
Session ID:

Session Classification:

Christopher Kruegel

Lastline Inc. and UC Santa Barbara

HTA-W10

Advanced

UNDERSTANDING AND FIGHTING EVASIVE
MALWARE

#RSAC

Who am I?

►Professor in Computer Science at UC Santa Barbara

► 100+ systems security papers in academic conferences

► started malware research in about 2004

► built and released practical systems (Anubis, Wepawet, …)

►Co-founder and Chief Scientist at Lastline, Inc.

► Lastline offers protection against zero-day threats and

advanced malware

► venue to commercialize our academic research

#RSAC

What are we talking about?

►Evolution of malicious code and automated malware

analysis

►Evasion as a significant threat to automated analysis

► detect analysis environment

► detect analysis system

► avoid being seen by automated analysis

►Improvements to analysis systems

► automate defenses against common evasion approaches

#RSAC

Evolution of Malware

#RSAC

Malware Analysis

#RSAC

Malware Analysis

#RSAC

Malware Analysis

#RSAC

Malware Analysis

#RSAC

There is a lot of malware out there …

#RSAC

Automated Malware Analysis

►Aka sandbox

►Automation is great!

► analysts do not need to look at each sample by hand

(debugger)

► only way to stem flood of samples and get scalability

► can handle zero day threats (signature less defense)

►Implemented as instrumented execution environment

► run program and observe its activity

► make determination whether code is malicious or not

#RSAC

Automated Malware Analysis

►Not all sandboxes are equal!

It is easy to build a sandbox,
it is hard to build an effective sandbox!

Lawrence Orans
“The Executive's Guide to Cyberthreats”
(Gartner Symposium, October 2013)

#RSAC

Automated Malware Analysis

►Ask your vendor questions about their sandbox

► what files are supported (executables, documents, more …)

► how effective is classification of malicious behaviors

► how effective is sandbox in eliciting behaviors (evasion!)

#RSAC

Automated Malware Analysis

►Anubis: ANalyzing Unknown BInarieS

 (dynamic malware analysis environment)

#RSAC

Automated Malware Analysis

►Anubis: ANalyzing Unknown BInarieS

 (dynamic malware analysis environment)

► based on system/CPU emulator (Qemu)

► can see every instruction!

► monitors system activity from the outside (stealthier)

► requires mechanisms to handle semantic gap

► general platform on which additional components can be built

► supports dynamic data flow analysis (taint tracking)

#RSAC

Automated Malware Analysis

#RSAC

VM Engine versus CPU Emulation

#RSAC

Dynamic Data Flow Analysis

►Data tainting

► if any byte of any input value is tainted, then all bytes of the

output are tainted

 (e.g., add %eax, %ebx)

►Address tainting

► in addition, if any byte of any input value that is involved in

the address computation of a source memory operand is

tainted, then the output is tainted

 (e.g., mov %eax, (%ecx, %ebx, 2))

#RSAC

Evasions

#RSAC

Evasion

►Malware authors are not stupid

► they got the news that sandboxes are all the rage now

► since the code is executed, malware authors have options ..

►Evasion

► develop code that exhibits no malicious behavior in

sandbox, but that infects the intended target

► can be achieved in various ways

#RSAC

Evasion

► Malware can detect underlying runtime environment

► differences between virtualized and bare metal environment

► checks based on system (CPU) features

► artifacts in the operating system

► Malware can detect signs of specific analysis environments

► checks based on operating system artifacts (files, processes, …)

► Malware can avoid being analyzed

► tricks in making code run that analysis system does not see

► wait until someone clicks something

► time out analysis before any interesting behaviors are revealed

► simple sleeps, but more sophisticated implementations possible

#RSAC

Evasion

#RSAC

Evasion

#RSAC

Evasion

#RSAC

Detect Runtime Environment

►Insufficient support from hardware for virtualization

► J. Robin and C. Irvine: Analysis of the Intel Pentium’s Ability

to Support a Secure Virtual Machine Monitor; Usenix

Security Symposium, 2000

► famous RedPill code snippet

#RSAC

Detect Runtime Environment

►Insufficient support from hardware for virtualization

► J. Robin and C. Irvine: Analysis of the Intel Pentium’s Ability

to Support a Secure Virtual Machine Monitor; Usenix

Security Symposium, 2000

► famous RedPill code snippet

► hardware assisted virtualization (Intel-VT and AMD-V) helps

► but systems can still be detected due to timing differences

#RSAC

Detect Runtime Environment

►CPU bugs or unfaithful emulation

► invalid opcode exception, incorrect debug exception, …

► later automated in: R. Paleari, L. Martignoni, G. Roglia, D.

Bruschi: A fistful of red-pills: How to automatically generate

procedures to detect CPU emulators; Usenix Workshop on

Offensive Technologies (WOOT), 2009

► recently, we have seen malware make use of (obscure)

math instructions

►The question is … can malware really assume that a

generic virtual machine implies an automated malware

analysis system?

#RSAC

Detect Analysis Engine

► Check Windows XP Product ID
 HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductID

► Check for specific user name, process names, hard disk names

 HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\DISK\ENUM

► Check for unexpected loaded DLLs or Mutex names

► Check for color of background pixel

► Check of presence of 3-button mouse, keyboard layout, …

#RSAC

Detect Analysis Engine

#RSAC

Detect Analysis Engine

#RSAC

Detect Analysis Engine

#RSAC

Avoid Monitoring

►Open window and wait for user to click

►Only do bad things after system reboots

► system could catch the fact that malware tried to make itself

persistent

►Only run before / after specific dates

#RSAC

Avoid Monitoring

#RSAC

Avoid Monitoring

►Escape 32-bit address space (on 64-bit Windows)

► 32-bit Windows processes actually live in 64-bit address

space

► code can modify segment register to point outside “normal”

32-bit address space

► Windows uses this trick to call 64-bit system calls from 32-bit

code (basically, 32-bit system calls are trampolines to 64-bit

versions)

► malware uses this to bypass systems that monitor 32-bit

addresses of system calls

#RSAC

Avoid Monitoring

► Sleep for a while (analysis systems have time-outs)

► typically, a few minutes will do this

►“Sleep” in a smarter way (stalling code – example on

the next slide)

#RSAC

Avoid Monitoring

#RSAC

Handling Evasions

#RSAC

What can we do about evasion?

►One key evasive technique relies on checking for

specific values in the environment (triggers)

► we can randomize these values, if we know about them

► we can detect (and bypass) triggers automatically

►Another key technique relies on timing out the

sandbox

► we can automatically profile code execution and recognize

stalling

#RSAC

Bypassing Triggers

► Idea

► explore multiple execution paths of executable under test

► exploration is driven by monitoring how program uses inputs

► system should also provide information under which circumstances

a certain action is triggered

► Approach

► track “interesting” input when it is read by the program

► whenever a control flow decision is encountered that uses such

input, two possible paths can be followed

► save snapshot of current process and continue along first branch

► later, revert back to stored snapshot and explore alternative branch

#RSAC

Bypassing Triggers

► Tracking input

► we already know how to do this (tainting)

► Snapshots

► we know how to find control flow decision points (branches)

► snapshots are generated by saving the content of the process’ virtual

 address space (of course, only used parts)

► restoring works by overwriting current address space with stored image

► Explore alternative branch

► restore process memory image

► set the tainted operand (register or memory location) to a value that reverts

 branch condition

► let the process continue to run

#RSAC

Bypassing Triggers

►Unfortunately, it is not that easy

► when only rewriting the operand of the branch, process state

can become inconsistent

► input value might have been copied or used in previous

calculations

x = read_input();

y = 2*x + 1;

check(y);

print(“x = %d, x”);

....

void check(int magic) {

 if (magic != 47)

 exit();

}

#RSAC

Bypassing Triggers

►Unfortunately, it is not that easy

► when only rewriting the operand of the branch, process state

can become inconsistent

► input value might have been copied or used in previous

calculations

x = read_input();

y = 2*x + 1;

check(y);

print(“x = %d, x”);

....

void check(int magic) {

 if (magic != 47)

 exit();

}

x = 0

#RSAC

Bypassing Triggers

►Unfortunately, it is not that easy

► when only rewriting the operand of the branch, process state

can become inconsistent

► input value might have been copied or used in previous

calculations

x = read_input();

y = 2*x + 1;

check(y);

print(“x = %d, x”);

....

void check(int magic) {

 if (magic != 47)

 exit();

}

x = 0

#RSAC

Bypassing Triggers

►Unfortunately, it is not that easy

► when only rewriting the operand of the branch, process state

can become inconsistent

► input value might have been copied or used in previous

calculations

x = read_input();

y = 2*x + 1;

check(y);

print(“x = %d, x”);

....

void check(int magic) {

 if (magic != 47)

 exit();

}

x = 0

#RSAC

Bypassing Triggers

►Unfortunately, it is not that easy

► when only rewriting the operand of the branch, process state

can become inconsistent

► input value might have been copied or used in previous

calculations

x = read_input();

y = 2*x + 1;

check(y);

print(“x = %d, x”);

....

void check(int magic) {

 if (magic != 47)

 exit();

}

x = 0

exit();

magic = 0

#RSAC

Bypassing Triggers

►Unfortunately, it is not that easy

► when only rewriting the operand of the branch, process state

can become inconsistent

► input value might have been copied or used in previous

calculations

x = read_input();

y = 2*x + 1;

check(y);

print(“x = %d, x”);

....

void check(int magic) {

 if (magic != 47)

 exit();

}

x = 0

exit();

magic = 0

printf(“x = %d”,x);

magic = 47

This prints x = 0 !

We have to remember that y depends on x,
and that magic depends on y.

#RSAC

Bypassing Triggers

► Tracking of input must be extended

► whenever a tainted value is copied to a new location, we must

remember this relationship

► whenever a tainted value is used as input in a calculation, we must

remember the relationship between the input and the result

► Constraint set

► for every operation on tainted data, a constraint is added that

captures relationship between input operands and result

► can be used to perform consistent memory updates when exploring

alternative paths

► provides immediate information about condition under which path

is selected

#RSAC

Bypassing Triggers

►Constraint Set

x = read_input();

y = 2*x + 1;

check(y);

print(“x = %d, x”);

....

void check(int magic) {

 if (magic != 47)

 exit();

}

#RSAC

Bypassing Triggers

►Constraint Set

x = read_input();

y = 2*x + 1;

check(y);

print(“x = %d, x”);

....

void check(int magic) {

 if (magic != 47)

 exit();

}

x = 0 x == input

y == 2*x + 1

magic == y

#RSAC

Bypassing Triggers

►Constraint Set

x = read_input();

y = 2*x + 1;

check(y);

print(“x = %d, x”);

....

void check(int magic) {

 if (magic != 47)

 exit();

}

x = 0 x == input

y == 2*x + 1

magic == y

magic == 47

#RSAC

Bypassing Triggers

►Constraint Set

x = read_input();

y = 2*x + 1;

check(y);

print(“x = %d, x”);

....

void check(int magic) {

 if (magic != 47)

 exit();

}

x = 0

Now, print outputs “x = 23”

x == input

y == 2*x + 1

magic == y

magic == 47

solve for alternative

branch

y == magic == 47

x == input == 23

#RSAC

Bypassing Triggers

►Path constraints

► capture effects of conditional branch operations on tainted

variables

► added to constraint set for certain path

x = read_input();

if (x > 10)

 if (x < 15)

 interesting();

exit(); exit();

x <= 10 x > 10

exit();

x > 10

x >= 15

interesting();

x > 10

x < 15

#RSAC

Bypassing Triggers

►308 malicious executables

► large variety of viruses, worms, bots, Trojan horses, …

Interesting input sources

Check for Internet connectivity 20

Check for mutex object 116

Check for existence of file 79

Check for registry entry 74

Read current time 134

Read from file 106

Read from network 134

Additional code coverage

 none 136

 0% - 10% 21

 10% - 50% 71

50% - 200% 37

 > 200% 43

Additional code is likely

for error handling

Relevant behavior:

 time-triggers

 filename checks

 bot commands

#RSAC

Combating Evasion

►Mitigate stalling loops

1. detect that program does not make progress

2. passive mode

►find loop that is currently executing

►reduce logging for this loop (until exit)

3. active mode

►when reduced logging is not sufficient

►actively interrupt loop

►Progress checks

► based on system calls

► too many failures, too few, always the same, …

#RSAC

Passive Mode

► Finding code blocks (white list)

 for which logging should be reduced

► build dynamic control flow graph

► run loop detection algorithm

► identify live blocks and call edges

► identify first (closest) active loop

 (loop still in progress)

► mark all regions reachable from

 this loop

Function f

Function gFunction m

Loop l1

Loop l2

Current

Code Block

Stalling Code Region

Live Call

#RSAC

Active Mode

► Interrupt loop

► find conditional jump that leads out of white-listed region

► simply invert it the next time control flow passes by

► Problem

► program might later use variables that were written by loop

 but that do not have the proper value and fail

► Solution

► mark all memory locations (variables) written by loop body

► dynamically track all variables that are marked (taint analysis)

► whenever program uses such variable, extract slice that computes

this value, run it, and plug in proper value into original execution

#RSAC

Experimental Results

• 1,552 / 6,237 stalling samples

 reveal additional behavior

• At least 543 had obvious signs

 of malicious (deliberate) stalling

#RSAC

Conclusions

►Malware is key component in many security threats on

the Internet

►Automated analysis of malicious code faces number of

challenges

► evasion is one critical challenge!

►Types of evasion

► detect analysis environment

► detect analysis system

► avoid analysis

►We shouldn’t simply give up, it is possible to address

certain techniques in very general ways

#RSAC

Thank you!

Christopher Kruegel

Lastline Inc. / UCSB

chris@lastline.com

http://www.lastline.com

