
Session ID: 

Session Classification: 

Shota Yamada 
The University of Tokyo 

Two-Dimensional 
Representation of Cover 
Free Families and its 
Applications: Short 
Signatures and More 

CRYP-303 

Advanced 



                   Our Results 

 We proposed a new technique for the use of 
cover free families. 

 We apply the technique to construct 

 q-resilient IBE 

 q-bounded CCA secure PKE 

 m-time signatures 

 Short signatures 

with smaller public key size than previous 
constructions.   

 

 
2 



     Agenda 

 What are Cover Free Families? 

 

 Our Main Idea 

 

 Application(1): q-Resilient IBE 

 

 Application(2): Short Signatures  

3 



What are Cover Free Families? 

5 



m-Cover Free Families 

 Index 

 Family of subsets                 where     

6 

1 2 

3 
4 

5 
6 7 8 

9 10 

d 

11 12 d-1 

d-2 d-3 



8 

m=3 

In this slide 

m-Cover Free Families 



10 

m=3 

In this slide 

m-Cover Free Families 



Applications of Cover Free 
Families in Previous Results 

Following papers are related to our result: 

 [Cramer, Hanaoka, Hofheinz, Imai, Kiltz, Pass, 
Shelat, Vaikntanathan @ Asiacrypt ’07] 
([CHH+07]) 

   Construction of q-bounded CCA secure PKE 

 [Hofheinz, Jager, Kiltz @ Asiacrypt’11] 

   ([HJK11]) 

   Construction of short signature schemes 

 

 
12 



Properties of Schemes Based on 
Cover Free Families (informal) 

The schemes in [CHH+07,HJK11] 

 The public key size is very large 

    due to the use of cover free family 

 Ciphertext/Signature size is very small 

14 

We reduce public key size of  

these schemes while preserving the 

size of signatures/ciphertext. 



Our Main Idea 

15 



A Reason for Large Public Key  

 KeyGen process of [CHH+07] and [HJK11] 

16 

1 
2 

4 
3 

d-1 
i 

d 

1.Generate  

cover free family 

(d is large) 

2.Generate  

PK components 

pk1 
pk2 

pk_d-1 
pk_i 

pk_d 

pk3 
pk4 

Public key becomes 
very large!! 



Idea of Previous Constructions 

 

 

 

 

 

Each index is associated with one group element. 

         The public key size becomes O(d) 

18 

1 3 2 4 d 

d is large!! 

[CHH+07, HJK11] 



Our Main Idea 

 We change the set of indices from                        

to   

20 

1 3 2 4 d 
(1,1) (1,2) (1,√d) 

(2,1) (2,2) (2,√d) 

(√d,1) (√d,2) (√d,√d) 



22 

(1,1) (1,j) (1,√d) 

(i,1) (i,√d) 

(√d,1) (√d,j) (√d,√d) 

We associate one group element 

with each “row” and “column”.  

Size of public key becomes 
       

(i,j) (i,j) 

Our Main Idea 

smaller 



Associate             with 

24 

(1,1) (1,j) (1,√d) 

(i,1) (i,j) (i,√d) 

(√d,1) (√d,j) (√d,√d) 

(1,1) 

(i,j) 

(√d,√d) 

ID / Message Private key for ID /Signature  

Our Main Idea 



Why “Two” Dimensions?  

 Three or more dimensions technique does not 
seem to work. 

 Verification does not work in the case of a signature 
scheme. 

 

 Encryption does not work in the case of q-resilient 
IBE scheme. 

 Because we resort to bilinear map. 

Our technique could be extended to higher       
dimensions if there exists multi-linear form and 
appropriate computationally hard problem. 

 

 

 

26 

× 



Novelty of Our Technique 

 In fact, “matrix like” or “two dimensional” 
technique has been used in many previous 
papers.   

 [PW08@STOC],[HJKS10@PKC],[BW10@ACNS] etc. 

 

 Our work adapted the technique to the case 
where cover free families are used for the first 
time. 

 It is also the first time the technique is used for a 
construction of signature schemes. 

                                          (to the best of our knowledge) 

 
28 



Application(1): 
q-resilient IB-KEM 

29 



     Application(1):q-Resilient IBE 

 q-Resilient secure IBE scheme (actually, IB-KEM) 

30 

The scheme is q-resilient/bounded secure if the scheme is  

semantically secure against  adversaries who cannot make 

more than q KeyGen/Decryption queries.  

q-Resilient secure IBE 

CHK  

transform 
Naor  

transform 

q-Bounded CCA  

secure PKE 

q-Time signature 



Our q-Resilient IBE Scheme 

Public key 

Master secret key 

Private key for ID 

Ciphertext 

KEM key 

where 



Ciphertext 
size 

Public key size  Private  
 key size 

Assumption 

[CHH+07] 
(implicit) 

     DDH   

Ours     DBDH 
 

Heng, 
Kurosawa’04 

     DDH 
 

33 

q: Upper bound of number of KeyGen query 

λ: Security parameter 

Comparison (q-Resilient IB-KEM) 



Our q-Bounded CCA Secure PKE 

Public key 

Secret key 

Ciphertext 

Apply CHK transform (+ idea of BMW) to  

our proposed IB-KEM  

KEM key 



Comparison (q-Bounded CCA PKE ) 

 

 

Ciphertext 
size 

Public key  
size 

Assumption 

[CHH+07]       DDH 

Ours      DBDH 

q: Upper bound of number of KeyGen query 

λ: Security parameter 



Our m-Time Signature 

Public (Verification) key 

Secret (Signing) key 

Signature on M 

Verification 

Apply Naor transform to  

our proposed IB-KEM  



Comparison（m-Time Signature） 

Signature size Public key size Assumption 

Ours       CDH 

[Zaverucha-
Stinson’10] 

        DL 



Application(2): 
Short Signature  

41 



 The signature length is only 200-bits. 

 

 

 Public key size is 26,000,000-bit 

   long.   

 

[HJK’11] 

The public key size is very large, due to the use  

of cover free family.  

     Application(2):Short Signature 
For 80-bit security, 

We can reduce the size by our technique. 



Our Short Signature Scheme (simplified form) 

Signature on message M 

Verification 

Public (Verification) key 

Secret (Signing) key 



Comparison (Short Signature) 

Signature 
size 

Public key size Efficiency 
(Sign) 

Efficiency
（Verify） 

[HJK’11] 200 

Ours 
(1) 

200 
 

Ours 
(2) 

200 

80 bit security. Secure under q-DH assumption. 



Conclusion 

 We proposed a new technique for the use of 
cover free family. 

 Based on our idea, we can compress the size of 
public keys in  

 q-resilient IB-KEM 

 q-bounded CCA secure KEM 

 m-time signature 

 short signature 

 Signature/Ciphertext size of the resulting 
schemes are very short whereas the size of the 
public key are shorter than previous 
constructions. 

 47 



epona@cs.au.dk 
Session ID: 

Session Classification: 

Jonas Kölker, w. Damgaard & Toft 

Aarhus University 

Secure Computation, 

I/O efficient algorithms and 

Distributed Signatures 

 

CRYP-303 

Advanced 



epona@cs.au.dk 

The Motivating Scenario 

 You put some data in the cloud 

 Your friends put their data in the cloud 

 You want to compute on that data, securely 

 

 Some of them are not really friends (or hacked) 

 We don’t really trust the cloud completely either 

 

 Storage is dear; we want to compress our data 

 We want the cloud-side programs to be simple 

2 



epona@cs.au.dk 

Formalising The Scenario 

 Players 𝑝1, … , 𝑝𝑛 (you and your friends) 

 Servers 𝐷1, … , 𝐷𝑚(in the cloud) 

 

 Store data in blocks: 𝑏𝑙𝑘 = (𝑥1, … , 𝑥𝑘) 

 Choose 𝑓 of degree ≤ 𝑑, uniformly randomly, 
subject to 𝑓 −𝑖 = 𝑥𝑖; give 𝑓(𝑗) to server 𝑗 

 

 Secure vs. 𝑑 − 𝑘 bad servers; pick 𝑘 in Θ 𝑚  

 We must care about I/O-efficiency of algorithms 

3 



epona@cs.au.dk 

Universally Composable Functionality 

 Input(i, v) – memory[v] := player[i].recv() 

 Output(v) – player[all].send(memory[v]) 

 Operation(•, v1, v2, v3) 

 memory[v3] := memory[v1] • memory[v2] 

 “•” is one of +, -, * or ≤ (which returns 0 or 1) 

 Const(v, x) – memory[v] := x 

 Random(v) – memory[v] := sample 

 Write(adrs, blkid) – disk[blkid] := memory[adrs] 

 Read(adrs, blkid) – memory[adrs] := disk[blkid] 

4 



epona@cs.au.dk 

Three Related Read/Write Protocol Pairs 

 Passively Secure 

 

 Information theoretically and actively secure 

 Computationally and actively (statically) secure 

 

 The latter two are extensions of the former 

 Focus is on the computationally secure 

5 



epona@cs.au.dk 

The Passively Secure Write Protocol 

 Generate 𝑑 − 𝑘 − 1 shared random values: 

 [𝑟1], …, [𝑟𝑑 −𝑘 −1] 

 For j = 1, … ,𝑚, let: 

 𝑓 𝑗 =  𝜆𝑖
𝑗
 𝑘

𝑖=1 𝑥𝑎𝑑𝑟𝑠𝑖 +  𝜆𝑖
𝑗𝑑+1

𝑖=𝑘+1 𝑟𝑖−𝑘  

 For 𝑗 = 1,… ,𝑚, each player sends “write blkid” 
and their share of [𝑓 𝑗 ] to server 𝑗. 

 Each server 𝑗 reconstructs 𝑓(𝑗) and stores it at 
address 𝑏𝑙𝑘𝑖𝑑, i.e. 𝑑𝑖𝑠𝑘𝑗 𝑏𝑙𝑘𝑖𝑑 ≔ 𝑓(𝑗) 

6 



epona@cs.au.dk 

The Passively Secure Read Protocol 

 Each player sends “read 𝑏𝑙𝑘𝑖𝑑” to each server 

 Each server 𝑗 shares its 𝑓(𝑗) among the players 

 (It recalls 𝑓(𝑗) as 𝑑𝑖𝑠𝑘𝑗[𝑏𝑙𝑘𝑖𝑑]) 

 Each player computes [𝑥𝑎𝑑𝑟𝑠𝑖] ≔   𝛿𝑗
𝑖 𝑓 𝑗𝑚

𝑗=1  

 

 Lemma 1 and 2: the 𝜆s and 𝛿s exist 

 That’s basically Lagrange interpolation 

 

 Security: degrees vs. size of corruption sets 

7 



epona@cs.au.dk 

8 

Handling 
Active 
Corruption 



epona@cs.au.dk 

The Template For The Active Protocols 

 To be secure against actively corrupted servers, 
sign all the data sent to the servers 

 To detect replays, use sequence numbers 

 To detect wrong sequence numbers, use 
majority vote 

 

 Two kinds of signature schemes: information 
theoretically secure and computationally secure 

 We’re going to use Schnorr’s signatures 

 

9 



epona@cs.au.dk 

Using Schnorr’s Signature Scheme 

 Public keys: 𝛼, 𝛽 ∈ 𝐺 

 Secret key: 𝑎 such that 𝛽 = 𝛼𝑎 

 Sig 𝑐 = (𝛾, 𝛿) such that 𝛾 = α𝛿𝛽𝐻(𝛾,𝑐) 

 

 Players hold a sharing [𝑎] of the secret key 

 For efficiency, sign a Pedersen commitment to 
the message, as 𝑐 = 𝑔𝑚ℎ𝑟 can safely be public. 

 

 Need random [𝑟]s w. 𝛼𝑟 and ([𝑢], [𝑣])s w. 𝑔𝑢ℎ𝑣. 

10 



epona@cs.au.dk 

The Actively Secure Write Protocol 

 Each player sends “Begin write at 𝑏𝑙𝑘𝑖𝑑” to each 
server, receives 𝑐𝑏𝑙𝑘 by majority, increments it 

 Create random sharings, 𝑟1 , … , [𝑟(𝑑−(𝑘−1)] 
 Each player computes their share of 𝐷𝑗’s share 

 𝑠𝑗 =  𝜆𝑖
𝑗
 [𝑥𝑎𝑑𝑟𝑠𝑖]

𝑘
𝑖=1 + 𝜆𝑖

𝑗
[𝑟𝑘 − 𝑘]𝑑+1

𝑖=𝑘+1  

 Players generate 𝑐𝑗
′ = 𝑔

𝑢𝑗ℎ
𝑣𝑗 , 𝑢𝑗 , 𝑣𝑗  and [𝑥]. 

 Players compute [𝑠𝑗 − 𝑢𝑗] and open to 𝑝𝑢.  He 
reconstructs 𝜏𝑗 = 𝑠𝑗 − 𝑢𝑗 and broadcasts those. 

11 



epona@cs.au.dk 

The Actively Secure Write Protocol (cont) 

 Players open 𝑥, check  𝑥𝑗( 𝑠𝑗 − 𝑢𝑗 − 𝜏𝑗)𝑗 =
?
0 

 Players compute 𝑐𝑗 = 𝑔
𝜏𝑗𝑐𝑗

′, get 𝑟𝑖  and 𝛾𝑖 = 𝛼
𝑟𝑖 

 Players compute 𝛿𝑗 = 𝑟𝑗 − 𝑎 𝐻(𝛾𝑗, 𝑐𝑗, 𝑐𝑏𝑙𝑘) 

 Players send “Write 𝑏𝑙𝑘𝑖𝑑 with ( 𝑠𝑗 , 𝑣𝑗 , 𝛿𝑗 , 𝛾𝑗)” 

 Servers compute 𝑠𝑗, 𝑣𝑗, 𝛿𝑗, 𝛾𝑗, with error correction 
and majority decision, increment 𝑐𝑏𝑙𝑘, store it 

 i.e. 𝑑𝑖𝑠𝑘𝑗 𝑏𝑙𝑘𝑖𝑑 = (𝑠𝑗, 𝑣𝑗, 𝛿𝑗, 𝛾𝑗) 

 

 This is secure… 

12 



epona@cs.au.dk 

The Actively Secure Read Protocol 

 Players send “Read at 𝑏𝑙𝑘 to 𝑝𝑢” to each server 

 Servers send 𝛾𝑗, 𝛿𝑗, 𝑐𝑗 to 𝑝𝑢 and 𝑐𝑏𝑙𝑘, 𝑠𝑗
′ , [𝑣𝑗

′] to all 

 Players produce 𝑡𝑗 , 𝑤𝑗 , 𝑔
𝑡𝑗ℎ

𝑤𝑗 for 𝑗 = 1,… ,𝑚 

 Players open 𝑠𝑗
′ − 𝑡𝑗 , 𝑣𝑗

′ −𝑤𝑗  to 𝑝𝑢 

 𝑝𝑢 reconstructs 𝑥𝑗 = 𝑠𝑗
′ − 𝑡𝑗 and 𝑦𝑗 = 𝑣𝑗

′ − 𝑤𝑗. 

 𝑝𝑢 validates (𝛾𝑗, 𝛿𝑗) against 𝑐𝑗, 𝑐𝑏𝑙𝑘  
 and checks that 𝑐𝑗 = 𝑔

𝑥𝑗ℎ
𝑦𝑗 ∙ 𝑔

𝑡𝑗ℎ
𝑤𝑗  

 𝑝𝑢 broadcasts 𝛾𝑗, 𝛿𝑗, 𝑐𝑗, 𝑥𝑗, 𝑦𝑗 
 

 

13 



epona@cs.au.dk 

The Actively Secure Read Protocol (cont) 

 Players verify (𝛾𝑗, 𝛿𝑗) against (𝑐𝑗, 𝑐𝑏𝑙𝑘) and 𝑐𝑗 against 
𝑥𝑗, 𝑦𝑗, 𝑡𝑗, 𝑤𝑗, i.e. that 𝑐𝑗 = 𝑔

𝑥𝑗ℎ
𝑦𝑗 ∙ 𝑔

𝑡𝑗ℎ
𝑤𝑗 

 The players compute 𝑥𝑎𝑑𝑟𝑠𝑖 =  𝛿𝑗
′𝑚

𝑗=1 𝑡 + 𝑥𝑗  

 

 This is secure… 

 

14 



epona@cs.au.dk 

15 

Generating 
Randomness 



epona@cs.au.dk 

Producing Randomness With Related Data 

 A protocol for batch producing ( 𝑟 , 𝛼𝑟) 

 

 Generate [𝑟𝑏
𝑎] and [𝑥𝑎] for 𝑎 = 1…𝑛, 𝑏 = 0…𝑚 

 In parallel, for 𝑎 = 1,… , 𝑛: 
 Each player opens 𝑟𝑏

𝑎  to 𝑝𝑎 for 𝑏 = 0,… ,𝑚 

 𝑝𝑎 broadcasts 𝜒𝑏
𝑎 = 𝛼

𝑟𝑎
𝑏

 for 𝑏 = 0,… ,𝑚 

 Everybody broadcasts their shares of 𝑥𝑎  

 Players compute 𝑦𝑎 = [ 𝑥𝑎
𝑏𝑚

𝑏=0 𝑟𝑏
𝑎] 

 All players check that 𝛼𝑦𝑎 =  (𝜒𝑏
𝑎)𝑥𝑎

𝑏𝑚
𝑏=0  

 

16 



epona@cs.au.dk 

Producing Randomness (cont) 

 Form column vectors 𝑉𝑏 for 𝑏 = 1,… ,𝑚 with 𝑛 

entries; entry 𝑎 is ( 𝑟𝑏
𝑎 , 𝛼𝑟𝑏

𝑎
) 

 Players compute a new column vector, 𝑀 ∙ 𝑉𝑏 

 Let 𝛾1, … , 𝛾𝑛 be the 𝑖’th row of 𝑀. Then the 𝑖’th entry of 

𝑀 ∙ 𝑉𝑏 is (  𝛾𝑎𝑟𝑏
𝑎]𝑎 ,  𝛼𝛾𝑎𝑟𝑏

𝑎

𝑎  

 For efficiency, we do this in a delegate-and-verify way 

 Output 𝑛 − 𝑡𝑝 first entries of 𝑀 ∙ 𝑉𝑏 for 𝑏 =
1,… ,𝑚 

17 



epona@cs.au.dk 

Delegate And Verify (AmortizedExp) 

 Each player 𝑝𝑖 computes a part of the result, 

𝛽𝑏
𝑖 =  𝛼𝛾𝑎𝑟𝑏

𝑎𝑛
𝑎=1  for 𝑏 = 1,… ,𝑚, where (𝛾1, … , 𝛾𝑛) 

is the 𝑖’th row of 𝑀, then broadcasts 𝛽𝑏
𝑖 . 

 The players generate a random value, 𝑥. 

 Players compute 𝛿0, … , 𝛿𝑛 = (𝑥0, … , 𝑥𝑛−1) ∙ 𝑀 

 i.e. a linear combination of rows of M 

 Players check that  (𝛽𝑏
𝑖 )𝑥

𝑖−1𝑛
𝑖=1 =

?
 𝛼𝑟𝑏

𝑎𝛾𝑎𝑛
𝑎=1  

 Disqualify any cheaters and output the 𝛽𝑏
𝑖 s 

18 



epona@cs.au.dk 

19 

Application 



epona@cs.au.dk 

Applying Ideas, In Particular These 

 Read and understand the ideas 

 Implement the ideas 

 Run the implementation of the ideas 

 

Specifically: 

 Read “Secure Computation, I/O-Efficient 
Algorithms and Distributed Signatures” 

 Extend VIFF, http://www.viff.dk 

 Run your extended version of VIFF 

20 

http://www.viff.dk/

	CRYP-303_Yamada.pdf
	CRYP-303_Kolker

