
Session ID:
Session Classification:

Francois Lascelles
Layer 7 Technologies

Enterprise Access Control
Patterns For REST and
Web APIs

STAR-402
intermediate

Today’s enterprise API drivers

enterprise boundary

distributed enterprise SOA

• Sensitive data, apps
• Mission critical
• ID authority
• Legacy

partner

SAAS

mobile

IAAS/PAAS

developer

Integration
APIs!

B2B
APIs!

B2C
APIs!

Cloud
APIs!

Access
control?

REST access control standards gap

WS-* web services have rich security standards
and authentication/authorization mechanisms
Web API, RESTful web services tend to use
proprietary tokens, point-to-point solutions
What are the common patterns in use?
Which standards are emerging?
How to use specialized infrastructure to
implement access control?
How to accommodate requesting party technical
capabilities?

Pattern 1: API Keys in URI parameters

Simplest thing, common practice
Shared secret in a URL parameter based
authentication, no signature involved
Equivalent to
https://host/api/resource?username=franco&pass
word=mysecret
Why not use HTTP Basic instead?

https://host/api/resource?keyid=foo&keysecret=bar
…

Pattern 2: HMAC

5

PUT /api/resource
…
Authorization: AWS keyid:fr0t5AzM6qT3S40pBPmfrTLJwMuZurA8=
…

Prove possession of share secret using HMAC
sig (shared secret not actually sent)
Payload covered by signature -> message
integrity
Timestamp covered by signature -> less
susceptible to replay
Used by AWS, Azure, core to OAuth 1.0
Requires agreement for normalized request string

Pattern 3: OAuth

ServiceApplication

Resource
owner

Do something
with my resource

Yes, I authorize it

Retrieve resource with
OAuth access token
(REST exchange)

Specifies a handshake to grant an access token
to an application (REST client)
Access token is then used to consume REST
service

OAuth 2.0

4 core grant types (handshakes) to address
different use cases

Authorization code, implicit, password, client
credentials

SAML extension grant type (draft-ietf-oauth-saml2-
bearer-03)
Different token types

Bearer (easy, like cookies)
MAC (integrity, more secure)

OAuth 2.0 is rich, fills the standards gap

Authorization code grant type

Resource owner redirected between OAuth
authorization server and client application
Both resource owner and client authenticated as
part of handshake
Supports refresh

8

2. Get access token

1. Get authz code

Implicit grant type

Also 3-legged but simpler
Client is not authenticated

redirection URI must be registered to avoid fishing
No refresh

9

1. Get access token

Resource owner password credentials grant
type

Resource owner provides credentials to client
Client uses it to get access token
Both client and res owner identities
authenticated
Can be refreshed

10

2. Get access token1. Provide credentials

Client credentials grant type

Two-legged handshake
Client application authenticated only
No refresh tokens

11

1. Get access token

2 vs. 3 Legged Spectrum

12

Three
legged

Two
legged

Step-by-step enterprise API
access control
(from an OAuth perspective)

13

Starting Point

REST API

OAuth Client
(application)

enterprise/provider admin

I need
more OAuth

FAIL!

OAuth Clients Provisioning, Management

app developer

approve

provision OAuth Client Management
API dev portal

register

Provide a portal for developers to register,
generate shared secrets
Enable approval flow (administrative)
Store API keys, redirection URIs
List existing clients, record usage statistics

Runtime Policy Modeling, Integration

Resource Server
PEP

configure

id providers, API keys

API endpoints

Declare API endpoints in the resource server
Integrate identity providers for runtime
authentication
Granular access control rules

Which API, which identities, which grant types, …

Runtime Policy
Modeling

OAuth Handshake

get token

Token Endpoint

redirect

Authorization
Endpoint

authorize

OAuth
Authorization Server

Enable handshake
Lookup policy, authenticate identities, enable flow
Create ‘OAuth Session’

Token Management

persist

Runtime API Call

Resource Server

consume

OAuth resource server enables API call
Lookup and verify incoming OAuth access token
Authorize based on OAuth session attributes
Route to API endpoint, return resource to client app
Record consumption statistics

Token Management

Token Refresh

refresh

Token Endpoint

OAuth authorization server enables refresh
Authenticate client
Lookup and validate refresh token
Create new access token
Update ‘OAuth session’

Token Management

Token Revocation

Resource Server

FAIL!

compromise

Minimize impact of compromised tokens
Enable revocation for subscribers and API
providers

Management GUI, links

checkrevoke

Revocation
interface

Token Management

Comprehensive API Access Control

Apply OAuth-enabling infrastructure:
Token management (lifecycle, revocation)
Developer portal (client provisioning, client
management)
OAuth resource server (API proxy, PEP)
OAuth authorization server (authorization endpoint,
token endpoint)
Runtime policy modeling
Reporting, monitoring interface

Thank you

For more information: info@layer7.com

22

