RSACONFERENCE C H I N A 2012 RSA信息安全大会2012

THE GREAT CIPHER

MIGHTIER THAN THE SWORD 伟大的密码胜于利剑

Maximizing Multicore Technology for Network Intelligence and Security

Fu Lizheng
Wind River China

Session ID:

Session Classification:

RSACONFERENCE C H I N A 2012 RSA信息安全大会2012

RSACONFERENCE C H I N A 2012

The Growing Network Security Challenge

Security Function Under Pressure

Malware

Intrusions

Viruses

- More Inspection
- CPU Overload
- Bottlenecks
- Increasing Costs

New "More Intelligent" Approach CHINA 2012 Required

TRADITIONAL

Multiple Security Appliances within the Network

NEXT GENERATION

Consolidate into one with advanced multicore technologies

Next Generation Based on Advanced Multicore Technologies

RSACONFERENCE C H I N A 2012

Advanced multicore technologies enable network intelligence needed to ACCELERATE – ANALYZE – SECURE network data

Sophisticated Software Environment

Control Plane App

Accelerated Network Stack HW optimized data plane libraries

Optimized Linux Runtime

Logical Cores

CPUs

All in 1 Network Element

Advantages of a Consolidated System

RSACONFERENCE C H I N A 2012

- Higher performance
- One environment for control and data plane
 -Easier to manage and debug
- Enables multiple Deep Packet Inspection apps at line rate
 -Pattern Matching
 - -Traffic Shaping
- Enables a wide-variety of functionality
 -IPS/IDS, FW, AV, UTM
- Scales across product families

Another Look at the High Level Architecture

RSACONFERENCE

Libraries

An Even Deeper Look at a Multicore C H I N A 2012 Accelerated Software System

Network Protocols Accelerated

- IP checksum validation
- IPv4 and IPv6 support
- Proxy Interfaces
- Exception Path
 - -which enables: ARP, ICMP, SSH, etc. on the acceleration-plane
- Layer 4 acceleration: UDP, TCP, SCTP
- IPsec/IKE

Benefits of Using an Accelerated Software Solution

RSACONFERENCE C H I N A 2012

- Reserves cores of a multicore CPU for accelerated packet processing
 - uses an optimized TCP/IP stack on each core of the accelerated plane
 - Scales with high-volume traffic and core count
- Goes beyond data plane libraries
 - Integrated data plane libraries for optimized silicon-level packet movement
 - supports existing Linux applications
 - Uses standard Linux constructs and tools
- More efficient system
 - Scales to higher throughput (~16Mpps/core)
 - Uses fewer accelerated; leave more for control plane apps

Performance vs. Native Linux (L3 FWD)

RSACONFERENCE C H I N A 2012

This benchmark is comparing L3 forwarding throughput performance of Linux native vs. optimized software system. The setup is using 2X10G Ethernet ports and 4 hyperthreads on 4 separate cores on a Sandy Bridge based platform.

Performance vs. Native Linux (UDP)

RSACONFERENCE C H I N A 2012

This benchmark is comparing L3 forwarding throughput performance of Linux native vs. optimized software system. The setup is using 2X10G Ethernet ports and 4 hyperthreads on 4 separate cores on a Sandy Bridge based platform.

Typical Customer Application Range

- 1. Software system requires fewer cycles than native Linux
- 2. Faster context switching
- 3. No interrupts)
- 4. Much fewer misses in L1 cache than Linux

Performance vs. Native Linux (TCP)

RSACONFERENCE C H I N A 2012

This benchmark is comparing L3 forwarding throughput performance of Linux native vs. optimized software system. The setup is using 2X10G Ethernet ports and 4 hyperthreads on 4 separate cores on a Sandy Bridge based platform.

RSACONFERENCE C H I N A 2012

Sophistication of Network Acceleration Engines

- Each engine runs as a Linux process and thread
- Polling options
 - <u>Full Mesh</u> (default) each NAE polls every port
 - Partial Mesh number of NAE pollers per port is restricted -x
 - Manual Mesh NAEs are manually assigned using the –a option
- Polls multiple receive queues in bursts
- Transmit queue for each interface it polls

Example: Initialization of Manual Mesh

RSACONFERENCE C H I N A 2012

- Initialize the network acceleration engine :
 - Edit /etc/unap/unap.conf set UNAP_INSTANCES=0
 - 1 engine per port example:
 - unap-nae -c 0x1f -- -p 0x3 -f 0x5 -a 2/3
 - 2 engines per port example:
 - engine –c 0x1f -p 0x3 –f 0x5 –a 1,2/3,4

- a 2/3 means "assign the core 2 to NAE 1 and core 3 to NAE 2".
- a 1,2/3,4 means "assign core 1 and 2 to NAE1, core 3 and 4 to NAE 2".
- Assign IP addresses to the proxy interfaces:
 - ifconfig proxy0 –inet 10.1.1.1 up
 - ifconfig proxy1 –inet 10.2.1.1 up

Network Acceleration Enables Deep Packet Inspection

RSACONFERENCE C H I N A 2012

High Performance

Up to 100Gbps throughput

Highly Scalable

- Linearly Scales from low-end processors to high-end
- Introduce high-speed DPI onto an entire product line with one integration cycle

Low Latency and Low Overhead

 Data is processed directly on the CPU: low latency, low overhead, Low compile time

Easy to Manage

- Simple integration process
- Fast time to market of new features/functions through software upgrades

Accelerated Pattern Matching

RSACONFERENCE C H I N A 2012

Software DPI/Pattern Matching library

- Higher performance, more comprehensive than most HW solutions
- Regular Expressions library
- Portable
- Highly scalable (low-end to high-end)

Massively Parallel Matching

 Supports hundreds of thousands of simultaneous patterns and matches concurrently

Multi-gigabit pattern matching throughput

■ L7 DPI; linear scaling for most CPU architectures

Low Latency and overhead

Particularly compared to hardware pattern match

Wide Applicability

- Use across a wide range of architectures/platforms (Appliances, Routers, Switches, Servers)
- Wide range of applications (IPS/IDS, FW, AV, UTM)

Pattern Matching

Accelerated Pattern Matching

RSACONFERENCE C H I N A 2012

- Pattern Matching (PM) is a CPU intensive operation
- High-speed Pattern matching is achieved using the compiler and optimized libraries

Summary

- 1. Advanced multicore technologies revolutionizing network elements of all kinds
- Network acceleration first step in enabling greater intelligence
- 3. Deep Packet Inspection through software unlocking enormous potential to better analyze and secure data

Thank You

RSACONFERENCE C H I N A 2012 RSA信息安全大会2012