
Session ID:
Session Classification:

Martin Johns (@datenkeller)

SAP AG

ADS-W08
Advanced

Relax Everybody:
HTML5 Is Securer Than You Think

#RSAC

Motivation

►For some reason, there is a preconception that HTML5 is
terribly insecure…

►This is unfortunate, as (probably for the first time) new
browser features come with a well designed security
model

► In this talk, I will compare selected HTML5 technologies
with their legacy counterparts

#RSAC

Motivation

►For some reason, there is a preconception that HTML5 is
terribly insecure…

►This is unfortunate, as (probably for the first time) new
browser features come with a well designed security
model

► In this talk, I will compare selected HTML5 technologies
with their legacy counterparts

►… and I will keep score

#RSAC

Outline

►Technical background
►Client-side cross-domain communication
► In-browser communication
►Client-side persistence
►ClickJacking protection
►Bonus track: The browser's new security capabilities

#RSAC

Technical Background

#RSAC

Web authentication tracking

►The browser maintains the authenticated state
automatically

►After the initial authentication, everything is transparent
►Techniques:

► Authenticated session cookies
►Including all currently used social login techniques

► HTTP authentication
► Client-side SSL certificates

#RSAC

Introducing: The Attackers

►The Web Attacker
► The predominant attacker model of this talk
► Is able to display Web documents in the victim’s browser

►E.g., through the means of a nicely done Web page with cat content
►The code of this page runs in your (!) authentication context

►The Network Attacker
► Resides on the network link between the browser and the server
► Can alter/observe unprotected traffic
► Protection: SSL

#RSAC

The Same-Origin Policy (SOP)

►The only client-side security measure
► Defines basic access rights in HTTP
► Two elements have the “same origin” if the

►protocol, port, and host

► are the same for both elements

►Confines active code to Web documents of the same
“owner”

#RSAC

A World Without the SOP

http://kittypics.org
Browser

http://mail.google.com
Cookie for

mail.google.com

JavaScript
(kittypics.org)

http://kittypics.org

#RSAC

A World Without the SOP

► In a world without the SOP, the Web attacker can
► Read/write the contents of any (crossdomain) Iframe
► Send state full, authenticated HTTP requests to any server
► Read/write the locally stored information of any site

#RSAC

HTML5 and the SOP

► Interestingly enough, many HTML5 APIs allow softening
the SOP

►Q: So HTML5 is a bad thing, isn't it?
►Short answer: No!
►Long answer: No, because the old way was worse

► The HTML5 APIs satisfy a functional need, that predated them…

#RSAC

Client-side
cross-domain communication

#RSAC

The Problem

►Developer: I would like to offer cross-domain data
providing service
► The user's authentication context with the data provider is in the

browser
► Hence, the data is personalized, without the user's need to share

his credentials

►SOP: No, no, no! You are not allowed to do so!
►Developer: Well, I will do it anyways...

#RSAC

Legacy Technique 1: JSONP

►HTML tags are not subject to the SOP
► This includes the script-tag

<script src=“http://x-domain.host”>

► JSONP
► Offer an HTTP-endpoint which expects the name of a JavaScript

callback function in one of its URL parameters
► Generate a script file, which calls this callback function with the

requested data as argument

#RSAC

JSONP: Example

Callback function definition

Callback function passing

#RSAC

JSONP (in)Security

► JSONP is an valid option for public data
► However, for private data not so much…

►The Web attacker can insert a script tag pointing to the
JSONP interface in his site

►Through providing his own callback function, he receives
the private data

#RSAC

Legacy Technique 2: Crossdomain.xml

►The call for crossdomain requests was first answered by
Flash

►Through providing a policy file (crossdomain.xml) a site
can widen its trust boundaries selectively
► Whitelist approach
► Sites listed in the policy are allowed to send/receive

crossdomain HTTP requests

#RSAC

crossdomain.xml

http://b.net
Browser

http://c.net

Cookie for c.net

CrossDomain.swf
(b.net)

http://b.net

Policy
<b.net>

data
<cross-domain-policy>
<allow-access-from domain=“google.com” />
<allow-access-from domain=“facebook.com” />

</cross-domain-policy>

<cross-domain-policy>
<allow-access-from domain=“*” />

</cross-domain-policy>

#RSAC

crossdomain.xml (in)Security

►Web sites with a general wildcard in their policy allow all
domains crossdomain access

►This equals a waiving of the same-origin policy
►…how common is this?

#RSAC

Survey

►We examined the crossdomain.xml files of the Alexa top
1.000.000 sites

►Wildcard policy: 31,011 files (roughly every third policy
file, 2,8% of all analyzed sites)

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

Alexa Rank

Flash Policy Files

Wildcards

Insecure

#RSAC

The HTML5 Way: CORS

►Cross-Origin Resource Sharing
►Native extension of the browser’s XMLHttpRequest object
►Allows sending of cross-domain HTTP Requests
►The HTTP Response is checked for an Allow-From

header
► Authorizes the request through carrying the names of the

whitelisted domains

►Only if this header is present and the requester’s domain
is present in its value, the response is passed to the
JavaScript

#RSAC

CORS Security

►CORS allows the sending of cross-domain requests
► But only requests that could also be generated with HTML tags

(“simple requests”)
► “Complex requests” require a preflight handshake with the

server

►CORS allows wildcards (“*”) in the Allow-From header
► However, requests to resources with wildcards are not allowed

to carry authentication information (e.g., cookies)

►CORS allows fine grained control
► Whitelisting on a resource level
► Dynamic setting of the header based on request origin and

execution context

#RSAC

CORS verdict

►CORS is secure by default
► No response header – request fails

►Using CORS insecurely is very very hard
►CORS is widely supported

#RSAC

HTML 5 Legacy

0 : 0

#RSAC

HTML 5 Legacy

1 : 0

#RSAC

In-Browser Communication

#RSAC

The Problem

►Developer: I would like to communicate with this
crossdomain iframe

►SOP: No, no, no! You are not allowed to do so!
►Developer: Well, I will do it anyways...

#RSAC

Legacy 1: hash-identifier passing

►Hash (or fragment) identifier
► The hash (#) in a URL points to a local anchor
► Reload a document with a changed hash does not cause a

actual reload

►Communication technique
► The father frame sets the iframe source, passing the message in

the hash
► The iframe sets the parent’s

location, passing the reply in
the hash

#RSAC

Legacy 2: window.name

►window.name
► window.name is a (somewhat strange) DOM property
► Its value can be set crossdomain
► And after the value has been set, it survives navigation

►Hence, it can be used for in-browser communication
► For instance, the Dojo framework supports it as one of their data

transports

#RSAC

Hash and name (in)Security

►Authenticity
► Both techniques have in common, that they have no assurance

about sender authenticity

►Confidentiality
► window.name maintains its value upon navigation
► If the adversary is able to navigate a frame or window that

carries sensitive information in window.name, data leaks can
occur

#RSAC

Legacy 3: Domain relaxation

►Situation: Two documents hosted on separate sub-
domains want to exchange data

► In this case, the browser allows relaxing the SOP via
setting the document.domain property
► The property can only be set to a valid suffix including the father

domain
► Example: purchase.example.org -> example.org

► If both documents relax their domain, they have full
JavaScript access to their respective DOMs

#RSAC

Domain Relaxation: (in)Security

►Domain relaxation weakens the SOP’s security guarantees
► We wanted: Data exchange
► We granted: Full access

►Furthermore, only coarse grained control
► The document is now open to all subdomains, not only the

desired communication partner
► An XSS in one of the subdomains suffices to compromise the

document

#RSAC

The HTML5 Way: PostMessage

►PostMessage is an API for cross-domain signaling in the
browser

►Usage
► Sender: target.postMessage(message, targetOrigin)
► Receiver: sets up event handler for the “message” event

window.addEventListener("message", handlePostMessage);

function handlePostMessage(event){
if(event.origin === 'http://example.net'){

// do something
}

}

#RSAC

PostMessage Security

►The PostMessage API has strong security guarantees
►Confidentiality

► Message is only delivered to the target origin

►Authenticity
► The message carries unspoofable information about the sender

origin

► Integrity
► The message cannot be intercepted or altered by third parties

#RSAC

HTML 5 Legacy

1 : 0

#RSAC

HTML 5 Legacy

2 : 0

#RSAC

Local Persistent State

#RSAC

The Problem

►Developer: I would like to permanently store data on the
user’s browser

►SOP: No, no, no! You are not allowed to do so!
► Local state is in general accessible only under URL-schemes that

differ from http(s)

►Developer: Well, I will do it anyways...

#RSAC

Legacy Technique: Cookie hacks

►Cookies can be set using the document.cookie
property
► This way the data stays in the browser even when the

window/tab is closed
► On a later visit, the data can be retrieved in the same fashion
► Hence, local persistent state…

#RSAC

Cookies: Network overhead

►The purpose of the cookie is to maintain state
that is communicated to the server

►Hence, all matching cookies are sent to the server with
every request
► This is hardly saving bandwidth…

#RSAC

Cookies (in)Security

►Cookies adhere to a significantly more lax SOP:
► Protocol (http/https) and port are ignored
► Cookies of father domains are send with requests to

subdomains

►Attacks (Web attacker)
► XSS on a subdomain: Read the state of all father domains
► XSS on a service hosted on the same server (e.g., under port

8080): Read state of co-located applications

►Attacks (Network attacker)
► Create http request: Read local state of application

►Even the state of applications using https

#RSAC

The HTML5 Way: LocalStorage

► JavaScript API to store data in the browser
►Access only for same-origin scripts
►Strict enforcement of the same-origin policy

<script>
//Set Item
localStorage.setItem("foo","bar");
...
//Get Item
var testVar = localStorage.getItem("foo");
...
//Remove Item
localStorage.removeItem("foo");

</script>

#RSAC

HTML 5 Legacy

2 : 0

#RSAC

HTML 5 Legacy

3 : 0

#RSAC

ClickJacking Protection

#RSAC

ClickJacking Legacy: Framebusters

►ClickJacking (aka UI Redressing)
► Framing crossdomain content
► Hiding the frame with CSS
► Tricking the victim to click security sensitive UI
► …
► Profit

►Legacy protection: JavaScript framebusters

<script>
if (parent!= self)

parent.location = self.location;
</script>

#RSAC

Framebuster (in)Security

►Several ways exist to circumvent this protection:
► Prevent JavaScript execution

►Misusing modern XSS filters
►Using sandboxed iframes

► Prevent redirect
►204 flushing
►Double framing
►By asking the user nicely (onbeforeunload event)

► It is possible to build secure frame busters. However, the
knowledge about it is not widely spread

#RSAC

The HTML5 way: X-Frame-Options

►Approach introduced by Microsoft to counter Clickjacking
attacks

► Idea is similar to frame busting: Avoid unauthorized
framing of a page

► Implementation:
► Non-JavaScript solution
► Based on an HTTP Response header
► Browser enforces the Web server’s desired behavior

#RSAC

HTML 5 Legacy

3 : 0

#RSAC

HTML 5 Legacy

4 : 0

#RSAC

Bonus track:
Fighting XSS

#RSAC

Cross-site Scripting (XSS)

►We (the security community) know about the general XSS
problems since more than 10 years
► The first advisory was in the year 2000

►Since the growing dominance of Web Applications we
also understood the severity of the problem
► Still, it appears as if we cannot handle the problem

► In 2011 more than 50% of all examined Web sites had at
least one XSS problem (data collected by White Hat
Security)

►This year we ran a study on DOM-based XSS
► We fully automatically found DOM-based XSS problems in 10%

of the Alexa 5000

#RSAC

XSS countermeasures

►Modern browser bring several means to contain XSS
► Sandboxed iFrames
► Content Security Policy (CSP)
► Client-side XSS filter

#RSAC

Sandboxed iFrames

► In a sandboxed Iframe, JS execution is prevented
► Render untrusted data in sandboxed Iframes to stop XSS-based

JS

►Even better: Using the srcdoc attribute
► srcdoc contains the to be rendered markup directly

►Problem:
► Layout loses rendering flexibility

#RSAC

Content Security Policy (CSP)

►Server specifies legitimate script sources
► Whitelisting of hosts

►Forbids
► JavaScript within the HTML
► String to code conversion (e.g., eval())

►With these rules the vast majority of cross-site scripting is
mitigated

#RSAC

Client-side XSS filter

►Most modern browser provide client-side XSS filter
► Internet Explorer, Google Chrome, Apple Safari
► For Firefox the add-on NoScript is required

►Combat “reflected XSS”
►String comparison between URL and script content

► Catches the most simple XSS attacks

#RSAC

HTML 5 Legacy

4 : 0

#RSAC

HTML 5 Legacy

6½ : 0

#RSAC

Conclusion

►Modern browser APIs realize needed client-side
techniques

►These APIs have be designed with solid security
considerations
► Strict adherence to the same-origin policy

►They are not only superior on a functional level but in
general they are actually more secure than their legacy
counterparts

#RSAC

Thank you!

