

Adversary ROI: Evaluating Security from the Threat Actor's Perspective

Josh Corman

Director, Security Intelligence

Session ID: GRC-303

Session Classification: Intermediate

David Etue

VP, Corporate Development Strategy

RS/CONFERENCE EUROPE 2012

Agenda

Context

Why ROI and ROSI have failed us...

Adversary ROI

Categorizing Threat Actors

Application in the Real World

Context

We Have Finite Resources...We Can Not Protect Everything!

Lufthansa Airbus A380 D-AIMC with the name "Peking" at Stuttgart Lasse Fuss http://commons.wikimedia.org/wiki/File:Lufthansa_A380_D-AIMC.jpg

http://commons.wikimedia.org/wiki/File:Fdr_sidefront.jpg

Consequences: Value & Replaceability

http://blog.cognitivedissidents.com/2011/10/24/a-replaceability-continuum/

Misplaced Focus

"With the breach-a-week over the last two years, the key determinate was nothing YOU did... but rather was

Why ROI and ROSI have failed us...

Why ROI failed...

$$ROI = \frac{Expected \ Returns - Cost \ of \ Investment}{Cost \ of \ Investment}$$

at Net Present Value for an organization's required Rate of Return

- Most security people aren't finance experts
- Typically applied in a vacuum
- No actual no profit from security investments
- Doesn't determine efficacy of security investment or commensurate investment levels

From the Failure of ROI comes ROSI

 Return on Security Investment (ROSI) created as a well intentioned way to apply risk metrics to ROI

$$ROSI = \frac{\left(Risk \; Exposure \times \% \; Risk \; Mitigated \; \right) - Solution \; Cost}{Solution \; Cost}$$

Problems:

- Attack surface is approaching infinity (not a real number)
- "Risk Mitigated" can be both subjective and objective
- Lacks accuracy (see @djbphaedrus <u>Accuracy vs.</u> <u>Precision...</u>)

Practical Application of ROSI

$$ROSI = \frac{\left(Assumption \times Wild \& *\$Guess\right) - Hunch}{Hunch}$$

Examples of Failures...

The Adversary Doesn't Care About Your ROI/ROSI

- Adversaries don't care if you spend 4% or 12% of your IT budget on security
- Adversaries are results oriented
- Adversaries care if *they* can get a return on investment from an attack, not you...

Adversary ROI

Why Adversary ROI

 Adversaries want assets vulnerabilities are a means

 Our attack surface is approaching infinity

Adversaries have scarce resources too

Adversary ROI Came About By Looking at Risk

A risk requires a threat and a vulnerability that results in a negative consequence

We have finite resources, and must optimize the entire risk equation for our success!

What is a "Threat"?

A Threat is an Actor with a Capability and a Motive

Threats Are A "Who", Not a "What"

Solely Managing Vulnerabilities Will Never Win

Solely Managing Vulnerabilities Will Never Win

Extensive Lag Between Attack Innovation, Solution, and Adoption

Value Favors the Attacker

The Adversary ROI Equation

Adversary ROI =

```
Attack Value Value of Assets Compromised + Cost of Adversary Value of Operational Impact - the Attack

Cost of the Attack
```

- X Probability of Success
- Deterrence (% Chance of Getting Caught x Cost of Getting Caught)

Adversary ROI Example: Bicycle Theft

Categorizing Threat Actors

A Modern Pantheon of Adversary Classes

Profiling a Particular Actor

Script Kiddies (aka Casual Adversary)

Organized Crime

Adaptive Persistent Adversaries

Hactivists Chaotic Actors

Auditors

Compare and Contrast Threat Actors

	QSA	Casual Attacker	Chaotic Actor	Org Crime	State APT/APA
Asset Focus	CCNs	CCNs	Reputation, Dirty Laundry DDoS/Availabi lity	CCNs Banking Fungible \$	IP, Trade Secrets, National Security Data
Timeframe	Annual	Anytime	Flash Mobs	Continuous	Long Cons
Target Stickiness	NA	LOW	HIGH	LOW	HIGH
Probability	100%	MED	?	HIGH	?
"Impact"	Annual \$	1 and done	Relentless	Varies	Varies

Attacker Power - HD Moore's Law

- Moore's Law:
 Compute power doubles every 18 months
- HDMoore's Law:
 Casual Attacker
 Strength grows at
 the rate of
 MetaSploit

HDMoore's Law

HDMoore's Law (continued)

HDMoore's Law (continued)

HDMoore's Law (continued)

HDMoore's Law (continued)

http://blog.cognitivedissidents.com/2011/11/01/intro-to-hdmoores-law/

HDMoore's Law (continued)

http://blog.cognitivedissidents.com/2011/11/01/intro-to-hdmoores-law/

Application in the Real World

Does it Matter Who is Attacking?

	Category	Threat Action Type	Breaches
1	Misuse	Abuse of system access / privileges	31
2	Hacking	Use of stolen login credentials	28
3	Social	Pretexting	25
4	Hacking	Exploitation of backdoor or command and control channel	24
4	Social	Solicitation / Bribery	24
4	Misuse	Embezzlement, skimming, and related fraud	24
5	Malware	Backdoor (allows remote access / control)	22
5	Malware	Send data to external site / entity	22
5	Malware	System / network utilities (PsTools, Netcat)	22
6	Malware	Keylogger / Spyware (capture data from user activity)	21
6	Malware	Scan or footprint network	21
6	Hacking	SQL Injection	21

Was #18 in overall DBIR

Top Threat Action Types used to steal INTELLECTUAL PROPERTY AND CLASSIFIED INFORMATION by number of breaches - (excludes breaches only involving payment card data, bank account information, personal information, etc)

Source: Verizon Business Security Blog (post-DBIR), 2011

http://securityblog.verizonbusiness.com/2011/06/23/new-views-into-the-2011-dbir/

Impacting Adversary ROI

Adversary ROI =

It is typically not desirable to make your assets less valuable

Attack Value (Value of Assets Compromised + Cost of Adversary Value of Operational Impact) - the Attack

Cost of the Attack

X Probability of Success

Increase adversary "Work Effort"

- Deterrence (% Chance of Getting Caught x Cost of Getting Caught)

Measures

Ability to respond and recover key

Impact of getting caught is typically a government issue

Who Are You Playing Against?

False Flags

http://www.flickr.com/photos/pierre_tourigny/367078204/

VZ DBIR Patching: Evolving Adversary TTPs

"Let's Patch Faster!"

2008 22% Patchable (not 90%) 2009 6 of 90 Patchable 6.66% 2010 ZERO Patchable [0]

Barking up the wrong tree?

Source: Verizon Business Data Breach Investigations Report (DBIR), Years 2009-2011

SQLi

2011: Attacks Density (4Realz DBIR Style)

"Only 55 of the 630 possible events have a value greater than 0...90% of the threat space was not in play at all"

Source: 2011 Verizon Business Data Breach Investigations Report (DBIR)

2012: Attacks Density (4Realz DBIR Style)

Figure 9. VERIS A4 Grid depicting the frequency of high-level threat events - LARGER ORGS

		Malware			Hacking			Social		Misuse			Physical			Error			Environmental			
		Ext	Int	Prt	Ext	Int	Prt	Ext	Int	Prt	Ext	Int	Prt	Ext	Int	Prt	Ext	Int	Prt	Ext	Int	Prt
yn.	Confidentiality & Possession	7			33						3							2	1			
Servers	Integrity & Authenticity	10			18						1											
S	Availability & Utility				1																	
s	Confidentiality & Possession																					
Networks	Integrity & Authenticity																					
z	Availability & Utility	1			1																	
ices	Confidentiality & Possession	3			6									10								
User Devices	Integrity & Authenticity	4			2									10								
Use	© Utility													1								
ata	Confidentiality & Possession											1							1			
Offline Data	Integrity & Authenticity																					
Off	& Utility																					
a	Confidentiality & Possession							7														
People	Integrity & Authenticity							11														
	Availability & Utility																					

"Only 22 of the 315 possible events have a value greater than 0...93.1% of the threat space was not in play at all"

Source: 2012 Verizon Business Data Breach Investigations Report (DBIR)

2011 VZ DBIR: Non-CCN Asset Type Breakdown

	2009 141 incidents	2010 761 incidents	Delta
Intellectual Property	10	41	+ 31
National Security Data	1	20	+ 19
Sensitive Organizational	13	81	+ 68
System Information	ZERO	41	+ 41

Source: 2010 & 2011 Verizon Business Data Breach Investigations Report (DBIR)

2012 VZ DBIR: Non-CCN Asset Type Breakdown

Table 11. Varieties of data compromised by percent of breaches and records

		All C	Orgs	Larger Orgs		
Variety	Label in Fig 32	Breaches	Records	Breaches	Records	
Payment card numbers/data	CardData	48%	3%	33%	1%	
Authentication credentials (usernames, pwds, etc.)	Credentials	42%	1%	35%	1%	
Personal information (Name, SS#, Addr, etc.)	Personal	4%	95%	27%	98%	
Sensitive organizational data (reports, plans, etc.)	OrgData	2%	<1%	22%	<1%	
Bank account numbers/data	BankData	2%	1%	10%	1%	
System information (config. svcs. sw, etc.)	SysInfo	2%	<1%	15%	<1%	
Copyrighted/Trademarked material	Copyright	1%	1%	3%	<1%	
Trade secrets	TradeSecret	1%	<1%	12%	<1%	
Classified information	Classified	<1%	<1%	2%	<1%	
Medical records	Medical	<1%	<1%	2%	<1%	
Unknown (specific type is not known)	Unknown	44%	<1%	2%	<1%	

Source: 2012 Verizon Business Data Breach Investigations Report (DBIR)

Think About Work Effort/Factor

What Do You Look Like To Different Adversaries?

Real Life Example from a Defense Industrial Base Company

Who Are The Threats?

What Do They Want? What Are Their TTPs?

Deployed Specific Technology and Processes—Forced Adversary to Change TTPs Or Target Other Organizations

Real Life Technology Examples <u>Work Effort</u> <u>Respond and Recover</u>

WebLabyrinth

http://code.google.com/p/weblabyrinth/

 SCIT: Self Cleansing Intrusion Tolerance

FOG Computing

http://sneakers.cs.columbia.edu:8080/fog/

Honeyports

http://honeyports.sourceforge.net/

Photo - http://www.flickr.com/photos/shannonholman/2138613419

Neither presenter has any affiliation with these technologies

Adversary ROI - Getting Non-Security Executives Involved

- What protected or sensitive information do we have?
- What adversaries desire the information and why?
- What is the value of the information to the organization?
- How would the adversary value it?
- What are the adversaries capabilities?
- What controls protect the information?

How To Apply To Enrich Current Security Investments

- Enrich incident response
 - Increase aim of incident responders
 - Detect false flags
- Enrich Security Information and Event Management (SIEM)
 - Cluster assets or methods by adversary class new "pivots" to interpret security events
- Enrich Budgeting
 - More precision in how you apply investment

Apply: Final Thoughts

- Start with a blank slate!
- Engage non-security people
- Identify your most likely adversaries
- Obtain/share adversary centric intel
 - Threat Intelligence
 - Brand/chatter monitoring
 - Information sharing
- Simulate adversary-driven scenarios
 - Table tops/roll playing (w/ Crisis Management)
 - Adversary-Centric Penetration Testing

Thank You / Contact

Josh Corman

David Etue

@joshcorman

@djetue

blog.cognitivedissidents.com

profile.david.etue.net

Actor Classes

Motivations

Target Assets

Impacts

Methods

