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Background



Fully Homomorphic Encryption

Allows computing over encrypted data:
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(sk,pk) ←$ Gen(1λ)
c ←$ Enc(m,pk)
c′ ←$ Eval(c, f ,pk)

f (m) = Dec(c′, sk)

Security: Standard IND-CPA security.



Fully Homomorphic Encryption

Can privately outsource computation:
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FHE compact⇒ protocol outsourcing



Verifiable Computation

FHE-based solution is not verifiable:

Evaluator may compute f̃ instead of f .

A verifiable computation (VC) scheme allows verifiable
outsourcing of computation:

(sk,pk) ←$ Gen(f ,1λ)
(c, k) ←$ ProbGen(m, sk)

c′ ←$ Compute(c,pk)
f (m) or ⊥ = Verify(c′, k, sk)



Verifiable Oustsourcing of Computation
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Time(Gen) = O(f ) and Time(Verify) = o(f )



Security: Input/Output (I/O) Privacy

No information about the input (and hence the output) is leaked.

proc. Initialize(f , λ):
b ←$ {0,1}
(sk,pk)←$ Gen(f ,1λ)
Return pk

proc. PubProbGen(m):
(c, k)←$ ProbGen(m, sk)
Return c

proc. LR(m0,m1):
c←$ ProbGen(mb, sk)
Return c

proc. Finalize(b′):
Return (b = b′)

Advind-cpa
f ,VC,A(λ) := 2 · Pr

[
GameA ⇒ T

]
− 1



Security: Verifiability

Adversary cannot fool the delegator to accept a wrong result.

proc. Initialize(f , λ):
List← {}; i ← 0
(sk,pk)←$ Gen(f ,1λ)
Return pk

proc. PubProbGen(m):
(c, k)←$ ProbGen(m, sk)
i ← i + 1
List← List ∪ {(i ,m, k)}
Return c

proc. PubVerify(c, i):
Find (m, k) s.t. (i ,m, k) ∈ List
m← Verify(c, k, sk)
Return m

proc. Finalize(c?, i):
If (i , ?, ?) 6∈ List Return F
Find (m, k) s.t. (i ,m, k)∈List
m? ← Verify(c?, k, sk)
Return (m? 6=⊥ ∧m? 6= f (m))

Advvrf-ccax
f ,VC,A (λ) := Pr

[
GameA ⇒ T

]



(Non-interactive) Outsourcing of Computation

Prior work:
Literature from complexity theory: PCPs + CS proofs,
where verifier checks a small/const number of bits of the
proof.
Yao’s garbled circuit + FHE [GGP10].
Cut-and-choose protocol + FHE [CKV10].
These schemes are not fully verifiable.

Large body of recent work on related topics:
Verifiable Computation with Two or More Clouds, CCS
2011.
Outsourcing the Decryption of ABE Ciphertexts, Usenix
2011.
How to Delegate and Verify in Public: Verifiable
Computation from Attribute-based Encryption, TCC 2012.
Delegation of Computation without Rejection Problem from
Designated Verifier CS-proofs, ePrint 2011.
Targeted Malleability: Homomorphic Encryption for
Restricted Computations, ITCS 2012.
. . .



Functional Encryption

Enc
cm
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f
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(Msk,Mpk) ←$ Setup(1λ)
TKf ←$ TKGen(f ,Msk)

c ←$ Enc(m,Mpk)
f (m)/ ⊥ = Dec(c,TKf )

Generalizes many primitives such as: PKE, IBE, ABE, PE, . . .



Security: Indistinguishability

proc. Initialize(λ):
b ←$ {0,1}
(Msk,Mpk)←$ Setup(1λ)
Return Mpk

oracle LR(m0,m1):
c←$Enc(mb,Mpk)
Return c

oracle Token(f ):
TK←$ TKGen(f ,Msk)
TKList← f : TKList
Return TK

proc. Finalize(b′):
Return (b = b′)

An adversary is legitimate if:

R(m0,m1) = 1. Typically R(m0,m1) := (|m0| = |m1|).

For all f ∈ TKList we have f (m0) = f (m1).

TNA model: it does not call Token after calling LR.

CCA1/2 model: add a Decrypt oracle.



Limitations of Known Primitives

Fully Homomorphic Encryption (FHE):
Unrestricted evaluation.
No verifiability.

Functional Encryption (FE):
No output privacy (for outsourcing).
No verifiability.

Verifiable computation (VC):
Gen, ProbGen, and Verifier are the same party.
Support for a single function only.
(Until now) Not fully verifiable.



Delegatable Homomorphic Encryption



New Architecture

Sender
m Evaluator
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Sender, Receiver, TA, and Evaluator have separate roles.

Encryption is a public operation.

One-time setup procedure for all f .

k binds the computation to a specific m.

hf binds the computation to a specific f .

I/O privacy, verifiability, and collusion resistance.



Examples
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Health Record Statistics:

Alice (Sender) has encrypted health records.

Bob (Receiver) likes to obtain some statistics.

Neither Alice nor Bob have enough computational resources.

Carol (Evaluator) will compute over data.

TA issues tokens so Carol computes the specific statistics (can
even sell statistics).

Bob is assured that I/O remain private, and the result is correct.



Examples
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Email Filtering:
Alice (Sender) sends encrypted emails to Bob (Receiver).

Bob would like to filter emails.

Bob does not have enough computational resources.

TA issues token so Carol can run the specific filtering procedure.

Carol (Evaluator) will filter emails for Bob.

Bob is assured nothing is leaked, and filtering is done properly.



The DHE Primitive

(Msk,Mpk) ←$ Setup(1λ)
(sk,pk) ←$ Gen(Mpk)
(TKf ,hf ) ←$ TKGen(f ,Msk)

(c, k) ←$ Enc(m,pk)
c′ ←$ Eval(c,TKf ,pk)

f (m) or ⊥ = Dec(c′, k,hf , sk)



The DHE Primitive
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A public-key counterpart to VC.
Provides “targeted malleability".
FHE where homomorphisms are delegated.



Security

Three notions:

I/O Privacy No information leaks about the data, even given
the Msk and k.
(No access to a Verification oracle.)

Verifiability Adversary cannot fool the delegator to accept a
wrong result.

Collusion Resistance Adversary knowing receiver’s secret key
cannot learn more than the result of the
computations.



The Construction



Adding Verifiability to Functions

Given a function f , transform it to a function f ? by setting:

f ?(m, k) := (f (m),MAC(f (m)|hf , k,mk)) .

Here
hf ← Hhk(〈f 〉)

where H is a collision-resistant hash function.



The Construction

Transform f to f ? as above.

Tokens are for the transformed functions.

Encrypt functionally and then homomorphically.

To evaluate, homomorphically functionally decrypt.

To recover the result decrypt, and then verify the MAC.

Use the function fingerprint and the auxiliary info for this.



n-Key-Chameleon MAC

Need a special MAC for the security proof:

(td,mk) ←$ Setup(1λ)
tag ←$ MAC(m, k,mk)

k′ ←$ Col(td,m1, . . . ,mn, k,mk)

For all mi , must have:

MAC(mi , k,mk) = MAC(mi , k′,mk)

Security: (n + 1)-time unforgeable when given k′.
Construction:

MAC(m, (an, . . . ,a0)︸ ︷︷ ︸
k

, ε) :=
n∑

i=0

aimi

Collision: solve n equations in n + 1 unknowns.



Security Guarantees

Theorem

The DHE construction provides input/output privacy, verifiability,
and collusion resistance if the FE scheme is IND-CCA1, the
FHE is IND-CPA, and the MAC is unforgeable.

Advta-ind-cpa
DHE,A (λ) = Advind-cpa

FHE,B (λ)

Advind-evalx
DHE,A (λ) = Advind-ccax

FE,B (λ)

Advvrf-cca1
DHE,A (λ) ≤ (QDecrypt

DHE,A (λ) + 1) ·QEncrypt
DHE,A (λ)·

(Advind-cca1
FE,B (λ) + Advuf-cma

MAC,C (λ))



Proof

I/O privacy follows from the security of the FHE layer.
Collusion resistance follows from FE security.
Verifiability:

QEncrypt: Adversary wins for the i-th encryption only.
QDecrypt + 1: The adversary is playing the game QDecrypt + 1
times: the QDecrypt decrypt queries are answered with ⊥.
n-Key-Chameleon property:

Change key from real to one generated through the collision
algorithm.
f ?(m, k) = f ?(m, k′) due to the chameleon property (and
legitimacy of the adversary).
Negligible hop down to IND-CCA1 security of FE.

Now reduce to the unforgeability of MAC. Note we have k′

from MAC game.



DHE⇒ VC

Enc Eval

f(m)/⟂ c'

m

Dec

sk
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k

Delegator Evaluator

f
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Gen
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TKGen
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pk

pk

sk,H(f)

c

VC.Gen: Run DHE.Setup + DHE.Gen + DHE.TKGen.
Return ((hf , sk,pk), (TKf ,pk)).
VC.ProbGen: Run DHE.Enc. Return (c, k).
VC.Compute: Run DHE.Eval. Return c′.
VC.Verify: Run DHE.Dec. Return y or ⊥.



Further Research

Security:
I/O privacy in the presence of a verification oracle.

The construction is insecure in this model: Change one bit
at a time and then check it using the verification oracle.

Unbounded/adaptive token queries.
DHE already quite powerful, but:

Public verifiability.
Multi/i-hop and multi-arity variants.
Multiple evaluators with t out of n being honest.
Randomized functions.

Also:
Instantiations for specific functionalities (DHE & VFE).



By mixing homomorphic and functional encryption
and a special MAC

once can build a powerful variant of VC

Thank you for your attention.
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Contributions:

1. Efficient Distributed RSA Moduli Generation
2. Threshold Paillier Encryption

Setting:

� Both in the Two-Party setting
� Security against active adversaries.
� Security proofs based on simulation.

2 / 14



Introduction: Distributed RSA Key Generation

RSA Composite
� N = pq, (p and q are primes)
� Generate p and q using the

Miller-Rabin test
� Used in:

� Encryption schemes
� Signature schemes
� Lots of other cryptographic

tools
� Paillier Encrypion Scheme

Distributed Generation

� Introduced by Boneh and
Franklin ’97
� 3 Parties (Honest Majority)
� Passive security

� Other protocols exist.
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Introduction: Threshold Paillier Encryption

Threshold Decryption

c = Encpk (m = ”hey”)

1 2

� Many Examples:
� Threshold RSA
� Threshold ElGamal
� etc...

Paillier Encryption

� pk = N
� sk = ϕ(N)

� Additive Homomorphic:

Encpk (m1 + m2) =
Encpk (m1) · Encpk (m2)

� Useful for MPC/SFE
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RSA Composite Generation: Related Work

� Boneh and Franklin ’97
� Honest majority
� Pasive security
� Biprimality test (BF)

� Frankel, Mackenzie, and Yung
’98
� Honest majority
� Active security
� BF biprimality Test

� Poupard and Stern ’98
� Two party
� Active Security
� BF Biprimality Test
� Not simulatable

� Gilboa ’99
� Two party
� Passive Security
� BF Biprimality Test

� Algesheimer, Camenisch, and
Shoup ’02
� Honest majority
� Passive Security
� Miller-Rabin primality test

� Damgård and Mikkelsen ’10
� Honest majority
� Actime Security
� Miller-Rabin like primality test

5 / 14



Overview of protocol
1. Pick random candidates:

Pick p = p0 + p1 and q = q0 + q1 s.t. p ≡ q ≡ 3 (mod 4).
2. Trial division: Distributed trial divide p and q up to a bound B.

Until p and q succeeds repeat 1 and 2.
3. Compute N = pq
4. Biprimality test: Are both p and q primes

Trial Division

� Avoid quadratic slowdown:

One prime at the time: 1
ln(x)

Two primes at the time: 1
ln(x)2

Biprimality test

� Faster than distributed
primality test, because N is
public.
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Tools used
� Std. Paillier Encryption (additive homomorphic)
� Additive homomorphic ElGamal

� pk = 〈g,h〉, where g,h ∈ Gp′

� sk = s s.t. h = gs

� (α, β) = Encpk (m, r) = (gr ,hr · gm)
� gm = Decsk (α, β) = β · α−s

� Threshold additive homomorphic ElGamal
� s = s1 + s2

� Integer commitment schemes.
� ZK Proofs

7 / 14



Trial Division

Test if α|p = p1 + p2

� ci = Enc(pi mod α), using ElGamal
� Exchange ci and compute c = c1 · c2

� If c = 0 or c = α then reject p

Speed up
Expected number of Biprimality tests (1024 bit primes):
� ≈ 126000, without trial division
� ≈ 2000, with trial division

8 / 14



Computing N = pq

Compute N using Paillier

� P0: Send Encpk0(p0) and Encpk0(q0)

� P1: Send

Encpk0(p0)
q1 · Encpk0(q0)

p1 · Encpk0(p1q1)

= Encpk0((p0 + p1)(q0 + q1)− (p0q0))

� P0 Compute and send N

Verify computation using ElGamal
Repeat computation using ElGamal and verify that the result is gN

9 / 14



Biprimality test

The Biprimality test [BF97]
γ

φ(N)
4 ≡ ±1 (mod N) for random γ ∈ Z∗

N and J (γ) = 1
Error probability 1/2

The Protocol

1. Both: Compute
e0 = Encpk (

N−(p0+q0)+1
4 ) and

e1 = Encpk (
−(p1+q1)

4 ) using ElGamal

2. P0: Send γ0 = γ
N−(p0+q0)+1

4

3. P1: Send γ1 = γ
−(p1+q1)

4

4. Both: Prove consistency with ei

5. Reject N if (γ0γ1 mod N 6= ±1) otherwise repeat ` times
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Threshold Paillier Scheme - (Updated Version)

Std. Paillier
� pk = N, sk = ϕ(N)

� c = Encpk (m, r) = (1 + N)m · rN mod N2

� m = Decsk (c) =
(cφ(N) mod N2)−1

N · φ(N)−1 mod N

Threshold version
� d instead of φ(N), s.t. d ≡ 1 (mod N) and d ≡ 0 (mod φ(N))

� Additive sharing d = d0 + d1 to compute: cd mod N2
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Protocol for Sharing the Private Key d = d0 · d1

d ≡ 1 (mod N) and d ≡ 0 (mod φ(N))

� P0: Knowledge of x0 = N − p0 − q0

� P1: Knowledge of x1 = −p1 − q1
� Similar trick to computing N:

� P0 sends P1 encrypted input
� P1 computes and returns result (in this case d1 = d + blinding)
� To verify ZK-proofs and ElGamal encryptions are used.
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� P0 sends P1 encrypted input
� P1 computes and returns result (in this case d1 = d + blinding)
� To verify ZK-proofs and ElGamal encryptions are used.
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Protocol for Decryption m = Dec(c)

� P0: Sends c0 = cd0 mod N2 to P1

� P1: Sends c1 = cd1 mod N2 to P0

� Both: Prove consistency with ElGamal encryption of d0 and d1

� Both: Compute:

m = ((c0 · c1) mod N2 − 1)/N mod N
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Thank You

Please see:
http://eprint.iacr.org/2011/494
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