
Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Session ID:

Session Classification:

K. Scott Morrison
CTO & Chief Architect

Layer 7 Technologies

Hacking’s Gilded Age:
How APIs Will Increase
Risk And Chaos

ASEC-402

Intermediate

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

What is the gilded age?

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

“To gild refined gold, to paint the lily,
To throw a perfume on the violet,
To smooth the ice, or add another hue
Unto the rainbow, or with taper-light
To seek the beauteous eye of heaven to garnish,
Is wasteful and ridiculous excess.”

 William Shakespeare

 King John (1595)

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

The Gilded Age:
A Tale of Today

 Mark Twain

 Charles Dudley Warner
 1873

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

“During the 1870s and 1880s, the U.S.

economy rose at the fastest rate in its

history, with real wages, wealth, GDP, and

capital formation all increasing rapidly.”

Economic growth between 1865 and 1898
Wheat output increases 256%
Corn 222%
Coal 800%
Miles of railway track 567%

Source: Wikipedia http://bit.ly/xxHKnK

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Rockefeller
Carnegie
Morgan

Astor
Vanderbilt

Mellon

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Who will be the robber
barons of the 21st century?

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

We don’t know yet

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

And APIs could be a rich
avenue of exploitation

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Here Is What This Talk Is About:

 The new API threat

 …and the potential rise of the hacker-robber-baron

 Are APIs just like the Web? Or are they
different?

 Look at three important areas:

1. Parameterization

2. Identity

3. Cryptography

 How to apply the lessons of this talk

10

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

What is an API?

11 11

Web App

API

Server

Web Client

Mobile App

An API is a

RESTful service

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

For Example:

12

GET http://services.layer7.com/staff/Scott

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

For Example:

13

{

 "firstName": ”Scott ",

 "lastName" : ”Morrison",

 ”title" : “CTO”,

 "address" :

 {

 "streetAddress": ”405-1100 Melville",

 "city" : ”Vancouver",

 ”prov" : ”BC",

 "postalCode" : ”V6E 4A6"

 },

 "phoneNumber":

 [

 {

 "type" : ”office",

 "number": ”605 681-9377"

 },

 {

 "type" : ”home",

 "number": ”604 555-4567"

 }

]

 }

http://services.layer7.com/staff/Scott

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

This is a Technological Sea Change

14

Old New

Transport HTTP HTTP

Data XML JSON

Authentication Basic, X.509,
Kerberos, SAML

OAuth

Confidentiality &
Integrity

WS-Security SSL

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Where Simple Won

15

• Complex

• Highly

standardized

• Vendor driven

• Barriers

• Simple

• Informal

• Grassroots

• Frictionless

SOAP + WS-* RESTful APIs

Insert presenter logo here
on slide master. See hidden

slide 4 for directions 16

“Sounds great. So what’s

the problem?”

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

The Real Problem Is This:

17

API Development !=

Web Development

In Particular:

We need to be wary of bad

web development practices

migrating to APIs…

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Problem Area #1: API Parameterization

 In the web world, parameterization was limited
and indirect

 Subject to the capabilities of URLs and forms

 APIs in contrast and offer much more explicit
parameterization

 The full power of RESTful design: GET, POST, PUT,
DELETE

 (And don’t stop there… what about effects of HEAD, etc)?

 This is a greater potential attack surface

 Injection, bounds, correlation, and so on

18

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Good Web Apps Constrain

19

HTTP

Server

App

Server

Database

Web Client

Objects

Pages

Constraint

Space

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

APIs Are A More Direct Conduit

20

HTTP

Server

App

Server

Database

App

Objects

Often:
• Self-documenting

• Closely mapped to object space

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Consider Attack
Surface

21

Insert presenter logo here
on slide master. See hidden

slide 4 for directions 22

Attacker

Web App Server

(browser+APIs)

Victim: Web

Browser

Client

<SCRIPT …>

1. API injects

script in

3. Browser loads

content with

embedded script

2. Server fails to

perform FIEO: Filter

Input, Escape Output

API

Script Insertion is Just One Potential
Exploit

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

SQL Injection is Another

23

Source: https://xkcd.com/327/

Exploits of a Mom

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Mitigation Strategy

 Rigorous validation of user supplied input

 Stronger typing

 Sets and ranges

 Avoid auto-generated schemas that make everything
a string

 Use schema validation

 XML Schema, RELAX-NG, Schematron

 Please no DTDs!

 JSON schema validation

 WADL’s second coming

24

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Mitigation Strategy (cont.)

 Regex scanning for signatures

 Tune scanning for the API

 Sometimes SELECT is OK

 Virus scanning of attachments

 Don’t forget B64’d message content

 Library, service, or gateway solutions

 Decoupled security

 What are the tradeoffs?

25

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Mitigation Strategy

 Whitelist tags if you can (i.e. where the validation
space is small and concise)

 Not always practical

 (Note that I’m referring to whitelisting tags not IPs.)

 Blacklist dangerous tags like <SCRIPT>

 Always perform FIEO (Filter Input, Escape
Output)

 Learn more: http://xssed.com

26

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Problem Area #2: Identity

 We had it surprisingly good in the Web world

 Browser session usually tied to human

 Dealing with one identity is not so tough

 Security tokens abound, but solutions are mature

– Username/pass, x.509 certs, multi-factor, Kerberos, SAML, etc

 APIs rapidly becoming more difficult

 Non-human entities

 Multiple layers of relevant identities

– Me, my attributes, my phone, my developer, my provider…

27

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

API Keys

“An application programing interface key (API key) is a
code generated by websites that allow users to access

their application programming interface. API keys are used
to track how the API is being used in order to prevent

malicious use or abuse of the terms of service.

API keys are based on the UUID system to ensure they will
be unique to each user.”

(Source: wikipedia http://en.wikipedia.org/wiki/Application_programming_interface_key)

28

http://en.wikipedia.org/wiki/Application_programming_interface_key
http://en.wikipedia.org/wiki/Application_programming_interface_key

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

For Example:

29

GET http://example.layer7.com/services/staff

?APIKey=15458617-7813-4a37-94ac-a8e6da6f6405

Seriously? WTF.

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

How Does An API Key Map To Identity?

30

15458617-7813-4a37-94ac-a8e6da6f6405

A

A person?

Or an app?

It is entirely inconsistent

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

The Identity Profile

Increasingly we need to move toward large
number of claims (multiple identity profile)

• appID

• userID

• deviceID

31

• User attributes

• Roles

• Geo location

• IP

• User agent

• Time of day

• etc

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Where Did API Keys Come From?

 API keys came from Google APIs like maps, early
Yahoo APIs, early Twitter APIs etc.

 Originally meant for loose, non-authoritative tracking

 Rate limits, approximate usage profiling

 Google geocoding v3.0 API deprecates API keys

 Uses IP instead to track and throttle

 This has its own set of problems

 IP address spoofing

 Problems with legitimate clients like cloud servers

 Google Premier uses a public client_id and
requires signed URLs

 (Strips domain leaving only path and query parameters)

32

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

The Real Issue Is That This Is Ad-hoc
Sessioning

 This is a web developer cultural issue

 On the web, session tokens are rarely secured

 Step 1: Sign in with SSL

 Steps 2 to n: Track session using cookie without SSL

 There are two bad things going on here:

1. No protection of security token

2. No binding of token to message content

 In 2012, this is a huge problem…

33

These two things are very related

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

One Word: Firesheep

34

In the post Firesheep world, unprotected session

tracking should never be tolerated…

Source: http://codebutler.com/firesheep

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Side Note: Cookie Sessioning May Also Be
Indicating Design Problems

 Good RESTful design is stateless

 Authentication session tokens—as long as they
are protected—are OK

 State tokens, however, are not very RESTful

 i.e. Tokens that index server-side state objects

 Makes it hard to scale

 But it could also be an exploit vector

35

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Bottom Line: The API Key Was Never Meant To
Be Authoritative

 Strange hybrid of HTTP’s USER-AGENT and
sessioning

 OK only for general tracking

 Anything that matters should use real security
tokens

 Anywhere where identity is important:
 APIs that provide access to sensitive data

 APIs that change things that matter

 APIs that charge for use

 etc.

36

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Twitter Gets It

37

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Will OAuth survive adolescence?

 Complexity and confusion

 Interop is a nightmare right now

 Enterprise token management

 Beyond the timeout

 Lifecycle, revocation, distribution, etc.

 Talk, but not a lot of action

 SSL everywhere

 Protect bearer tokens

 Phishing vulnerabilities

 Server authentication and loss of trust in the CA
infrastructure

38

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Mitigation

 Protect the tokens!

 HTTPS everywhere

 This is another web design cultural issue

 It’s just not that expensive any more

 Need HTTP Strict Transport Security (HSTS) for
APIs

 http://en.wikipedia.org/wiki/HTTP_Strict_Transport_S
ecurity

39

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Problem Area #3: Cryptography and PKI

 Cryptography is reasonably mature on the web

 Surprisingly limited use patterns

 SSL/TLS

 Very little tough PKI (like client-side)

 So what’s wrong with APIs?

40

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

It’s Like We Forgot Everything We Knew

 Emailing keys

 API, shared secrets, etc.

 Bad storage schemes

 Security through obscurity

 Toy ciphers

 No life cycle management

 Limits on use

 Time limits

 Revocation

 Audit

41

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

The Issues

 Key management

 Especially across farms

 Nobody takes web PKI seriously

 CRLs and OCSP aren’t much good in the browser
world

 Fail open—seriously

 CA trust breakdown

 Comodo fraud in March 2011

42

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

The Issues (cont.)

 Cipher suite restrictions

 Avoiding downgrades

 Client-side certificate authentication is hard

 The alternatives for parameter confidentiality
and/or integrity are hard:

 XML encryption is still there

 Not for the faint of heart

 OAuth 1.0 gave you parameter signing

 Only optional in 2.0

43

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Mitigations

 Use real PKI

 I know it’s painful

 Use HSMs to protect keys that really matter

 Otherwise use real key material protection
schemes

 PKCS #12, etc

 Libraries abound

44

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Mitigations

 You must do CRLs and OCSP for APIs

 Google maintains a certificate registry:
http://googleonlinesecurity.blogspot.com/2011/04
/improving-ssl-certificate-security.html

 Google safe browsing API:
http://code.google.com/apis/safebrowsing/devel
opers_guide_v2.html

 Blacklist of phishing and malware sites

 DANE and DNSSEC

45

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Where Does This All Leave Us?

 SOAP, the WS-* stack dealt with much of this
very rigorously

 But it was just too hard.

 We need to learn from this, but make it easier to
implement

 Here’s how…

46

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

How Do I Apply This Today?

 Use SSL for all API transactions

 Hides many sins

 Confidentiality, integrity, replay, binding token+message,
server authentication, etc.

 Use real PKI

 Yes, it’s hard

 But you can’t skimp here

 Use OAuth for distributed authentication

 Use real frameworks, don’t reinvent

 They exist for most languages

 Consider gateways to encapsulate security

47

Insert presenter logo here
on slide master. See hidden

slide 4 for directions

Hacking’s Gilded Age: How
APIs Will Increase Risk And
Chaos

48

