
Session ID: ASEC-303
Session Classification: Advanced

Mike Shema
Qualys, Inc.

Cases of JavaScript Misuse and How to
Avoid Them

Friday, October 5, 12

JavaScript, JScript, ECMAScript, *.exe

 Cross-platform, vendor-neutral liability

 Easy to use, easier to misuse

 Challenging to maintain

 Achieving peace of mind from piece of code

2

Friday, October 5, 12

try {
 security()
}
catch(err) {
}

3

Friday, October 5, 12

let me = count(ways);

4

jsfunfuzz -- Over
five years of fuzzing
Mozilla’s browser to
find JavaScript-
related bugs.

~700

Friday, October 5, 12

function(){var Pwn2Own=$money;}

5

2011

2012

Friday, October 5, 12

CVE-2012-4969 (Sept. 2012)

6

9.3

Friday, October 5, 12

Event-Driven, Non-Blocking (Security Bug)

7

<script>
var arrr = new Array();
arrr[0] = window.document.createElement("img");
arrr[0]["src"] = "L";
</script>
<iframe src="child.html">

<head><script>
functionfuncB() { document.execCommand("selectAll"); };
functionfuncA() {
 document.write("L");
 parent.arrr[0].src="YMjf\\u0c08\
\u0c0cKDogjsiIejengNEkoPDjfiJDIWUAzdfghjAAuUFGGBSIPPPUDFJK
SOQJGH";
}
</script></head>
<body onload='funcB();' onselect='funcA()'>
<div contenteditable='true'>a</div>

Friday, October 5, 12

Internal Browser Security

 Process separation
 Sandboxing plugins

 HTML5 does away with plugins altogether
 XSS Auditors

 Only for the simplest scenarios
 Phishing warnings

 Primarily for known sites
 Some behavioral patterns, e.g. URL authority abuse

 Auto-updating

8

Friday, October 5, 12

Design
Patterns &
 Dangerous
 Territory

9

Friday, October 5, 12

HTML Injection (XSS)

 The 20+ year-old vuln
that refuses to die.

 But JavaScript makes
the situation better!

 No, JavaScript makes
the situation worse!

 HTML5 to the rescue!(?)

10

Friday, October 5, 12

Stop Building HTML on the Server

 String concatenation is an insecure design
pattern.
 HTML injection, SQL injection, lots of injection

 JSON requests/responses, dynamic DOM update
 Be careful, DOM node insertion/modification isn’t

necessarily safer.
 toStaticHtml()

 Smarter approach to whitelist acceptable content
rather than blacklist known attacks.

 ...but non-standard, IE-only.

11

Friday, October 5, 12

String Concatenation Checklist

 Normalize the data
 Character set conversions (e.g. ⇄ UTF-8, reject or

replace bad sequences)
 Character encoding conversion (e.g. %xx)

 Identify the output context
 DOM node, attribute name, attribute value, script, etc.

 Apply controls at security boundaries
 Time of Check, Time of Use -- Identify where data will be

modified, stored, or rendered
 Strip characters (carefully! prefer inclusion list to exclusion

list)
 Replace characters appropriate for context

12

Friday, October 5, 12

Be Careful Building HTML in the Browser

 The URL is evil.
 http://web.site/safe.page#<script>alert(9)</script>

 document.write(), eval()
 String concatenation is always dangerous.
 JSON serializes, not sanitizes, data.

13

Friday, October 5, 12

“Gutenberg Injection” -- http://bit.ly/amazonxss

14

{...,"totalResults":4,
"results":[[...],[...],
[33,"Page 16","... t
require spaces to delimit
their attributes. <img/
src=\".\"alt=\"\"onerror=
\"alert('zombie')
\"/> JavaScript doesnt
have to rely on quotes to
establish strings, nor
do ...",...]]}

…>Page 16 ... t
require spaces to delimit
their attributes. <img
src="." alt=""
onerror="alert('
zombie')">
JavaScript doesn't have
to…

Friday, October 5, 12

NoSQL Injection

 Using JavaScript to create queries, filters, etc.
 String concatenation & JSON injection

 Server-side JavaScript requires server-side
security principles.

15

http://web.site/calendar?year=1984’;while(1);var%20foo=‘bar

Friday, October 5, 12

JavaScript Addiction

 JavaScript-driven sites see content disappear
from search engines.
 Too much of a good thing (ineffective fallback)
 HTML scrapers fail to render the full DOM

 Hash bang
 https://twitter.com/i/#!/search...
 Create a magic URL fragment

for Google
 Client-side JavaScript interprets

the fragment to request content
 http://bit.ly/hashbangproblem

16

Friday, October 5, 12

Developing With JavaScript

 Challenges of an interpreted language
 Simple language, complex behaviors

 http://jslint.com
 http://www.quirksmode.org
 http://webreflection.blogspot.com

 Browser tools improving, but not perfect.
 http://bit.ly/QJ4g0C

17

Friday, October 5, 12

Occupational Hazards

 Same Origin Policy
 Data access
 Context

 Percent encoding, HTML encoding
 Scope pollution with misplaced var or shadow

variables
 document.write(), eval(), Function
 typeof(null) == “object”
 JSONP (use CORS instead)

18

Friday, October 5, 12

Solve for x.
<!doctype html><html>
 <head>
 <script>
 var x = 1;
 (function(){ var x = 2; });
 var y = 1;
 function scopeBar() { doSomething(x); }
 function scopeBaz() { var x = 0; doSomething(x); }
 </script>
 </head>
 <body>
 <script>
 var z = 3
 function scopeFoo() { doSomething(y); }
 var x = 4;
 scopeBar();
 </script>
 </body></html>

19

Friday, October 5, 12

Scope

<html>
 <head>
 <script>
 BeefJS = {};
 </script>
 </head>
 <body>
 <script src="http://evil.site/
hook.js">
 </script>
 </body>
</html>

20

if(typeof beef === 'undefined' &&
 typeof window.beef === 'undefined') {
 var BeefJS = {
 version: '0.4.3.8-alpha',
 ...
 };
 window.beef = BeefJS;
}

Friday, October 5, 12

JavaScript Everywhere

<head>
 <script>
 BeefJS = {
 commands: new Array(),
 execute: function() {},
 regCmp: function() {},
 version: "<script>alert(9)</
script>"
 };
 </script>
</head>
...

21

Friday, October 5, 12

HttpOnly?

<head>
 <script>
 document.cookie="BEEFHOOK=";
 </script>
</head>
...

22

Friday, October 5, 12

Prototype Chains

<script>
WebSocket.prototype._s = WebSocket.prototype.send;
WebSocket.prototype.send = function(data) {
// data = ".";
 console.log("\u2192 " + data);
 this._s(data);
 this.addEventListener('message', function(msg) {
 console.log("\u2190 " + msg.data);
 }, false);
 this.send = function(data) {
 this._s(data);
 console.log("\u2192 " + data);
 };
}
</script>

23

Friday, October 5, 12

data = ".";

[22:49:57][*] BeEF server started
(press control+c to stop)
 /opt/local/lib/ruby1.9/gems/1.9.1/
gems/json-1.7.5/lib/json/common.rb:
155:in `initialize': A JSON text must
at least contain two octets!
(JSON::ParserError)

24

Friday, October 5, 12

Scope

<html>
 <body>
 ...
 ...hook.js...
 ...
 <script>
 beef.execute = function(fn) {
 alert(n);
 }
 </script>
 </body>
</html>

25

Friday, October 5, 12

JavaScript
Libraries

26

Friday, October 5, 12

JavaScript Libraries

 Should be...
 More optimal
 More universal

 Shift security burden
to patch management
 Clear APIs
 Auto versioning
 Hosted on CDNs

 Often are...
 More disparate
 Highly variant in quality
 Stylistically different

 Have to...
 Play nice with others

(variable scope,
prototype chains)

 Balance performance
with style

27

Friday, October 5, 12

Shall I Compare Thee...

28

A B

for(var i = fromIndex; i <
arr.length; i++) {

for(var i = fromIndex, ii =
arr.length; i < ii; i++) {

for(var key in obj) { Object.hasOwnProperty()

undefined undefined = 19

http://www.robohornet.org
http://bit.ly/O68e5M
http://ie.microsoft.com/testdrive/
performance/robohornetpro/

Friday, October 5, 12

Lots of Choice, Few Chosen?

 (METHODOLOGY)
 (GRAPH OF DATA -- STILL COLLECTING)

29

Friday, October 5, 12

There’s a Dark Side to Everything

 Poisoned cache, poisoned CDN
 Intermediation, poison the .js file if served over

HTTP
 public wi-fi

 Functions for HTML injection payloads
 More bad news for blacklisting

 Server-side JavaScript
 Reimplementing HTTP servers with reimplemented

bugs
 Fingerprint, DoS

30

Friday, October 5, 12

☣ JavaScript Crypto ☣
 Stanford JavaScript Crypto Library, http://

crypto.stanford.edu/sjcl/
 CryptoCat, https://crypto.cat

 Shifted from .js to browser plugin
 Use TLS for channel security

 Better yet, use HSTS and DNSSEC.
 There is no trusted execution environment

 ...in the current prototype-based language
 ...in an HTTP connection that can be intercepted
 ...in a site with an HTML injection vuln

31

Friday, October 5, 12

32

HTML5 &
 Countermeasures

Friday, October 5, 12

Programming

 Abstracting development to another language
 Closure
 Emscripten, compile C & C++ to JavaScript
 TypeScript

 Static code analysis
 jslint

 New specs
 Better variables
 Object.freeze()
 Modular packages

33

Friday, October 5, 12

Domain-Based Separation of Trust

 Leverage the Same Origin Policy
 Use one domain for trusted content
 Use another domain for user content
 Another for ads
 etc.

34

Friday, October 5, 12

Cross Origin Resource Sharing (CORS)

 Defines read-access trust of another Origin
 Has no bearing on security of the other Origin

 Check the Origin
 Prevent CSRF from this browser

 Principle of Least Privilege
 Beware of Access-Control-Allow-Origin: *
 Short Access-Control-Max-Age
 Minimal Access-Control-Allow-{Methods | Headers}

35

Vulner
ability

Friday, October 5, 12

HTML5 Sandboxes

36

<iframe * src="infected.html"><iframe * src="infected.html">

* (empty)

sandbox JavaScript not executed

sandbox="allow-scripts"
JavaScript executed
document.cookie
Set-Cookie header

text/html-sandboxed Waiting for browser support

Friday, October 5, 12

Content-Security-Policy Header

 Provide granular access control to SOP
 Choose monitor or enforce
 Header only

 Probably few code changes required, or unsafe-eval
 (http-equiv has lower precedence)

 Waiting for universal implementation
 X-Content-Security-Policy
 X-WebKit-CSP

 http://www.w3.org/TR/CSP/

37

Friday, October 5, 12

Content-Security-Policy

38

X-CSP: default-src 'self'; frame-src 'none'

<!doctype html>
<html>
 <body>
 <iframe src="./infected.html"></iframe>
</body>
</html>

Friday, October 5, 12

Content-Security-Policy vs. XSS

39

X-CSP: default-src 'self'

<input type="text" name="q" value="foo"
autofocus onfocus=alert(9)//"">

X-CSP: default-src 'self' 'unsafe-inline'

<input type="text" name="q" value="foo"
autofocus onfocus=alert(9)//"">

Friday, October 5, 12

Content-Security-Policy vs. XSS

40

X-CSP: default-src 'self'

<!doctype html><html><body>
 <iframe src="./infected.html"></iframe>
</body></html>

X-CSP: script-src evil.site

<!doctype html><html><head>
 <script src="http://evil.site:3000/
hook.js"></script>
</head></html>

Friday, October 5, 12

http://evil.site:3000/hook.js
http://evil.site:3000/hook.js
http://evil.site:3000/hook.js
http://evil.site:3000/hook.js

On the Other Hand...

 Awesome DoS if CSP headers are absent and
XSS vuln is present:

<meta http-equiv="X-WebKit-CSP"
content="default-src 'none'">

41

Friday, October 5, 12

Careful with those Improvements

 Some trade-offs between more objects, more
APIs, and privacy
 WebGL, battery status

 Browser fingerprinting
 AppCache

42

Friday, October 5, 12

Some Web Security Principles

 Always be suspicious of string concatenation
 Abstract development to a more strongly-typed

language, compile to JavaScript
 Protect Web Storage data

 Don’t use it for security-sensitive data,
 Pay attention to DOM context

 HTML entity, percent encoding, String object, text node

43

Friday, October 5, 12

Apply

 Encourage users to update browsers
 Supporting old browsers is a pain anyway

 Adopt established JavaScript libraries rather than
custom implementations
 Shift from pure development to patch management

 Adopt HTML5 security features
 ...to protect users with HTML5-enabled browsers

44

Friday, October 5, 12

Thank You!

 Questions
 mshema@qualys.com

 More online
 https://deadliestwebattacks.com

 More offline
 Hacking Web Apps

45

Friday, October 5, 12

