based Analytics not enough

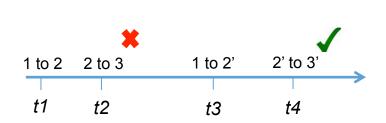
- Security Analysts use a variety of tools and processes for Incident Analysis
 - IODEF and proposed Machine Analytics extensions can convey tools information
- Yet, Incident Analysis process is intricately complex, requiring human intelligence and a trial-and-error methods at times
 - Human Expertise needed for "Connecting the Dots"
 - Discontinuous, brittle and human-coupled Analytics chain
- Sharing standardized Machine Analytics information helps but not enough
 - Need for sharing Analysts Actions over Threat intelligence feeds

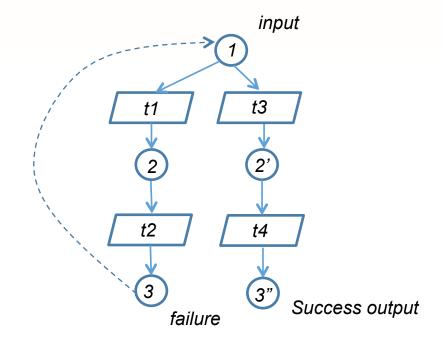
Analyst Actions Representation


- Monitor, Log and Report on Analyst actions while handling a particular incident
 - Relevant monitoring, and logging tools deployed on analyst workstation
- Monitored Analyst actions can include
 - Analyst interactions with the workstation (keyboard inputs, clicks etc)
 - Network interactions data (server access, downloads, network tools)
 - Interactions with local or remote applications used in Incident Analysis
- Proposal
 - Create multiple Analyst Action Charts for each analyst working on a particular incident
 - Outputs a single final Action Chart which collates the various actions performed by the analysts while handling the incident

Analyst Action Chart Data Model

- Each Analyst action/step captured with
 - Tools/Process description used in the step
 - Process may be visual interpretation by human analyst
 - Inputs to the tools/process
 - Outputs of the tools/process
 - Pre/Post conditions of the step




Analyst actions correlation

- Individual Steps are correlated; Output of previous step = Input of next step
- Analyst Activities monitored in time-sequence but may result in dead ends
- Failure paths result in dead ends in the graph structure
- Show success paths from inputs to final incident analysis output

Analyst Actions on input 1 to reach output 3'

Analyst Activity Chart Annotations

- Analyst Annotations
 - Human Inference of results (reasoning towards a particular conclusion)
 - Significant meta-data about outputs
 - IP Addresses, Strings, Files/Certs extracted, Signature of Author etc.
 - Distinguishing behavior signature for identifying the APT
 - Distinguishing binary signature for malware (used by APT)
 - Opinion of Attack Attribution

RSACONFERENCE

Support different Analysis types

- Automated (Machine-based Analytics)
 - Link to machine-based analytics (data mining, sandboxing results etc.)
- Semi-automated activities (Human + Tool-based Analytics)
 - Extract results from tool and perform some processing
 - For e.g. searching IDB files for memory dump files
 - Can by logged by monitoring human activities
- Manual activities (entirely Human-based activities)
 - Visual interpretation by human analyst of previous results
 - Human reasoning
 - Human-coded tasks such as setting break-points, identifying strings, decoding encryption/decryption routines, identifying hooking process
 - May need human assisted annotations

Conclusion

- Need for richer threat intelligence sharing
- Machine Analytics and Analyst Actions representations
- Complete picture of Incident Description, Identification and Analysis
- Proposals as IODEF extensions, leverage PMML standards

Thank You

RSACONFERENCE C H I N A 2012 RSA信息安全大会2012