# Delegatable Homomorphic Encryption with Applications to Secure Outsourcing of Computation 

Manuel Barbosa ${ }^{1}$ Pooya Farshim ${ }^{2}$<br>${ }^{1}$ Universidade do Minho, Portugal<br>${ }^{2}$ Technischen Universität Darmstadt, Germany

CT-RSA 2012 01.03.2012

## Background

Allows computing over encrypted data:


$$
\begin{array}{rlll}
(\mathrm{sk}, \mathrm{pk}) & \leftarrow & \operatorname{Gen}\left(1^{\lambda}\right) \\
\mathrm{c} & \leftarrow & \operatorname{Enc}(\mathrm{~m}, \mathrm{pk}) \\
\mathrm{c}^{\prime} & \leftarrow & \operatorname{Eval}(\mathrm{c}, f, \mathrm{pk}) \\
f(\mathrm{~m}) & = & \operatorname{Dec}\left(\mathrm{c}^{\prime}, \mathrm{sk}\right)
\end{array}
$$

Security: Standard IND-CPA security.

Can privately outsource computation:
Delegator
Evaluator


FHE compact $\Rightarrow$ protocol outsourcing

FHE-based solution is not verifiable:
Evaluator may compute $\tilde{f}$ instead of $f$.
A verifiable computation (VC) scheme allows verifiable outsourcing of computation:

$$
\begin{array}{rll}
(\mathrm{sk}, \mathrm{pk}) & \leftarrow \mathrm{s} & \operatorname{Gen}\left(f, 1^{\lambda}\right) \\
(\mathrm{c}, \mathrm{k}) & \leftarrow \mathrm{s} & \operatorname{ProbGen}(\mathrm{~m}, \mathrm{sk}) \\
\mathrm{c}^{\prime} & \leftarrow s & \operatorname{Compute}(\mathrm{c}, \mathrm{pk}) \\
f(\mathrm{~m}) \text { or } \perp & = & \operatorname{Verify}\left(\mathrm{c}^{\prime}, \mathrm{k}, \mathrm{sk}\right)
\end{array}
$$

## Verifiable Oustsourcing of Computation

Delegator

$\operatorname{Time}($ Gen $)=O(f) \quad$ and $\quad \operatorname{Time}($ Verify $)=o(f)$

No information about the input (and hence the output) is leaked.

| proc. Initialize $(f, \lambda)$ : | proc. LR $\left(\mathrm{m}_{0}, \mathrm{~m}_{1}\right)$ : |
| :---: | :---: |
| $b \leftarrow\{0,1\}$ | $\mathrm{c} \leftarrow \leftarrow \operatorname{ProbGen}\left(\mathrm{m}_{b}, \mathrm{sk}\right)$ |
| $(\mathrm{sk}, \mathrm{pk}) \leftarrow \mathrm{s} \operatorname{Gen}\left(f, 1^{\lambda}\right)$ | Return c |
| Return pk |  |
|  | proc. Finalize( $b^{\prime}$ ): |
| proc. PubProbGen(m): | Return ( $b=b^{\prime}$ ) |
| $(\mathrm{c}, \mathrm{k}) \leftarrow \mathrm{s}$ ProbGen $(\mathrm{m}, \mathrm{sk})$ |  |
| Return c |  |

$$
\operatorname{Adv}_{f,, \mathrm{~V}(, A}^{\text {ind }} \mathbf{A}(\lambda):=2 \cdot \operatorname{Pr}\left[\operatorname{Game}^{\mathcal{A}} \Rightarrow \mathrm{T}\right]-1
$$

Adversary cannot fool the delegator to accept a wrong result.

```
proc. Initialize \((f, \lambda)\) :
    List \(\leftarrow\} ; i \leftarrow 0\)
    \((\mathrm{sk}, \mathrm{pk}) \leftarrow \mathrm{Gen}\left(f, 1^{\lambda}\right)\)
    Return pk
proc. PubProbGen(m):
    \((\mathrm{c}, \mathrm{k}) \leftarrow \mathrm{s} \operatorname{ProbGen}(\mathrm{m}, \mathrm{sk})\)
    \(i \leftarrow i+1\)
    List \(\leftarrow\) List \(\cup\{(i, \mathrm{~m}, \mathrm{k})\}\)
    Return c
```

proc. PubVerify(c, $i$ ):
Find $(\mathrm{m}, \mathrm{k})$ s.t. $(i, \mathrm{~m}, \mathrm{k}) \in$ List
$\mathrm{m} \leftarrow \operatorname{Verify}(\mathrm{c}, \mathrm{k}, \mathrm{sk})$
Return m
proc. Finalize( $\left.{ }^{\star}, i\right)$ :
If $(i, \star, \star) \notin$ List Return $F$
Find ( $\mathrm{m}, \mathrm{k}$ ) s.t. $(i, \mathrm{~m}, \mathrm{k}) \in$ List
$\mathrm{m}^{\star} \leftarrow \operatorname{Verify}\left(\mathrm{c}^{\star}, \mathrm{k}, \mathrm{sk}\right)$
Return $\left(\mathrm{m}^{\star} \neq \perp \wedge \mathrm{m}^{\star} \neq f(\mathrm{~m})\right)$

$$
\operatorname{Adv}_{f, V \mathrm{VC}, \mathcal{A}}^{\mathrm{vrf}-\operatorname{cox}}(\lambda):=\operatorname{Pr}\left[\operatorname{Game}^{\mathcal{A}} \Rightarrow \mathrm{T}\right]
$$

- Prior work:

■ Literature from complexity theory: PCPs + CS proofs, where verifier checks a small/const number of bits of the proof.
■ Yao's garbled circuit + FHE [GGP10].
■ Cut-and-choose protocol + FHE [CKV10].

- These schemes are not fully verifiable.

■ Large body of recent work on related topics:
■ Verifiable Computation with Two or More Clouds, CCS 2011.

■ Outsourcing the Decryption of ABE Ciphertexts, Usenix 2011.

■ How to Delegate and Verify in Public: Verifiable Computation from Attribute-based Encryption, TCC 2012.

- Delegation of Computation without Rejection Problem from Designated Verifier CS-proofs, ePrint 2011.
- Targeted Malleability: Homomorphic Encryption for Restricted Computations, ITCS 2012.

(Msk, Mpk) $\leftarrow s \operatorname{Setup}\left(1^{\lambda}\right)$

$$
\begin{array}{rlll}
\mathrm{TK}_{f} & \leftarrow & \operatorname{TKGen}(f, \mathrm{Msk}) \\
\mathrm{c} & \leftarrow & \operatorname{Enc}(\mathrm{~m}, \mathrm{Mpk}) \\
f(\mathrm{~m}) / \perp & = & \operatorname{Dec}\left(\mathrm{c}, \mathrm{TK}_{f}\right)
\end{array}
$$

Generalizes many primitives such as: PKE, IBE, ABE, PE, ...

```
proc. Initialize( }\lambda\mathrm{ ):
    b\leftarrow${0,1}
    (Msk,Mpk) \leftarrow& Setup(1^)
    Return Mpk
oracle LR(m
    c<sEnc(m
    Return c
```

An adversary is legitimate if:
■ $R\left(m_{0}, m_{1}\right)=1$. Typically $R\left(m_{0}, m_{1}\right):=\left(\left|m_{0}\right|=\left|m_{1}\right|\right)$.
■ For all $f \in$ TKList we have $f\left(m_{0}\right)=f\left(m_{1}\right)$.
■ TNA model: it does not call Token after calling LR.
CCA1/2 model: add a Decrypt oracle.

■ Fully Homomorphic Encryption (FHE):
■ Unrestricted evaluation.

- No verifiability.

■ Functional Encryption (FE):
■ No output privacy (for outsourcing).

- No verifiability.

■ Verifiable computation (VC):

- Gen, ProbGen, and Verifier are the same party.
- Support for a single function only.
- (Until now) Not fully verifiable.


# Delegatable Homomorphic Encryption 



■ Sender, Receiver, TA, and Evaluator have separate roles.

- Encryption is a public operation.
- One-time setup procedure for all $f$.

■ k binds the computation to a specific $m$.
■ $\mathrm{h}_{f}$ binds the computation to a specific $f$.

- I/O privacy, verifiability, and collusion resistance.



## Health Record Statistics:

- Alice (Sender) has encrypted health records.

■ Bob (Receiver) likes to obtain some statistics.
■ Neither Alice nor Bob have enough computational resources.

- Carol (Evaluator) will compute over data.
- TA issues tokens so Carol computes the specific statistics (can even sell statistics).
■ Bob is assured that I/O remain private, and the result is correct.


Email Filtering:
■ Alice (Sender) sends encrypted emails to Bob (Receiver).
■ Bob would like to filter emails.
■ Bob does not have enough computational resources.

- TA issues token so Carol can run the specific filtering procedure.
- Carol (Evaluator) will filter emails for Bob.

■ Bob is assured nothing is leaked, and filtering is done properly.

$$
\begin{array}{rcl}
(\mathrm{Msk}, \mathrm{Mpk}) & \leftarrow & \operatorname{Setup}\left(1^{\lambda}\right) \\
(\mathrm{sk}, \mathrm{pk}) & \leftarrow & \operatorname{Gen}(\mathrm{Mpk}) \\
\left(\mathrm{TK}_{f}, \mathrm{~h}_{f}\right) & \leftarrow & \operatorname{TKGen}(f, \mathrm{Msk}) \\
(\mathrm{c}, \mathrm{k}) & \leftarrow & \operatorname{Enc}(\mathrm{m}, \mathrm{pk}) \\
\mathrm{c}^{\prime} & \leftarrow & \operatorname{Eval}\left(\mathrm{c}, \mathrm{TK}_{f}, \mathrm{pk}\right) \\
f(\mathrm{~m}) \text { or } \perp & = & \operatorname{Dec}\left(\mathrm{c}^{\prime}, \mathrm{k}, \mathrm{~h}_{f}, \mathrm{sk}\right)
\end{array}
$$



■ A public-key counterpart to VC.
■ Provides "targeted malleability".
■ FHE where homomorphisms are delegated.

Three notions:
I/O Privacy No information leaks about the data, even given the Msk and k.
(No access to a Verification oracle.)

Verifiability Adversary cannot fool the delegator to accept a wrong result.

Collusion Resistance Adversary knowing receiver's secret key cannot learn more than the result of the computations.

The Construction

Given a function $f$, transform it to a function $f^{\star}$ by setting:

$$
f^{\star}(\mathrm{m}, \mathrm{k}):=\left(f(\mathrm{~m}), \operatorname{MAC}\left(f(\mathrm{~m}) \mid \mathrm{h}_{f}, \mathrm{k}, \mathrm{mk}\right)\right) .
$$

Here

$$
\mathrm{h}_{f} \leftarrow \mathrm{H}_{\mathrm{hk}}(\langle f\rangle)
$$

where H is a collision-resistant hash function.

■ Transform $f$ to $f^{\star}$ as above.

■ Tokens are for the transformed functions.

- Encrypt functionally and then homomorphically.

■ To evaluate, homomorphically functionally decrypt.

■ To recover the result decrypt, and then verify the MAC.

■ Use the function fingerprint and the auxiliary info for this.

Need a special MAC for the security proof:

$$
\begin{array}{rll}
(\mathrm{td}, \mathrm{mk}) & \leftarrow s & \operatorname{Setup}\left(1^{\lambda}\right) \\
\mathrm{tag} & \leftarrow s & \operatorname{MAC}(\mathrm{~m}, \mathrm{k}, \mathrm{mk}) \\
\mathrm{k}^{\prime} & \leftarrow s & \operatorname{Col}\left(\mathrm{td}, \mathrm{~m}_{1}, \ldots, \mathrm{~m}_{n}, \mathrm{k}, \mathrm{mk}\right)
\end{array}
$$

For all $m_{i}$, must have:

$$
\operatorname{MAC}\left(m_{i}, k, m k\right)=\operatorname{MAC}\left(m_{i}, k^{\prime}, m k\right)
$$

Security: $(n+1)$-time unforgeable when given $\mathrm{k}^{\prime}$. Construction:

$$
\operatorname{MAC}(m, \underbrace{\left(a_{n}, \ldots, a_{0}\right)}_{k}, \epsilon):=\sum_{i=0}^{n} a_{i} \mathrm{~m}^{i}
$$

Collision: solve $n$ equations in $n+1$ unknowns.

## Theorem

The DHE construction provides input/output privacy, verifiability, and collusion resistance if the FE scheme is IND-CCA1, the FHE is IND-CPA, and the MAC is unforgeable.

$$
\mathbf{A d v} \mathbf{v}_{\mathrm{DHE}, \mathcal{A}}^{\mathrm{ta}-\mathrm{ind}-\mathrm{cpa}}(\lambda)=\mathbf{A d v} \mathbf{v H E}, \mathcal{B}_{\mathrm{ind}-\mathrm{cpa}}(\lambda)
$$

$$
\mathbf{A d v} \mathbf{v H E}, \mathcal{A}_{\text {ind-evalx }}(\lambda)=\mathbf{A d v} \mathbf{v}_{\mathrm{FE}, \mathcal{B}}^{\text {ind-ccax }}(\lambda)
$$

$\operatorname{Adv}_{\mathrm{DHE}, \mathcal{A}}^{\mathrm{vrf}-\mathrm{cca} 1}(\lambda) \leq\left(\mathbf{Q}_{\mathrm{DHE}, \mathcal{A}}^{\text {Decryt }}(\lambda)+1\right) \cdot \mathbf{Q}_{\mathrm{DHE}, \mathcal{A}}^{\text {Encrypt }}(\lambda)$.
$\left(\mathbf{A d v} \mathbf{v}_{\mathrm{FE}, \mathcal{B}}^{\text {ind }-\mathrm{cca} 1}(\lambda)+\mathbf{A d v} \underset{\mathrm{MAC}, \mathcal{C}}{\mathrm{uf}-\mathrm{cma}}(\lambda)\right)$

- I/O privacy follows from the security of the FHE layer.
- Collusion resistance follows from FE security.
- Verifiability:

■ $\mathbf{Q}^{\text {Encrypt. }}$ Adversary wins for the $i$-th encryption only.
$■ \mathbf{Q}^{\text {Decrypt }}+1$ : The adversary is playing the game $\mathbf{Q}^{\text {Decrypt }}+1$ times: the $\mathbf{Q}^{\text {Decrypt }}$ decrypt queries are answered with $\perp$.

- $n$-Key-Chameleon property:
- Change key from real to one generated through the collision algorithm.
- $f^{\star}(\mathrm{m}, \mathrm{k})=f^{\star}\left(\mathrm{m}, \mathrm{k}^{\prime}\right)$ due to the chameleon property (and legitimacy of the adversary).
■ Negligible hop down to IND-CCA1 security of FE.
■ Now reduce to the unforgeability of MAC. Note we have $\mathrm{k}^{\prime}$ from MAC game.


■ VC.Gen: Run DHE.Setup + DHE.Gen + DHE.TKGen. Return (( $\left.\left.\mathrm{h}_{f}, \mathrm{sk}, \mathrm{pk}\right),\left(\mathrm{TK}_{f}, \mathrm{pk}\right)\right)$.
■ VC.ProbGen: Run DHE.Enc. Return (c, k).
■ VC.Compute: Run DHE.Eval. Return c'.
■ VC.Verify: Run DHE.Dec. Return y or $\perp$.

## Security:

■ I/O privacy in the presence of a verification oracle.

- The construction is insecure in this model: Change one bit at a time and then check it using the verification oracle.
■ Unbounded/adaptive token queries.
DHE already quite powerful, but:
■ Public verifiability.
■ Multi/i-hop and multi-arity variants.
■ Multiple evaluators with $t$ out of $n$ being honest.
■ Randomized functions.
Also:
■ Instantiations for specific functionalities (DHE \& VFE).

By mixing homomorphic and functional encryption and a special MAC once can build a powerful variant of VC

## Thank you for your attention.

## Efficient RSA Key Generation and Threshold Paillier in the Two-Party Setting

Carmit Hazay ${ }^{1}$ Gert Læssøe Mikkelsen ${ }^{2}$ Tal Rabin ${ }^{3}$ Tomas Toft ${ }^{1}$<br>${ }^{1}$ Department of Computer Science, Aarhus University.<br>${ }^{2}$ The Alexandra Institute.<br>${ }^{3}$ IBM T.J.Watson Research Center.

March 1, 2012


## Contributions:

1. Efficient Distributed RSA Moduli Generation
2. Threshold Paillier Encryption

## Setting:

- Both in the Two-Party setting
- Security against active adversaries.
- Security proofs based on simulation.


## Introduction: Distributed RSA Key Generation

## RSA Composite

- $N=p q$, ( $p$ and $q$ are primes)
- Generate $p$ and $q$ using the Miller-Rabin test
- Used in:
$\square$ Encryption schemes
$\square$ Signature schemes
$\square$ Lots of other cryptographic tools
- Paillier Encrypion Scheme


## Introduction: Distributed RSA Key Generation

## RSA Composite

- $N=p q$, ( $p$ and $q$ are primes)
- Generate $p$ and $q$ using the Miller-Rabin test
- Used in:
$\square$ Encryption schemes
$\square$ Signature schemes
$\square$ Lots of other cryptographic tools
- Paillier Encrypion Scheme


## Distributed Generation



## Introduction: Distributed RSA Key Generation

## RSA Composite

- $N=p q$, ( $p$ and $q$ are primes)
- Generate $p$ and $q$ using the Miller-Rabin test
- Used in:
$\square$ Encryption schemes
$\square$ Signature schemes
$\square$ Lots of other cryptographic tools
- Paillier Encrypion Scheme


## Distributed Generation



## Introduction: Distributed RSA Key Generation

## RSA Composite

- $N=p q$, ( $p$ and $q$ are primes)
- Generate $p$ and $q$ using the Miller-Rabin test
- Used in:
$\square$ Encryption schemes
$\square$ Signature schemes
$\square$ Lots of other cryptographic tools
- Paillier Encrypion Scheme


## Distributed Generation



N


N

## Introduction: Distributed RSA Key Generation

## RSA Composite

- $N=p q$, ( $p$ and $q$ are primes)
- Generate $p$ and $q$ using the Miller-Rabin test
- Used in:
$\square$ Encryption schemes
$\square$ Signature schemes
$\square$ Lots of other cryptographic tools
- Paillier Encrypion Scheme


## Distributed Generation


$N=? ?$
$N=? ?$

## Introduction: Distributed RSA Key Generation

## RSA Composite

- $N=p q$, ( $p$ and $q$ are primes)
- Generate $p$ and $q$ using the Miller-Rabin test
- Used in:
$\square$ Encryption schemes
$\square$ Signature schemes
$\square$ Lots of other cryptographic tools
- Paillier Encrypion Scheme


## Distributed Generation



$$
N=? ? \quad N=? ?
$$

- Introduced by Boneh and Franklin '97
$\square 3$ Parties (Honest Majority)
$\square$ Passive security
- Other protocols exist.


## Introduction: Distributed RSA Key Generation

RSA Composin

- $N=p q$, ( p
- Generate p Miller-Rabi
- Used in:
$\square$ Encryptiq
$\square$ Signature
$\square$ Lots of ot tools
- Paillier Encrypion Scheme


## This work

## Distributed Protocol

2 parties
$N=? ?$
Active security
Simulatable Security
neh and
est Majority)
$\square$ Passive security

- Other protocols exist.


## Introduction: Threshold Paillier Encryption

Threshold Decryption

$$
c=E n c_{p k}\left(m=" \text { hey }^{\prime \prime}\right)
$$



- Many Examples:
$\square$ Threshold RSA
$\square$ Threshold EIGamal
$\square$ etc...
4/14


## Introduction: Threshold Paillier Encryption

Threshold Decryption


- Many Examples:
$\square$ Threshold RSA
$\square$ Threshold EIGamal
$\square$ etc...
4/14


## Introduction: Threshold Paillier Encryption

Threshold Decryption
$c=E n c_{p k}\left(m={ }^{\prime}\right.$ hey" $\left.^{\prime}\right)$


- Many Examples:
$\square$ Threshold RSA
$\square$ Threshold EIGamal
$\square$ etc...
4/14


## Introduction: Threshold Paillier Encryption

Threshold Decryption


- Many Examples:
$\square$ Threshold RSA
$\square$ Threshold EIGamal
$\square$ etc...

Paillier Encryption

- $p k=N$
- $s k=\varphi(N)$
- Additive Homomorphic:
$E n c_{p k}\left(m_{1}+m_{2}\right)=$
$E n c_{p k}\left(m_{1}\right) \cdot E n c_{p k}\left(m_{2}\right)$
- Useful for MPC/SFE


## Introduction: Threshold Paillier Encryption



## RSA Composite Generation: Related Work

- Boneh and Franklin '97
$\square$ Honest majority
$\square$ Pasive security
$\square$ Biprimality test (BF)
- Frankel, Mackenzie, and Yung '98
$\square$ Honest majority
$\square$ Active security
$\square$ BF biprimality Test
- Poupard and Stern '98
$\square$ Two party
$\square$ Active Security
$\square$ BF Biprimality Test
$\square$ Not simulatable
- Gilboa '99
$\square$ Two party
$\square$ Passive Security
$\square$ BF Biprimality Test
- Algesheimer, Camenisch, and Shoup '02
$\square$ Honest majority
$\square$ Passive Security
$\square$ Miller-Rabin primality test
- Damgård and Mikkelsen '10
$\square$ Honest majority
$\square$ Actime Security
$\square$ Miller-Rabin like primality test


## Overview of protocol

1. Pick random candidates:

Pick $p=p_{0}+p_{1}$ and $q=q_{0}+q_{1}$ s.t. $p \equiv q \equiv 3(\bmod 4)$.
2. Trial division: Distributed trial divide $p$ and $q$ up to a bound $B$. Until $p$ and $q$ succeeds repeat 1 and 2.
3. Compute $N=p q$
4. Biprimality test: Are both $p$ and $q$ primes

## Overview of protocol

1. Pick random candidates:

Pick $p=p_{0}+p_{1}$ and $q=q_{0}+q_{1}$ s.t. $p \equiv q \equiv 3(\bmod 4)$.
2. Trial division: Distributed trial divide $p$ and $q$ up to a bound $B$. Until $p$ and $q$ succeeds repeat 1 and 2.
3. Compute $N=p q$
4. Biprimality test: Are both $p$ and $q$ primes

## Overview of protocol

1. Pick random candidates:

Pick $p=p_{0}+p_{1}$ and $q=q_{0}+q_{1}$ s.t. $p \equiv q \equiv 3(\bmod 4)$.
2. Trial division: Distributed trial divide $p$ and $q$ up to a bound $B$.

Until $p$ and $q$ succeeds repeat 1 and 2.
3. Compute $N=p q$
4. Biprimality test: Are both $p$ and $q$ primes

## Overview of protocol

1. $P$ Pick random candidates:

Pick $p=p_{0}+p_{1}$ and $q=q_{0}+q_{1}$ s.t. $p \equiv q \equiv 3(\bmod 4)$.
Trial division: Distributed trial divide $p$ and $q$ up to a bound $B$.
Until $p$ and $q$ succeeds repeat 1 and 2.
3. Compute $N=p q$
4. Biprimality test: Are both $p$ and $q$ primes

## Overview of protocol

1. Pick random candidates:

Pick $p=p_{0}+p_{1}$ and $q=q_{0}+q_{1}$ s.t. $p \equiv q \equiv 3(\bmod 4)$.
Trial division: Distributed trial divide $p$ and $q$ up to a bound $B$.
Until $p$ and $q$ succeeds repeat 1 and 2.
3. Compute $N=p q$

Biprimality test: Are both $p$ and $q$ primes

## Overview of protocol

1. Pick random candidates:

Pick $p=p_{0}+p_{1}$ and $q=q_{0}+q_{1}$ s.t. $p \equiv q \equiv 3(\bmod 4)$.
Trial division: Distributed trial divide $p$ and $q$ up to a bound $B$.
Until $p$ and $q$ succeeds repeat 1 and 2.
3. Compute $N=p q$

Biprimality test: Are both $p$ and $q$ primes

## Trial Division

- Avoid quadratic slowdown:

One prime at the time: $\frac{1}{\ln (x)}$
Two primes at the time: $\frac{1}{\ln (x)^{2}}$

## Overview of protocol

1. Pick random candidates:

Pick $p=p_{0}+p_{1}$ and $q=q_{0}+q_{1}$ s.t. $p \equiv q \equiv 3(\bmod 4)$.
Trial division: Distributed trial divide $p$ and $q$ up to a bound $B$.
Until $p$ and $q$ succeeds repeat 1 and 2.
3. Compute $N=p q$

Biprimality test: Are both $p$ and $q$ primes

## Trial Division

- Avoid quadratic slowdown:

One prime at the time: $\frac{1}{\ln (x)}$
Two primes at the time: $\frac{1}{\ln (x)^{2}}$

## Biprimality test

- Faster than distributed primality test, because $N$ is public.


## Tools used

- Std. Paillier Encryption (additive homomorphic)
- Additive homomorphic EIGamal
$\square p k=\langle g, h\rangle$, where $g, h \in G_{p^{\prime}}$
$\square s k=s$ s.t. $h=g^{s}$
$\square(\alpha, \beta)=E n c_{p k}(m, r)=\left(g^{r}, h^{r} \cdot g^{m}\right)$
$\square g^{m}=\operatorname{Dec}_{s k}(\alpha, \beta)=\beta \cdot \alpha^{-s}$
- Threshold additive homomorphic ElGamal
$\square s=s_{1}+s_{2}$
- Integer commitment schemes.
- ZK Proofs


## Trial Division

Test if $\alpha \mid p=p_{1}+p_{2}$

- $c_{i}=\operatorname{Enc}\left(p_{i} \bmod \alpha\right)$, using ElGamal
- Exchange $c_{i}$ and compute $c=c_{1} \cdot c_{2}$
- If $\boldsymbol{c}=0$ or $\boldsymbol{c}=\alpha$ then reject $p$


## Speed up

Expected number of Biprimality tests (1024 bit primes):

- $\approx 126000$, without trial division
- $\approx 2000$, with trial division


## Computing $N=p q$

## Compute $N$ using Paillier

- $P_{0}:$ Send $E n c_{p k 0}\left(p_{0}\right)$ and $E n c c_{p k 0}\left(q_{0}\right)$
- $P_{1}$ : Send

$$
\begin{gathered}
E n c_{p k 0}\left(p_{0}\right)^{q_{1}} \cdot \text { Enc }_{p k 0}\left(q_{0}\right)^{p_{1}} \cdot \text { Enc }_{p k 0}\left(p_{1} q_{1}\right) \\
=E n c_{p k 0}\left(\left(p_{0}+p_{1}\right)\left(q_{0}+q_{1}\right)-\left(p_{0} q_{0}\right)\right)
\end{gathered}
$$

- $P_{0}$ Compute and send $N$

Verify computation using ElGamal
Repeat computation using EIGamal and verify that the result is $g^{N}$

## Biprimality test

The Biprimality test [BF97]
$\gamma^{\frac{\phi(N)}{4}} \equiv \pm 1(\bmod N)$ for random $\gamma \in \mathbb{Z}_{N}^{*}$ and $\mathcal{J}(\gamma)=1$
Error probability $1 / 2$

## Biprimality test

The Biprimality test [BF97]
$\gamma^{\frac{\phi(N)}{4}} \equiv \pm 1(\bmod N)$ for random $\gamma \in \mathbb{Z}_{N}^{*}$ and $\mathcal{J}(\gamma)=1$
Error probability $1 / 2$
The Protocol

1. Both: Compute
$e_{0}=E n c_{p k}\left(\frac{N-\left(p_{0}+q_{0}\right)+1}{4}\right)$ and
$e_{1}=E n c_{p k}\left(\frac{-\left(p_{1}+q_{1}\right)}{4}\right)$ using ElGamal
2. $P_{0}$ : Send $\gamma_{0}=\gamma^{\frac{N-\left(p_{0}+q_{0}\right)+1}{4}}$
3. $P_{1}$ : Send $\gamma_{1}=\gamma^{\frac{-\left(p_{1}+q_{1}\right)}{4}}$
4. Both: Prove consistency with $e_{i}$
5. Reject $N$ if $\left(\gamma_{0} \gamma_{1} \bmod N \neq \pm 1\right)$ otherwise repeat $\ell$ times

## Threshold Paillier Scheme - (Updated Version)

Std. Paillier

- pk $=N, s k=\varphi(N)$
- $c=E n c_{p k}(m, r)=(1+N)^{m} \cdot r^{N} \bmod N^{2}$
- $m=\operatorname{Dec}_{s k}(c)=\frac{\left(c^{\phi(N)} \bmod N^{2}\right)-1}{N} \cdot \phi(N)^{-1} \bmod N$


## Threshold Paillier Scheme - (Updated Version)

Std. Paillier

- pk $=N, s k=\varphi(N)$
- $c=E n c_{p k}(m, r)=(1+N)^{m} \cdot r^{N} \bmod N^{2}$
- $m=\operatorname{Dec}_{s k}(c)=\frac{\left(c^{\phi(N)} \bmod N^{2}\right)-1}{N} \cdot \phi(N)^{-1} \bmod N$

Threshold version

- dinstead of $\phi(N)$, s.t. $d \equiv 1(\bmod N)$ and $d \equiv 0(\bmod \phi(N))$
- Additive sharing $d=d_{0}+d_{1}$ to compute: $c^{d} \bmod N^{2}$


## Protocol for Sharing the Private Key $d=d_{0} \cdot d_{1}$

$$
d \equiv 1(\bmod N) \text { and } d \equiv 0(\bmod \phi(N))
$$

## Protocol for Sharing the Private Key $d=d_{0} \cdot d_{1}$

$d \equiv 1(\bmod N)$ and $d \equiv 0(\bmod \phi(N))$

- $P_{0}$ : Knowledge of $x_{0}=N-p_{0}-q_{0}$
- $P_{1}$ : Knowledge of $x_{1}=-p_{1}-q_{1}$


## Protocol for Sharing the Private Key $d=d_{0} \cdot d_{1}$

$d \equiv 1(\bmod N)$ and $d \equiv 0(\bmod \phi(N))$

- $P_{0}$ : Knowledge of $x_{0}=N-p_{0}-q_{0}$
- $P_{1}$ : Knowledge of $x_{1}=-p_{1}-q_{1}$
- Similar trick to computing $N$ :
$\square P_{0}$ sends $P_{1}$ encrypted input
$\square P_{1}$ computes and returns result (in this case $d_{1}=d+$ blinding)
$\square$ To verify ZK-proofs and ElGamal encryptions are used.


## Protocol for Decryption $m=\operatorname{Dec}(c)$

- $P_{0}$ : Sends $c_{0}=c^{d_{0}} \bmod N^{2}$ to $P_{1}$
- $P_{1}$ : Sends $c_{1}=c^{d_{1}} \bmod N^{2}$ to $P_{0}$
- Both: Prove consistency with EIGamal encryption of $d_{0}$ and $d_{1}$
- Both: Compute:

$$
m=\left(\left(c_{0} \cdot c_{1}\right) \bmod N^{2}-1\right) / N \bmod N
$$

## Thank You

Please see:
http://eprint.iacr.org/2011/494

