

Testing Darwinsim: The History and Evolution of Network Resiliency

Mike Hamilton

Ixia Communications

Session ID: SPO-210

Session Classification: General Interest

Why Should I Care?

Defining Resiliency

How Why Measure and improve performance under Application load, attacks, and **Performance** high-stress conditions. impairments. Identify and remediate vulnerabilities. Latest attacks, evasions, malware, **Security** Perform under DoS attack. and spam. Impairments combined with **Stability** Ensure reliable performance and availability. application load.

Performance

How Why

Performance

Application load, attacks, and impairments.

Measure and improve performance under high-stress conditions.

Metric	Firewall A	Firewall B	Firewall C
*3WHS+D+3WC	**Derived from PPS	†Connectivity	‡Stated as Application

Metric	Firewall A	Firewall B	Firewall C
Throughput (Max)	150 Gbps	560 Gbps	640 Gbps†
*3WHS+D+3WC	**Derived from PPS	†Connectivity	‡Stated as Application

Metric	Firewall A	Firewall B	Firewall C
Throughput (Max)	150 Gbps	560 Gbps	640 Gbps†
Throughput (IMIX)	37.8 Gbps	560 Gbps	135 Gbps‡
*3WHS+D+3WC	**Derived from PPS	†Connectivity	‡Stated as Application

Metric	Firewall A	Firewall B	Firewall C
Throughput (Max)	150 Gbps	560 Gbps	640 Gbps†
Throughput (IMIX)	37.8 Gbps	560 Gbps	135 Gbps‡
Throughput (64B)	7.7 Gbps**	560 Gbps	31 Gbps**
*3WHS+D+3WC	**Derived from PPS	†Connectivity	‡Stated as Application

Metric	Firewall A	Firewall B	Firewall C
Throughput (Max)	150 Gbps	560 Gbps	640 Gbps†
Throughput (IMIX)	37.8 Gbps	560 Gbps	135 Gbps‡
Throughput (64B)	7.7 Gbps**	560 Gbps	31 Gbps**
Connections per Second*	380,000	3.29M	320,000
*3WHS+D+3WC	**Derived from PPS	†Connectivity	‡Stated as Application

Metric	Firewall A	Firewall B	Firewall C
Throughput (Max)	150 Gbps	560 Gbps	640 Gbps†
Throughput (IMIX)	37.8 Gbps	560 Gbps	135 Gbps‡
Throughput (64B)	7.7 Gbps**	560 Gbps	31 Gbps**
Connections per Second*	380,000	3.29M	320,000
Concurrent Connections	20M	280M	100M
*3WHS+D+3WC	**Derived from PPS	†Connectivity	‡Stated as Application

Metric	Firewall A	Firewall B	Firewall C

Metric	Firewall A	Firewall B	Firewall C
Throughput (64B)	7.7 Gbps	560 Gbps	31 Gbps

Metric	Firewall A	Firewall B	Firewall C
Throughput (64B)	7.7 Gbps	560 Gbps	31 Gbps
CPS	380,000	3.29M	320,000

Metric	Firewall A	Firewall B	Firewall C
Throughput (64B)	7.7 Gbps	560 Gbps	31 Gbps
CPS	380,000	3.29M	320,000
Worst-case Throughput	1.8 Gbps	15.8 Gbps	1.5 Gbps

Metric	Firewall A	Firewall B	Firewall C
Throughput (64B)	7.7 Gbps	560 Gbps	31 Gbps
CPS	380,000	3.29M	320,000
Worst-case Throughput	1.8 Gbps	15.8 Gbps	1.5 Gbps
Worst-case Goodput	6 Mbps	52 Mbps	5.1 Mbps

Performance

How Why

Performance

Application load, attacks, and impairments.

Measure and improve performance under high-stress conditions.

Security

How Why

Performance

Application load, attacks, and impairments.

Measure and improve performance under high-stress conditions.

Security

Latest attacks, evasions, malware, and spam.

Identify and remediate vulnerabilities. Perform under DoS attack.

Does X Mark the Spot?

IPS - Imprecise Performance Systems

	Firewall A	Firewall B	Firewall C
Throughput (64B)	7.7 Gbps	560 Gbps	31 Gbps
CPS	380,000	3.29M	320,000
Worst-case Throughput	1.8 Gbps	15.8 Gbps	1.5 Gbps
Worst-case Goodput	6 Mbps	52 Mbps	5.1 Mbps
IPS Throughput	26 Gbps	131.6 Gbps	40 Gbps

DDoS - Are You Ready?

Largest Bandwidth Attacks Reported

Figure 15 Source: Arbor Networks, Inc.

Why Should I Care?

- "Approximately \$250,000 USD/incident."
- "\$8,000 USD/incident."
- "Approximately 1,000EUR/incident."
- "Roughly \$1M USD to \$1.5M USD/incident."
- "\$300,000 USD/incident."
- "\$1M USD/incident."
- "More than \$100,000 USD/month."
- "Net revenue-generator-we offer commercial DDoS mitigation services."

Source: Arbor Networks, Inc.

\$,£,€,¥...£

DLP - Dollar Loss Prevention

Figure 2. The average total organizational cost of data breach

Stability

How Why Measure and improve performance under Application load, attacks, and **Performance** high-stress conditions. impairments. Identify and remediate vulnerabilities. Latest attacks, evasions, malware, **Security** Perform under DoS attack. and spam. Impairments combined with **Stability** Ensure reliable performance and availability. application load.

Stability

sta·bil·i·ty 🗐 [stuh-bil-i-tee] 🛽 Show IPA

noun, plural sta-bil-i-ties.

- the state or quality of being stable.
- firmness in position.
- continuance without change; permanence.
- Chemistry . resistance or the degree of resistance to chemical change or disintegration.
- resistance to change, especially sudden change or deterioration: The stability of the economy encourages investment.

sta·ble² [stey-buhl] ? Show IPA Dictionary.com Unabridged adjective, sta·bler, sta·blest.

- not likely to fall or give way, as a structure, support, foundation, etc.; firm; steady.
- able or likely to continue or last; firmly established; enduring or permanent: a stable government.
- resistant to sudden change or deterioration: A stable economy is the aim of every government.
- steadfast; not wavering or changeable, as in character or purpose; dependable.
- not subject to emotional instability or illness; sane; mentally <u>sound</u>.

How to Measure?

Why Should I Care?

Combinations and Permutations

+	+	+
Protocol	Header Field	Malformed %
Total Frames		1%
Ethernet	I	l
	Destination MAC	0%
	Source MAC	1%
	Ethertype	1%
	CRC	1%
IP Version 4	I	
	Version	1%
	IHL	1%
	Type of Service	1%
	Total Length	1%
	Identification	1%
	Flags	1%
	Fragment Offset	1%
1	Time to Live	1%
	Protocol	1%
	Header Checksum	1%
	Source Address	1%
1	Destination Address	1%
	Options	1%
	Padding	1%
UDP	l	l
1	Source Port	1%
	Destination Port	1%
	Length	1%
	Checksum	1%
TCP	I	l
1	Source Port	1%
	Destination Port	1%
	Sequence Number	1%
	Acknowledgement Number	1%
1	Data Offset	1%
1	Reserved(3 bit)	1%
	Flags(9 bit)	1%
1	Window Size	1%
1	Checksum	1%
1	Urgent Pointer	1%
1	Options(Variable Length)	1%
+	+	.

$$48 + 48 + 16 + 16 + 32 = 160$$

$$4 + 4 + 8 + 16 + 16 + 3 + 13 + 8 + 8 + 16 + 32 + 32$$

= 160

Combinations

 $2^{160+160+160} = 2^{480} = 3.121749 \times 10^{144} \text{ packets}$

- On a 10 Gbps link at 15mm PPS
- $= 2.08 \times 10^{137} \text{ seconds}$
- $= 3.46 \times 10^{135}$ minutes
- $= 5.78 \times 10^{133}$ hours
- $= 2.41 \times 10^{132} \text{ days}$
- $= 6.59 \times 10^{129} \text{ years}$

 $= 4.7 \times 10^{119}$ lifetimes of the Universe

Why Should I Care?

Combinations and Permutations

+		+
Protocol	Header Field	Malformed %
Total Frames		1%
Ethernet		
	Destination MAC	0%
1	Source MAC	1%
1	Ethertype	1%
1	CRC	1%
IP Version 4		
1	Version	1%
1	IHL	1%
1	Type of Service	1%
I	Total Length	1%
I	Identification	1%
1	Flags	1%
1	Fragment Offset	1%
1	Time to Live	1%
I	Protocol	1%
I	Header Checksum	1%
I	Source Address	1%
I	Destination Address	1%
I	Options	1%
I	Padding	1%
l UDP	<u> </u>	
I	Source Port	1%
l	Destination Port	1%
	Length	1%
l	Checksum	1%
TCP		
1	Source Port	1%
1	Destination Port	1%
1	Sequence Number	1%
1	Acknowledgement Number	1%
1	Data Offset	1%
1	Reserved(3 bit)	1%
1	Flags(9 bit)	1%
I	Window Size	1%
I	Checksum	1%
1	Urgent Pointer	1%
I	Options(Variable Length)	1%
+	·	·

$$48 + 48 + 16 + 16 + 32 = 160$$

$$4 + 4 + 8 + 16 + 16 + 3 + 13 + 8 + 8 + 16 + $\frac{32 + 32}{32}$
= $\frac{160}{96}$$$

$$16 + 16 + 16 + 16 = 64$$
OR
 $16 + \frac{16}{16} + 32 + 32 + 4 + 3 + 9 + 16 + 16 + 16$
 $= \frac{160}{144}$

Combinations

$$2^{96+144} = 2^{240} = 1.77 \times 10^{72}$$
 packets

- On a 10 Gbps link at 15mm PPS
- $= 1.18 \times 10^{65} \text{ seconds}$
- $= 1.96 \times 10^{63}$ minutes
- $= 3.27 \times 10^{61} \text{ hours}$
- $= 1.36 \times 10^{60} \text{ days}$
- $= 3.73 \times 10^{57} \text{ years}$

= 2.66x10⁴⁷ lifetimes of the Universe

Resiliency

Resiliency Testing: A History Lesson

2. Testing Methodologies: Maximum performance based on RFC 2544 (for firewall). Actual performance may vary depending on network conditions and activated services.

- Internet Growth Leads to Technology Standards
- IETF Testing Standards
 - RFC 1944
 - RFC 2544
 - RFC 3511

RFC 2544: Right Standard, Wrong Time

- Original Goal
 - Create Vendor-Agnostic Comparisons
- 18 years later (Today)
 - Industry continues to apply RFC 2544 to nextgeneration and content aware devices

RFC 3511: False Sense of Security?

HTTP is NOT an Application

	Upstream		Downst	Downstream		Aggregate	
Rank	Application	Share	Application	Share	Application	Share	
1	BitTorrent	31.7%	HTTP	19.5%	BitTorrent	20.3%	
2	eDonkey	18.2%	YouTube	18.0%	HTTP	17.7%	
3	HTTP	11.3%	BitTorrent	17.2%	YouTube	15.3%	
4	YouTube	5.2%	eDonkey	7.0%	eDonkey	9.4%	
5	Skype	2.5%	Flash Video	5.6%	Flash Video	4.7%	
6	SSL	2.5%	RTMP	2.8%	RTMP	2.5%	
7	Teredo	2.3%	Facebook	2.5%	Facebook	2.4%	
8	Facebook	2.0%	MPEG	2.0%	SSL	1.7%	
9	Flash Video	1.3%	iTunes	1.7%	MPEG	1.7%	
10	BBC iPlayer	1.3%	SSL	1.5%	iTunes	1.5%	
	Top 10	78.3%	Top 10	77.8%	Top 10	77.2%	

SOURCE: SANDVINE NETWORK DEMOGRAPHICS

Table 1: Top Peak Period Applications by Bytes - Europe, Fixed Access

Mobility in Action

	North America Mobile							
	Upstream		Downstream		Aggregate			
Rank	Application	Share	Application	Share	Application	Share		
1	HTTP	20.52%	YouTube	27.17%	YouTube	24.99%		
2	Facebook	20.46%	HTTP	19.90%	НТТР	19.97%		
3	SSL	10.66%	Facebook	8.67%	Facebook	10.02%		
4	YouTube	8.06%	MPEG Streaming	7.18%	MPEG Streaming	6.58%		
5	Skype	2.32%	Pandora Radio	5.40%	SSL	5.49%		
6	Google Talk	2.07%	SSL	4.83%	Pandora Radio	5.00%		
7	Pandora Radio	1.90%	Google Market	3.51%	Google Market	3.23%		
8	MPEG Streaming	1.89%	Netflix	2.24%	Netflix	2.06%		
9	Gmail	1.38%	Flash Video	1.74%	Flash Video	1.58%		
10	BitTorrent	1.32%	Windows Update	1.68%	Windows Update	1.54%		
	Top 10	70.58%	Top 10	82.32%	Top 10	80.46%		

SOURCE: SANDVINE NETWORK DEMOGRAPHICS

Moving Ahead: Evolving Testing Standards

- IETF
 - Benchmarking Working Group
 - Content-aware device methodology

- Industry consortiums
 - DPIbench

Resiliency = Battle-Tested

- Apply emerging standards today
 - Download the most recent work
- Understand your network traffic
 - Enterprise, service provider, government, etc.

Apply: Takeaways

- Ask your vendor*:
 - Are you keeping up with emerging testing standards?
 - What application mixes and weights do you use during testing?
 - 3. Do you combine applications and high-stress user load during testing?
 - 4. What have the results been when you have tested using malformed traffic?
 - 5. How does the device perform against application-layer attacks?
 - 6. Can I test your product with my unique network, application, and user conditions?

^{*}Vendors, ask yourself the same questions.

Apply: Final Thoughts

- Read between the lines
- Money matters
- Just because code hasn't been touched doesn't mean it is not the problem
- Never leave a test port idle
- Utilize industry resources

Questions?

- \$,£,€,¥...£
- Contact information:
 - Mike Hamilton
 - Director of Global Systems Engineering
 - BreakingPoint Systems
 - mhamilton@breakingpoint.com

