

Deploying IPv6 Securely

Robert M. Hinden Check Point Software

Danny McPherson VeriSign

Session ID: TECH-202 Session Classification: Intermediate

RSACONFERENCE2012

Agenda

IPv4 Addresses Have Run Out

(Last allocation to RIRs from the IANA free pool 31 Jan 2011)

Address Exhaustion Driving IPv6 Deployment

IPv4 Addresses Have Run Out	 Final IANA allocation to Regional Internet Registries was on 1/31/2011 Major RIRs will exhaust their remaining addresses this year
Effects	 IPv4 addresses are now a scarce resource Small blocks of IPv4 address are available at rising cost Large ISP size blocks are not available

The Internet will continue to grow

IPv6 Status

World IPv6 Launch

THE FUTURE IS FOREVER 6 JUNE 2012

Major Internet service providers (ISPs), home networking equipment manufacturers, and web companies around the world are coming together to permanently enable IPv6 for their products and services by 6 June 2012.

Organized by the Internet Society

http://www.worldipv6launch.org/

Overview of IPv6 Security

What Is IPv6?

IPv6 = IPv4 with Bigger Addresses

Other Differences

- 40 byte fixed header
- No header checksum
- Address Auto-configuration
- Extension Headers

Transition Mechanisms

- Tunneling
 IPv6 in IPv4, IPv4 in
 IPv6, IPv6 over IPv4,
- Translation
 NAT46, NAT64, NAT66

IPv6 Header Format

32 bits

IPv6 Security

 Features Unique Local Addresses Privacy addresses

R	ogue	Router	Adver	tisements
---	------	--------	-------	-----------

- Transition tunneling solutions
- Extension header architecture

Issues

IPv6 Security Challenges

RSACONFERENCE2012

IPv6 Security Challenges

IPv6 as a Covert Channel for Malware

Vulnerabilities in Basic IPv6 Mechanisms

Transition and Tunneling Mechanisms

IPv6 as Covert Channel for Malware

IPv6 Enabled by Default	 Most host Operating systems enable IPv6 by default It's easy to create IPv6 / IPv4 tunnels to carry traffic outside of an enterprise Windows Vista/7 can do this automatically
IPv6 Running Now	 Set up by users who want to try IPv6 Could be used as covert channel by botnets and malware

You can't stop what you can't see

IPv6 Extension Headers

IPv6 Header Next Header = TCP Header + Data

IPv6 Header Next Header = Routing	Routing Header Next Header = TCP	TCP Header + Data
---	--	-------------------

IPv6 Header Next Header = Routing	Routing Header Next Header = Fragment	Fragment Header Next Header = TCP	Fragment of TCP Header + Data
---	---	---	----------------------------------

IPv6 Transition Mechanisms

IPv6 in IPv4 Tunnel RFC4213

IPv4 IPv6 TCF	P Header + Data
---------------	-----------------

IPv4 in IPv6 Tunnel RFC2473

IPv6 IPv4	TCP Header + Data
-----------	-------------------

Tunneling IPv6 over UDP through NAT RFC4380

IPv4 UDP IPv6	TCP Header + Data
---------------	-------------------

How to Deploy IPv6 Securely

RSACONFERENCE2012

IPv6 Deployment Recommendations

Create IPv6 Security Policy that Parallels IPv4 Security Policy

Protect Against Rogue Router Advertisements and DHCPv6 Servers

Set Up Default Firewall Rules that Block All Types of Transition Tunnels

17

IPv6 Security Policy

Parallel IPv4	 All objects should have IPv6 information Basic rules should be implemented for IPv4 and IPv6
Гопсу	 Specific rules for IPv6 where necessary

Rogue Router Advertisements and DHCPv6 Servers

Rogue RA & DHCPv6	 Easy to turn host into Router via Connection Sharing Unauthorized Access Points & Routers (plugged in backwards) Similar problems with DHCPv4
Solutions	 Identify host and port using IPS Disable port at L2 switch (or physically)

Default Rules to Block Transition Tunnels

Summary Recommendations

- Create IPv6 security policy that parallels current IPv4 security policy
- Protect against rogue Router Advertisements and DHCPv6 servers
- Create default Firewall rules that block all types of transition tunnels

Questions and Answers

Thank You!

RSACONFERENCE2012