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How do we sign a graph? 

 

 

 

 

 

a 

b 

Is there a path 
from 𝑎 to 𝑏? 

𝑮 



Trivial solutions 

Let 𝒏 = |𝑮|,  security parameter 𝛋 
 
When adding a new node… 
 
• Sign each edge 

– Time to sign: 𝑶(𝟏) 
– Size of signature: 𝑶(𝒏𝜿) bits 

 
• Sign each path 

– Time to sign (new paths): 𝑶(𝒏) 
– Size of signature:  𝑶(𝜿) bits 



Transitive signature schemes 
[MR02,BN05,SMJ05] 

𝜎𝐴𝐵 𝜎𝐵𝐶 𝐴 𝐵 𝐶 

      ← 𝑇𝑉𝑒𝑟𝑖𝑓𝑦(𝐴, 𝐶, 𝜎𝐴𝐶,     ) 

Combiner 

𝜎𝐴𝐶 ←  𝐶𝑜𝑚𝑏𝑖𝑛𝑒(𝜎𝐴𝐵,𝜎𝐵𝐶,       ) 𝜎𝑋𝑌 ← 𝑇𝑆𝑖𝑔𝑛(𝑋, 𝑌, 𝜎𝑋𝑌,    ) 

𝜎𝐴𝐶 



Landscape 

• [MR02,BN05,SMJ05]  
for UNDIRECTED graphs 
 

• Transitive Signatures for  
Directed Graphs (DTS) still OPEN 

 

• [Hoh03]  
 DTS ⇒   Trapdoor Groups with                  
  Infeasible Inversion 

 



Transitive Signatures for Directed Trees 



Previous Work 

• [Yi07] 

• Signature size: 𝑶(𝒏 log (𝒏 log 𝒏)) bits 
• Better than 𝑶(𝒏𝜿) bits for the trivial solution 

• RSA related assumption 

 

• [Neven08] 

• Signature size: 𝑶(𝒏 log 𝒏) bits 

• Standard Digital Signatures 

𝑶(𝒏 log 𝒏) bits still impractical 



Our Results 

Examples 𝝀 =  𝟏  𝝀 =  𝟐  𝝀 =  log (𝒏) 
 

Time to sign edge / 
 verify path signature 

𝑶(𝟏) 𝑶(𝟏) 𝑶(log 𝒏) 

Time to compute a path 
signature 

𝑶(𝒏/𝜿) 𝑶( 𝒏/𝜿) 𝑶(log 𝒏) 

Size of path signature 𝑶(𝜿) 𝑶(𝜿) 𝑶(𝜿 log 𝒏) 
 

• For 𝝀 ≥  𝟏 
 

• Time to sign edge / verify path signature:  𝑶(𝝀) 
• Time to compute a path signature:  𝑶(𝝀(𝒏 𝜿 )1/𝝀) 
• Size of path signature:    𝑶(𝝀 𝜿) bits 

 



Security [MR02] 
(𝐴, 𝐵) 

𝜎𝐴𝐵 

(𝐵, 𝐶) 

σBC 

(𝐵, 𝐷) 

𝜎𝐵𝐷 

(𝐴, 𝐸) 

𝜎𝐴𝐸 

𝐴 

𝐵 

𝐶 𝐷 

E 𝜎∗, 𝐵, 𝐸 :       
     ← 𝑇𝑉𝑒𝑟𝑖𝑓𝑦(𝐵, 𝐸, 𝜎∗,    ) and 

There is no path from 𝑩 to 𝑬 



BASIC CONSTRUCTION 



Pre/Post Order Tree Traversal 

a 

h 
b 

c 

d 

i j k 

e f g 

Pre order:   a b c d e f g h i j k 

 

Post order: c e f g d b i j k h a 



Property of Pre/Post order Traversal 

• Proposition [Dietz82] 

a 

h 
b 

c 

d 

i j k 

e f g 

Pre order:   a b c d e f g h i j k 

 

Post order: c e f g d b i j k h a 

       𝒑𝒐𝒔 𝒙 <  𝒑𝒐𝒔 𝒚  in 𝑷𝒓𝒆  
𝒑𝒐𝒔 𝒚 <  𝒑𝒐𝒔(𝒙) in 𝑷𝒐𝒔𝒕 

There is a path  
from 𝒙 to 𝒚 ⇔ 



Idea 

a 

h 
b 

c i j k 

e f 

d 

g 

Signature of path (𝒂, 𝒆): 
•  Signature of  𝒂||𝟏||𝟏𝟏 
•  Signature of  𝒆||𝟓||𝟐 
 

• Check signatures 

• Check     

    𝟏  <   𝟓 
 𝟏𝟏  >   𝟐 

• Compute 𝒑𝒐𝒔(𝒈)  
in 𝑷𝒓𝒆 and 𝑷𝒐𝒔𝒕 

• Sign 𝒈||𝟕||𝟒 
and resign values 

that have changed 

Position 1 2 3 4 5 6 7 8 9 10 11 

Pre a b c d e f g h i j k 

Post c e f g d b i j k h a 

How do we avoid 
recomputing a lot of 
signatures when an 
element is inserted? 

Position 1 2 3 4 5 6 7 8 9 10 

Pre a b c d e f h i j k 

Post c e f d b i j k h a 

Is there a path from 
𝑎 to 𝑒? 

𝑮 



Order Data Structure 

• Enables to  

– Insert elements dynamically  

– Compare them efficiently 

 

• Definition [Dietz82, MR+02] 

– 𝑂𝐷𝐼𝑛𝑠𝑒𝑟𝑡(𝑋, 𝑌) 

– 𝑂𝐷𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑋, 𝑌) 

 



Trivial Order Data Structure  
A Toy Example 

0 1000 

a 

500 750 

b d 

250 

c 

875 

For 𝒏 insertions we need to handle 𝒏 bits 

Labels 

Elements 

e 

675 

+∞ -∞ 



a 

b 

c 

d 

𝑀𝑎 = 𝑎||500||500 
𝑀𝑏 = 𝑏||750||250 
𝑀𝑐 = 𝑐||875||125 
𝑀𝑑 = 𝑑||937||187 

0 

a 

500 750 

b c 

875 

Pre 

0 

a 

500 

b 

250 

Post 

1000 937 

d 

125 

c 

187 

d 

𝜎𝑀 ← 𝑆𝑖𝑔𝑛(𝑀,     ) 

Is there a  
path from 𝑎 to 𝑑? 

(𝑀𝑎, 𝜎𝑎) 
(𝑀𝑑, 𝜎𝑑) 

 

𝑉𝑒𝑟𝑖𝑓𝑦(𝑀𝑎, 𝜎𝑎,   ) 
𝑉𝑒𝑟𝑖𝑓𝑦(𝑀𝑑 , 𝜎𝑑,   ) 
Pre:   500 <  937 
Post: 500  > 187 

 

1000 

-∞ 

-∞ 

+∞ 

+∞ 

𝑮 



Trivial Order Data Structure 

0 1000 

a 

500 750 

b d 

250 

• Signature of size 𝑶(𝒏)  
• Better than 𝑶(𝒏 log 𝒏) [Neven08], but still room for improvement. 

c 

875 

New CRHF!  It allows to:  

• compress the strings  

• efficiently compare them from their hashes 

-∞ +∞ 



HASHING WITH COMMON PREFIX 
PROOFS 



The Idea 

We want: 
𝑯  collision resistant hash function + proofs 

 

 

 𝐴 =  𝟏𝟎𝟎𝟎1100011001 
 𝐵 =  𝟏𝟎𝟎𝟎01000001100 

𝐻(𝐴), 𝐻(𝐵), 𝜋 

← 𝐻𝐶ℎ𝑒𝑐𝑘(𝐻(𝐴), 𝐻(𝐵), 𝜋, 𝑖,      )  

Do 𝑨 and 𝑩 share a  
common prefix until position 4? 



Security 

𝑯𝑮𝒆𝒏(𝟏𝜿, 𝒏)  →  𝑷𝑲 (𝑨, 𝑩, 𝒊, 𝝅) 

𝑨𝒅𝒗 𝑨 = 𝐏𝐫
 𝑯𝑪𝒉𝒆𝒄𝒌 𝑯 𝑨 ,𝑯 𝑩 ,𝝅, 𝒊, 𝑷𝑲 =  𝑻𝒓𝒖𝒆

∧
𝑨 𝟏. . 𝒊 ≠ 𝑩 𝟏. . 𝒊    

 



n-BDHI assumption [BB04] 

𝒆:  𝑮 ×  𝑮 →  𝑮𝑻 
𝒔  ←  𝒁𝒑 

𝒈 generator of 𝑮 
(𝒈𝒔, 𝒈𝒔

𝟐

, … , 𝒈𝒔
𝒏

) 

𝒆(𝒈, 𝒈)𝟏 𝒔  



The hash function 

 

• 𝑯𝑮𝒆𝒏(𝟏𝜿, 𝒏) 
  

 𝒑, 𝑮, 𝑮𝑻, 𝒆, 𝒈 ← 𝐵𝑀𝐺𝑒𝑛 1
𝜅   

  
 𝒔 ← 𝒁𝒑 
 𝑻:= (𝒈𝒔, 𝒈𝒔

𝟐

, … , 𝒈𝒔
𝒏

) 
 
    return 𝑷𝑲:=  (𝒑, 𝑮, 𝑮𝑻, 𝒆, 𝒈, 𝑻) 

 

• 𝑯𝑬𝒗𝒂𝒍(𝑴,𝑷𝑲) 
    

𝑯(𝑴) ∶= 𝒈𝑴 𝒊 𝒔
𝒊

𝒏

𝒊=𝟏

 

    
 Toy example: 𝑴 =  𝟏𝟎𝟎𝟏  ⇒ 𝑯 𝑴 =  𝒈𝒔 . 𝒈𝒔

𝟒
 

 



Generating & Verifying Proofs 

• 𝑨 =  𝑨 𝟏. . 𝒏 =   𝟏𝟎𝟎𝟎𝟏𝟏𝟏𝟎𝟎𝟏 

• 𝑩 =  𝑩[𝟏. . 𝒏]  =  𝟏𝟎𝟎𝟎𝟏𝟎𝟏𝟏𝟎𝟎 

 

• 𝜟 ∶=
𝑯 𝑨

𝑯 𝑩
=
𝒈𝒔𝒈𝒔

𝟓
𝒈𝒔
𝟔
𝒈𝒔
𝟕
𝒈𝒔
𝟏𝟎

𝒈𝒔𝒈𝒔
𝟓
𝒈𝒔
𝟕
𝒈𝒔
𝟖

   
=   𝒈𝒔

𝟔

 𝒈−𝒔
𝟖
 𝒈𝒔
𝟏𝟎 

 

 

• 𝜟 =  𝒈𝑪 𝒋 𝒔
𝒋𝒏

𝒋=𝟏  with 𝑪 = [𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, −𝟏, 𝟎, 𝟏] 

  



Generating & Verifying Proofs 

• 𝜟 =  𝒈𝑪 𝒋 𝒔
𝒋𝒏

𝒋=𝟏  with 𝑪 = [𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏, 𝟎, −𝟏, 𝟎, 𝟏] 

 

• “Remove” factor 𝐬𝐢+1 in the exponent  without knowing 𝐬   

 

      𝝅 ≔  𝜟
𝟏

𝒔𝒊+𝟏
  
=  𝒈𝑪 𝒋 𝒔

𝒋−𝒊−𝟏

𝒏

𝒋=𝒊+𝟏

=  𝒈 𝒈−𝒔
𝟐
𝒈𝒔
𝟒
    

 

• Check the proof :      𝒆(𝝅,𝒈𝒔
𝒊+1
) = 𝒆(𝜟, 𝒈) 

 

 

  



Security 

• Proposition:  
If the n-BDHI assumption holds then the  
previous construction is a secure HCPP family. 

 

• Proof (idea) 
 

 𝐇 𝐀 =  𝐠𝐬 𝐠𝐬
𝟓   

 
 𝐇 𝐁 =  𝐠𝐬 𝐠𝐬

𝟑

 𝐠𝐬
𝟔  
 

 𝚫 =
𝐇 𝐀

𝐇 𝐁
= 𝐠−𝒔

𝟑
 𝐠𝐬
𝟓

𝒈−𝒔
𝟔
 

 𝛑 =  𝚫
𝟏

𝒔𝟒  =  𝐠−𝟏 𝒔  𝐠𝐬 𝐠𝐬
𝟐
 

 

 

 𝐀 =   𝟏𝟎𝟎𝟎𝟏𝟎 
 𝐁 =   𝟏𝟎𝟏𝟎𝟎𝟏 
 𝐢 =  𝟑 

 



CRHF is incremental 

 

 𝐴 =  𝟏𝟎𝟎𝟎 

 𝐵 =  𝟏𝟎𝟎𝟎1 

 𝑯(𝑩)  =  𝑯(𝑨) 𝒈𝒔𝟓 

 

It’s fast to compute 𝑯(𝑩) from 𝑯(𝑨)  
(we don’t need the preimage 𝑨) 



Comparing strings 

• 𝑨 < 𝑩 ⇔  𝑪𝒐𝒎𝒎𝒐𝒏𝑷𝒓𝒆𝒇𝒊𝒙 𝑨,𝑩, 𝒊   ∧   𝑨[𝒊 + 𝟏] < 𝑩[𝒊 + 𝟏] 

 

E.g:  𝐴 =  𝟏𝟎𝟎01 

        𝐵 =  𝟏𝟎𝟎10 

• Check:  
 𝑒(𝐻(𝐴)/𝐻(𝐶), 𝑔)     =  𝑒(𝜋1, 𝑔𝑠

4
)                           // 𝐶 is a prefix of 𝐴 

 𝑒(𝐻(𝐵)/𝐻(𝐶), 𝑔)    =  𝑒(𝜋2, 𝑔𝑠
4
)                             // 𝐶 is a prefix of 𝐵 

 𝑒(𝐻(𝐶)𝐻(03||0)/𝐻(𝐴), 𝑔)   =  𝑒(𝜋3, 𝑔𝑠
5
)  // 𝐶||0 is a prefix of 𝐴 

 𝑒(𝐻(𝐶)𝐻(03||1)/𝐻(𝐵), 𝑔)    =  𝑒(𝜋4, 𝑔𝑠
5
)  // 𝐶||1 is a prefix of 𝐵 

 0 < 1 
 

  
  

   

 
 

 

 

𝐶  =  100 



FULL CONSTRUCTION 



Trivial Order Data Structure 

0 1000 

a 

500 750 

b d 

250 

Signer has to compute new labels before hashing them 
 ⇒ Time to sign an edge still 𝑶(𝒏). 

c 

875 

New Order Data Structure:  

𝑶𝑫𝑰𝒏𝒔𝒆𝒓𝒕(𝑿, 𝒀) s.t. new label 𝒁  
shares every bit except one with 𝑿 or 𝒀 

+∞ −∞ 



New Order Data Structure 

a b d c 

b 

1 

c 

1 

Use a binary tree to obtain 
 an «incremental» order data structure 

d 

𝐿(𝑎)  =  𝜀 
𝐿(𝑏) =   1 
𝐿(𝑐)  =  11 
𝐿(𝑑)  =  0 
𝐿(𝑒)  =  01 

0 

0 <  $ < 1 
𝐿(𝑑)  =  0$  <   𝐿(𝑎)  =  𝜀$ 
𝐿(𝑑)  =  0$  <   𝐿(𝑏)  =  1$ 
  𝐿(𝑏) =  1$    <   𝐿(𝑐)  =  11$ 
𝐿(𝑒)  =  01$ <   𝐿(𝑎)  =  𝜀$ 

 

 

e 

1 

e 

a 

+∞ −∞ 



a 
b 

c 

d 

𝑀𝑎 = 𝑎||𝐻(𝜀)||𝐻(𝜀) 
𝑀𝑏 = 𝑏||𝐻(1)||𝐻(0) 
𝑀𝑐 = 𝑐||𝐻(11)||𝐻(00) 
𝑀𝑑 = 𝑑||𝐻(111)||𝐻(001) 

ODPre ODPost 

𝜎𝑀 ← 𝑆𝑖𝑔𝑛(𝑀,    ) 

Is there a  
path from 𝑎 to 𝑑? 

(𝑀𝑎 , 𝜎𝑎) 
(𝑀𝑑, 𝜎𝑑) 
(𝜋𝑃𝑟𝑒, 𝜋𝑃𝑜𝑠𝑡 ) 

• 𝑉𝑒𝑟𝑖𝑓𝑦(𝑀𝑎, 𝜎𝑎,   ) 
• 𝑉𝑒𝑟𝑖𝑓𝑦(𝑀𝑑, 𝜎𝑑,   ) 

 

• Use HCheck with 𝜋𝑃𝑟𝑒  and  𝜋𝑃𝑜𝑠𝑡 ∶ 
𝐿𝑃𝑟𝑒 𝑎   =  𝜀$      <  111$  =  𝐿𝑃𝑟𝑒 𝑑  
𝐿𝑃𝑜𝑠𝑡(𝑑)   =  001$ <  𝜀$  =  𝐿𝑃𝑜𝑠𝑡(𝑎) 

a 

b 

1 

c 

1 

d 

1 

c 

a 

b 

d 

1 

0 

0 

𝑮 



Trade off 
𝒏 =  𝟓𝟒,  𝜿 =  𝟐,  𝚺 =  𝒂, 𝒃, 𝒄, 𝒅  
𝒏 𝜿 = 𝟓𝟒 𝟐 =  𝟐𝟕 
𝝀 =  𝟑 ⇒ (𝒏 𝜿 )𝟏 𝝀 = 𝟑 



Conclusion and Open Problems 

• Efficient transitive signature scheme  
for directed trees 

• Possible to balance the time to compute  
and to verify the proof 

• Based on a general new primitive HCPP 

• New constructions  / applications for HCPP 

• Can we improve the trade off? 

• Stateless transitive signatures for directed trees 
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Some history: IBE→ fuzzy IBE→ ABE

Ciphertext ↔ vector1 Secret key ↔ vector2
C ↔ −→v 1 sk ↔ −→v 2

Decryption works ⇐⇒ R(
−→v 1,
−→v 2) = 1

Identity Based Encryption (Shamir, 1984)

fuzzy Identity Based Encryption (Sahai-Waters, 2005)

(Threshold) Attribute Based Encryption (Goyal et al., 2006)



(Threshold) Attribute Based Signatures

The key of user U is associated with some attributes
skU ←→ SU = {at1, . . . ,atm}

Each signature σ associated with a predicate Γ = (S, t) or
signing policy, where

S = {ati1 , . . . ,atis} the set of attributes of Γ
t ∈ N, 1 ≤ t ≤ s. is the threshold of Γ.

If σ is correctly verified then the signer’s secret key skU is such
that |SU ∩ S| ≥ t .



General Attribute Based Signatures

The key of user U is associated with some attributes
skU ←→ SU = {at1, . . . ,atm}

Each signature σ is associated with a predicate Γ which maps
any set of attributes to {0,1}.

If σ is correctly verified then the signer’s secret key skU satisfies
that Γ(SU) = 1.

APPLICATIONS: proving you are entitled to something but not
saying who you are: anonymous credentials & access control..



ABS: Syntactic definition

ABS.Setup(1λ,U∗)→ (params,msk): Run by master entity
on input U∗, the universe of attributes. The string params
includes a description of admissible signing policies.

ABS.Ext(params,U,msk)→ skU : user U proves to master
entity possession of his attributes SU and gets skU .
ABS.Sign(params, skU , Γ,M)→ σ: signer chooses an
admissible signing policy Γ, such that Γ(SU) = 1.

ABS.Vrfy(params, σ, Γ)→ b: outputs 1 iff σ is valid.

Correctness If σ ← ABS.Sign(params, skU , Γ,M) and
Γ(SU) = 1, then the verification outputs 1 .



Design goals

Construct ABS schemes which

1 admit large families of admissible signing policies
(expressive signing policies),

2 while providing strong security guarantees (security)

3 and good performance (efficiency)

In practice there is a tradeoff between these properties....



Unforgeability against selective predicate and adaptive
message attack

Initialize: Adversary A outputs (S∗, t∗).

Setup: Challenger C runs Setup, gives params to A.

Queries: Adaptatively, A can request:
Secret key queries for any user U such that |skU ∩S∗| < t∗.
Signature queries for any 〈M,U, (S, t)〉.

Output: A outputs a tuple (σ∗,M∗)

A wins if the signature is a non-trivial forgery for (S∗, t∗).

We also consider privacy of attributes: the signature does not
leak which subset of size t of S was used to sign.



Our results

We give two constructions of ABS:

with constant size signatures

having unforgeability against selective predicate and
adaptive message attacks

for threshold access policies but extendable to larger
families of predicates

Our result shows that specific families of predicates allow for
more compact signatures.



Overview construction I

J. Herranz, F. Laguillaumie, C. Ràfols. Constant-size
ciphertexts in threshold attribute-based encryption. In PKC’10.

Starting from ABE scheme with constant-size ciphertexts, the
idea is to prove the ability to decrypt,

For this we use a technique of Malkin et al. (2011):

Use Groth-Sahai zero-knowledge proofs,

BUT, to link the proof to the message create a message
dependent common reference string.



More specifically...

ABS.Setup chooses random generators g1,g2 ← G and defines
−→g1 = (g1,1,g)>,

−→g2 = (1,g2,g)> ∈ G3 and
{−→g3,i =

−→g1
ξi,1 · −→g2

ξi,2}ki=0, for random ξi,1, ξi,2.

params include −→g1,
−→g2, {

−→g3,i}ki=0, where we write −→g3,i as(
gX ,i , gY ,i ,gZ ,i

)>.

ABS.Sign computes H(M, Γ) = m1 . . .mk ∈ {0,1}k , where H is
Water’s hash function and then computes the GS CRS related

to this value:
−→g 3,m =

(
gX ,0 ·

∏k
i=1 gmi

X ,i , gY ,0 ·
∏k

i=1 gmi
Y ,i , gZ ,0 ·

∏k
i=1 gmi

Z ,i

)>.

Signer knows T1,T2 which satisfy a pairing product equation:
prove knowledge with CRS

(−→g 1, ~g2, ~g3,m
)
.



Idea of security proof...

Under DLIN, −→g1,
−→g2, {

−→g3,i}ki=0, is indistinguishable from some
other set of vectors where −→g1,

−→g2,
−→g3,i are lin. ind. for all

i ∈ {0,1, . . . , k}.

With this other set of vectors we have a CRS which
corresponds to the simulation setting of the DLIN instantiation

of Groth Sahai proofs.

In the simulation setting we can answer signing queries.
adaptive message, DLIN

Secret key queries simulated as in the underlying ABE scheme.
selective predicate, aMSE-CDH problem



Overview construction II

N. Attrapadung, B. Libert, E. de Panafieu. Expressive
key-policy attribute-based encryption with constant-size

ciphertexts. In PKC’11.

Similar ideas:
selective predicate security also inherited from underlying
ABE.
adaptive message comes from using Water’s hash function
as H(M, Γ),

security proof avoids Groth Sahai ZK proofs (efficiency
gain in size of ciphertexts)

(Daza et al. 2011) Scheme can be extended to a much larger
class of predicates: like hierarchical or compartmented. Good

tradeoff efficiency/expression of signing policies.



Summary: Main features of our construction

1st construction
Signature: 15 group elements; Key of user U: n + |SU|
group elements, n bound on maximal size of signing policy.
Unforgeability: DLIN + aMSE-CDH problems.
Privacy of attributes: DLIN.
Limited extension to weighted threshold access structures.

2nd construction
Signature: 3 group elements; Key size of user U:
(2n + 2)× (|SU|+ n).
Unforgeability: n-Diffie-Hellman Exponent problem.
Privacy of attributes: Unconditional.
Hierarchical access structures, compartmented access
structures (Daza et al, 2011).
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