RSACONFERENCE CHINA2012 RSA信息安全大会2012

THE GREAT CIPHER MIGHTIER THAN THE SWORD 伟大的密码胜于利剑

Trusted Computing for Embedded Systems -Challenges in a Changing World

Joerg Borchert Infineon Technologies

RSACONFERENCE CHINA2012 RSA信息安全大会2012

RSACONFERENCE C H I N A 2012

Agenda

Rising threat

- Embedded systems at risk
- Lessons from computing ecosystem
- Counterstrategies
 - Understanding attacks
 - Learning from biology
- Evaluating risk

Embedded Systems at Risk: Hacking into Autos

RSA信息安全大会2012

RSACONFERENCE

C H I N A 2012

Embedded Systems at Risk: Attacking the Smart Grid

RSACONFERENCE C H I N A 2012

- Threats from:
 - Connectivity, upgradability
 - Cost pressure

RSA信息安全大会2012

Lessons from the PC Ecosystem

- Networks...the unavoidable risk
- Traditional defenses revolve around
 - Access control
 - Monitoring traffic
- Next level defense built on "root of trust"
 - Trusted Execution only valid with security hardware (i.e., TPM)

RSACONFERENCE C H I N A 2012

Agenda

Rising threat

- Embedded systems at risk
- Lessons from computing ecosystem

Counterstrategies

- Understanding attacks
- Learning from biology

Evaluating risk

3 Classes of Hardware Attack

RSACONFERENCE C H I N A 2012

Manipulating

Development:

Months

> 100.000 €

Microprobing

Execution:

Example:

Days

Observing

Development: Days

Execution: Hours > 10.000 €

Example: Power Analysis A

Semi-Invasive

Development: Months

Execution: Minutes > 100 €

Example: Spike Attack

The attack classes require different investments and expertise. This also divides the groups of attackers from amateurs to professionals.

Analyzing Attack Classes

RSACONFERENCE C H I N A 2012

- Each attack class has unlimited # of scenarios
- Evolution of attacks is constant

9

Conventional Defense: Scenario Focused

RSACONFERENCE C H I N A 2012

Not Protected

Not Tested, Unknown

Typical countermeasures target only small attack subsets.

Many countermeasures are needed, many weaknesses remain.

RSA信息安全大会2012

New Defense: A Comprehensive Approach

Countermeasure

RSACONFERENCE C H I N A 2012

Not Protected

Not Tested, Unknown

Comprehensive countermeasures target complete attack groups.

Fewer countermeasures are needed, risks can be easily evaluated.

RSA信息安全大会2012

Security Inspired by Biology

C H I N A 2012

- Cells act as secure computers with robust defense to manifold attacks
 - Protected data storage and processing
- Security IC can be emulate natural mechanisms
 - Self checking
 - Fully-encrypted processing

Key Hardware Security Concepts

- Complete shift from analogue to digital security
- Consider entire attack classes, not millions of single attack variants
- Integral security is comprehensive and must not hinder functionality
- Rely on detection of effects instead of detection of cause
- Secure products must be rugged
- Security must be easy to use

RSACONFERENCE C H I N A 2012

Agenda

Rising threat

- Embedded systems at risk
- Lessons from computing ecosystem
- Counterstrategies
 - Understanding attacks
 - Learning from biology

Evaluating risk

Building Defenses: Organizational REACONFERENCE Issues

- Cost
- Outsourcing, distributed responsibility
- Design philosophies

Investment in Security is an Insurance

RSA信息安全大会2012

Risk Based Options

- Software Security
 - Virtualization
 - Sandbox Models
- Hardware Security
 - Trusted Execution Environment
 - Security IC as Root of Trust

Security Root of Trust

- The Security IC
 - Establishes an expectation of behavior
 - Cryptography is a method but not sole purpose
- Attestation is the foundation for trust. Attest before we:
 - release the memory encryption key
 - allow it on the corporate network
- The security IC uses cryptographic means for attestation and identity

Role for Standards

- Standard hardware Root of Trust is basis for successful worldwide deployment
 - Global market gains confidence in system integrity
- Trusted Computing Group provides structure to establish international standard
 - Building from work on PC TPM to define hardware security for embedded systems

Summary

- Embedded systems are valuable targets for attack
- Principles of trusted computing can be applied to embedded systems
- Countermeasures should work on complete classes of attacks, not only on specific single attack scenarios
- Paradigm shift from analog to digital security is necessary for long-living security
- Security Controllers with fully encrypted data path and full error detection are a reality today as root of trust
- Security in HW and SW is an insurance case from an economics viewpoint

Thank You

RSACONFERENCE C H I N A 2012 RSA信息安全大会2012