
Session ID:

Session Classification:

Dr. Gary McGraw (@cigitalgem)

CTO, Cigital

ADS-T07

Advanced

BUG PARADES, ZOMBIES, AND THE
BSIMM:

A DECADE OF SOFTWARE SECURITY

#RSAC

IN THE BEGINNING

#RSAC

• IBM unbundles
software and services
from hardware in late
1960s

• Unbundling created
inequality in system
security

• Security shifts from
consumers to
producers

Software industry blooms in the 1970s

#RSAC

Who should DO software security?

 Network security ops guys

 NOBODY IN THE MIDDLE

Super rad developer dudes 

#RSAC

THE BUG PARADE

#RSAC

• Overwriting the bounds of data
objects

• Allocate some bytes, but the language
doesn’t care if you try to use more

• char x[12]; x[12] = ‘\0’

• Why was this done? Efficiency!

• (remember in the 70’s when code had
to be tight?)

• The most pervasive security problem
today in terms of reported bugs in the
‘90s

Bug: The dreaded buffer overflow

#RSAC

Eleven years of CERT data

0

5

10

15

20

25

30

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

Security Problems (CERT)

CERT Alerts

Buffer overflows

#RSAC

void main() {

 char buf[1024];

 gets(buf);

}

• How not to get input

– Attacker can send an
infinite string!

– Chapter 7 of K&R
(page 164)

A classic error in C

#RSAC

• Very risky:

gets,strcpy,strcat,sprintf,scanf,sscanf,fscanf,vfscanf,vsprintf,
vscanf, vsscanf,streadd,strecpy,realpath,syslog,getopt,
getopt_long,getpass

• Risky:

strtrns,getchar,fgetc,getc,read

• Be wary:

bcopy,fgets,memcpy,snprintf,
strccpy,strcadd,strncpy,vsnprintf

Big 1999 idea: Why not make a tool to find these for you??!

Calls to avoid in C

#RSAC

• Time makes all the
difference

• Atomic operations
that are not atomic

Bug: Race condition

Attack

#RSAC

Bug: Java security

#RSAC

• February 96: DNS flaw in JDK
1.0.1

• March 96: Path name bug

• March 96: Princeton Class Loader
bug

• May 96: type casting attack

• June 96: Array type
implementation error

• July 96: More type casting
problems

• August 96:Flaw in Microsoft’s
Java VM

A chronology of Java attack applets

► February 97: Invasion of

Privacy attack applets

► March 97: JVM hole

► April 97: Code signing flaw

► May 97: Verifier problems

discovered in many VMs

► July 97: Vacuum bug

► August 97: redirect bug

► July 98: ClassLoader bug

► March 99: Verifier hole

► August 99: Race condition

► October 99: Verifier hole 2

► August 2000: Brown Orifice

► October 2000: ActiveX/Java

All of these bugs have been
fixed (but they’re back)

#RSAC

• Enables an attacker to execute arbitrary SQL
commands on back-end database

• Example:

• PHP code inputs USERNAME and PASSWORD
and passes to MySQL back-end

• USERNAME is entered as bob

• PASSWORD is entered as ’ or USERNAME=‘bob

• Back-end executes Select ID from USERS where
USERNAME=‘bob’ and PASSWORD=‘’ or
USERNAME=‘bob’

• Instead of Select ID from USERS where
USERNAME=‘bob’ and PASSWORD=‘password’

Bug: SQL injection

#RSAC

• Unaltered user-controlled
content in a Web server
response gives an attacker the
opportunity to insert HTML
and scripts

• This code gets rendered in a
victim's browser

– Reflected (malicious links)

– Stored (by website)

• OWASP top ten bug

Bug: XSS

#RSAC

• Input validation and representation

• API abuse

• Security features

• Time and state

• Error handling

• Code quality

• Encapsulation

• Environment

Seven pernicious kingdoms (of bugs)

#RSAC

#RSAC

IMPLEMENTATION BUGS

• Buffer overflow

• String format

• One-stage attacks

• Race conditions

• TOCTOU (time of check to time of
use)

• Unsafe environment variables

• Unsafe system calls

• System()

• Untrusted input problems

Bug parade FAIL

ARCHITECTURAL FLAWS

► Misuse of cryptography

► Compartmentalization

problems in design

► Privileged block protection

failure (DoPrivilege())

► Catastrophic security failure

(fragility)

► Type safety confusion error

► Insecure auditing

► Broken or illogical access

control (RBAC over tiers)

► Method over-riding problems

(subclass issues)

► Signing too much code

50% 50%

#RSAC

SOFTWARE
SECURITY ZOMBIES

#RSAC

• Software security seems obvious to us, but it
is still catching on

• The middle market is just beginning to
emerge

• Time to scale!

ZOMBIE

• Network security FAIL

• More code more bugs

• SDLC integration

• Bugs and flaws

• Badness-ometers

Zombie ideas need repeating

#RSAC

• Defend the “perimeter” with a
firewall

– To keep stuff out

• Promulgate “penetrate and
patch”

• “Review” products when
they’re complete

– Throw it over the wall
testing

– Too much weight on
penetration testing

• Over-rely on security functions

– “We use SSL”

Zombie: old school security is reactive

The “network guy with keys” does

not really understand software

testing. Builders are only recently

getting involved in security.

#RSAC

Zombie: more code, more bugs

1090

2437

4129 3784 3780

5690

8064
7236

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

2000 2001 2002 2003 2004 2005 2006 2007

Software Vulnerabilities

Windows Complexity

0

5

10

15

20

25

30

35

40

45

Win

3.1

(1990)

Win

NT

(1995)

Win 95

(1997)

NT 4.0

(1998)

Win 98

(1999)

NT 5.0

(2000)

Win

2K

(2001)

XP

(2002)

M
il

li
o

n
s

 o
f

L
in

e
s

#RSAC

• Integrating best practices into large organizations

• Microsoft’s SDL

• Cigital’s touchpoints

• OWASP CLASP/SAMM

Zombie: SDLC integration

#RSAC

Zombie: bugs AND flaws

BUGS FLAWS

 Customized static rules (Fidelity)

 Commercial SCA tools: Fortify,

Ounce Labs, Coverity

 Architectural risk analysis

gets() attacker in the middle

#RSAC

Zombie: badness-ometer

badness-ometer

#RSAC

• Software security and application
security today are about finding
bugs

• The time has come to stop looking
for new bugs to add to the list

• Which bugs in this pile should I
fix?

Zombie baby: fix the dang software

#RSAC

SOFTWARE
SECURITY
TOUCHPOINTS

#RSAC

• Cigital SSG turned fifteen in 2012

• Microsoft adopts the Secure Development Lifecycle

• Most firms have a group devoted to software security

The rise of the software security group

 microsoft

 dtcc

 emc

 fidelity

 adobe

 wells fargo

 goldman sachs

 google

 qualcomm

 morgan stanley

 usaf

 dell

 pershing

 the hartford

 barclays capital

 bank of tokyo

 ups

 bank of montreal

 sterling commerce

 time warner

 cisco

 bank of america

 walmart

 finra

 vanguard

 college board

 oracle

 state street

 omgeo

 motorola

 general electric

 lockheed martin

 intuit

 vmware

 amex

 bank of ny mellon

 harris bank

 paypal

 symantec

 visa europe

 thomson/reuters

 BP

 SAP

 nokia

 ebay

 mckesson

 ABN/amro

 ING

 telecom italia

 swift

 standard life

 cigna

 AON

 coke

 mastercard

 apple

 AOL

 CA

#RSAC

• Integrating best practices into large organizations’ SDLC (that
is, an SSDL)

– Microsoft’s SDL

– Cigital’s Touchpoints

– OWASP CLASP

2006: shift from philosophy to HOW TO

#RSAC

Software security touchpoints

#RSAC

#RSAC

BSIMM: software security measurement

 Real data from (67)
real initiatives

 161 measurements

 21 (4) over time

 McGraw, Migues, &
West

PlexLogic

#RSAC

67 firms in the BSIMM community

Plus 22 firms that remain anonymous

#RSAC

BSIMM by the numbers

#RSAC

• BSIMM is not about good
or bad ways to eat
bananas or banana best
practices

• BSIMM is about
observations

• BSIMM is descriptive, not
prescriptive

• BSIMM describes and
measures multiple
prescriptive approaches

Monkeys eat bananas

#RSAC

• Four domains

• Twelve practices

• See informIT article on BSIMM website
http://bsimm.com

A software security framework

#RSAC

Architecture Analysis practice skeleton

#RSAC

[AA1.2] Perform design review for high-risk
applications. The organization learns about the
benefits of architecture analysis by seeing real results
for a few high-risk, high-profile applications. If the
software security group (SSG) is not yet equipped to
perform an in-depth architecture analysis, it uses
consultants to do this work. Ad hoc review paradigms
that rely heavily on expertise may be used here, though
in the long run they do not scale.

Example activity

#RSAC

Real-world data (67 firms)

 Initiative age

Average: 6 years

Newest: 0.4

Oldest: 18.1

Median: 5.3

 SSG size

Average: 14.78

Smallest: 1

Largest: 100

Median: 7

 Satellite size

 Average: 29.6

 Smallest: 0

 Largest: 400

 Median: 4

 Dev size

 Average: 4190

 Smallest: 11

 Largest: 30,000

 Median: 1600

 Average SSG size: 1.4% of dev group size

#RSAC

BSIMM-V scorecard

#RSAC

BSIMM-V as a measuring stick

 Compare a firm
with peers
using the high
water mark
view

 Compare
business units

 Chart an SSI
over time

#RSAC

BSIMM-V scorecard with FAKE firm data

 Top 12 activities

purple = good?

red = bad?

 “Blue shift” practices
to emphasize

#RSAC

BSIMM-V to BSIMM6

 BSIMM-V released October 2013 under creative commons

http://bsimm.com

Italian, German, and Spanish translations available

 BSIMM is a yardstick

Use it to see where you stand

Use it to figure out what your peers do

 BSIMM-VBSIMM6

BSIMM is growing

http://bsimm.com

#RSAC

WHERE TO LEARN
MORE

#RSAC

www.searchsecurity.com

No-nonsense monthly security
column by Gary McGraw

www.cigital.com/~gem/writing

SearchSecurity + Silver Bullet

www.cigital.com/justiceleague

In-depth thought leadership

blog from the Cigital

Principals

► Scott Matsumoto

► Gary McGraw

► Sammy Migues

► John Steven

► Paco Hope

www.cigital.com/silverbullet

http://www.seacrhsecurity.com
http://www.seacrhsecurity.com
http://www.seacrhsecurity.com
http://www.seacrhsecurity.com
http://www.seacrhsecurity.com
http://www.cigital.com/~gem/writing
http://www.cigital.com/~gem/writing
http://www.cigital.com/justiceleague
http://www.cigital.com/justiceleague
http://www.cigital.com/justiceleague
http://www.cigital.com/justiceleague
http://www.cigital.com/silverbullet
http://www.cigital.com/silverbullet
http://www.cigital.com/silverbullet
http://www.cigital.com/silverbullet

#RSAC

http://bsimm.com

THANK YOU

Read the Addison-Wesley Software
Security series

Send e-mail: gem@cigital.com

Build security in

bsimm.com
bsimm.com
bsimm.com
bsimm.com
bsimm.com
mailto:gem@cigital.com

#RSAC

Thank you!

Dr. Gary McGraw

CTO, Cigital

@cigitalgem

gem@cigital.com

http://www.cigital.com/~gem

