How to Create a Software Security Practice

Jack Danahy Ryan Berg

IBM Security Systems Division

Session ID: ASEC-303

Session Classification: Intermediate

RSACONFERENCE 2012

So Why Listen to Us?

- Jack Danahy Director/Advanced Security
- Ryan Berg Senior Security Architect
 - You will note that we are NOT Service Providers

Founders

- Qiave Technologies (Acquired by Watchguard: 2001)
- Ounce Labs (Acquired by IBM: 2009)

We **have** helped many organizations to create successful software security programs.

What is an Application Security Practice?

Welcome

- An Application Security Practice is:
 - An internal or external center of excellence in assessment and improvement of application security
- Why is There a Need?
 - "Forty percent of 678 Fortune 500 and popular websites contain client-side JavaScript vulnerabilities" – X-Force 2011 Trend Report
 - In 2011, there were 535 reported data breaches, involving 30.4 million records — privacyrights.org
 - Applications are the most common target for attack
 - Insecure applications played a role in 5 of top 6 breaches
 - Demand for trained resources far exceeds supply

Marketplace of Attacks is Evolving

Motives, Impacts, and Adversaries

Benefits to Creating a Practice

- Internal Practice
 - Cost savings from multiple avenues
 - Decreased remediation costs
 - Decreased likelihood of vulnerability exploit
 - Simplified reporting and compliance
 - Increased positive visibility for resources
 - Beneficial center of gravity for expertise
- External Practice
 - Constant demand for trained resources
 - Full life-cycle engagement
 - Premium service and resource returns

Resources and Skills Needed

- Technical Skills Required
 - Knowledge of application vulnerability types and causes. Multiple sources for skill improvement
 - Familiarity with dynamic testing methodologies and toolkits for deployed application testing
 - Programming, Release/Integration experience for static testing during development process
- Non-technical Skills Required
 - Organized triage/project management
 - Client briefing delivery and prioritization

What activities are involved?

- Activities Driving an Application Security Practice
 - Application Inventory: Assisting the organization to identify all applications
 - Asset Prioritization : Developing a rationale around the value/impact/importance of each application
 - Application Assessment and Analysis: Performing the actual assessments of individual applications
 - Application Vulnerability Remediation : Suggesting remediation plans and process to address issues
 - Application Security Integration : Models to make application security a regular lifecycle component

What is an Application Inventory?

Why an Application Inventory?

- Most organizations have an incomplete awareness of applications
- Software and Systems have added capability quickly
- There typically exist disconnects in governance and provenance
- Constrained resources and critical threats demand prioritization

Steps to an Application Inventory

- Outline Scope for Inventory
 - Commonly segregated by Source, Purpose, or Business Unit
- Identify Providers of Insight within Scope
 - Group Interaction for Communication and Awareness
 - Functional Group Insight to Improve Accuracy
- Populate inventory with demographic data
 - Application business function
 - Application budget owner
 - Application operational management
 - Application development/project team
 - Any application security resources

Steps in Application Inventory (2)

- Highlight Application Lifecycle Phase
 - Under Discussion : Lowest cost to add Security
 - Under Development : Capacity to influence SDLC
 - In Test : Opportunity to add Security to test matrix
 - In Deployment
- Describe Application Architecture
 - Monolithic
 - Composite
 - Cloud-based
 - Heterogeneous in platform, language, and/or provider
 - Supporting technologies and mitigating controls

Mapping Value vs Exposure

Goal – Understand value, breach impact, and exposure for applications

Value and Breach Impact

- Capture the value to the organization of the application
- Revenues derived from application
- Investment in system to date
- Impact costs if system were corrupted or compromised

Risk: Audience and Exposure

- Characterize the expected user interaction and exposure of the application
- Capture the profile of users and authorization activity
- Capture the network exposure and compartmentalization
- Identify any inter-system/inter-application connection points

Prioritizing Application Assessment Efforts

Prioritizing Your Workflow

Define your risk Know your Enemy Prioritize

Define Risk

- Every Organization has a different way of categorizing application risk.

 Internet vs Intranet

 - PII vs credit card data
 - Recipe for Secret sauce
- It is important to define application risk in terms the business can understand (high med, low, not good enough)

Know your Enemy

- Each type of attacker has a different motivation
- Define the cope of the potential thread
 - Internal vs External
 - All users vs authenticated users
- Leverage threat modeling
 - No one side fits all, but pick one

Image: chanpipat / FreeDigitalPhotos.net

https://www.owasp.org/index.php/Threat_Risk_Modeling#Alternative_Threat_Modeling_Systems

Prioritize

Prioritize

- Each Application identified in the inventory needs to me mapped against the risk
- Prioritize based on identified risk and scope of the potential threats
 - Don't lose the forest in the trees.

Perio

Performing the Assessment

Assessing your inventory

Activity **Discovery Technical Team kickoff Initial Assessment and Planning Assessment Final Report**

Discovery

"Strategy without tactics is the slowest route to victory. Tactics without strategy is the noise before defeat."

Sun Tzu

- Discovery is the first and foundational step
 - Acquire all the code
 - Configuration Files
 - Third party dependencies
 - Buildable environment
 - Recursive deployed application directory
 - Design Documents
 - Architectural ducuments
 - Design patterns used
 - Frameworks
 - MVC, MVVM, Spring, Struts, EJB
 - Running test version of the application (matching the you you received as part of discovery)
 - Multiple test accounts for each entitlement

Estimation based on Discovery

- Too often estimation occurs prior to discovery.
 - At best assume 100,000 LOC per week
- Well executed discovery will influence and drive more predictable and accurate time estimates
- Things that drive estimates that can only be understood during discovery
 - Undocumented "features"
 - Custom frameworks
 - IOC anybody
 - Legacy System interfaces
 - Entitlements

Technical Team Kickoff

- Discovery should take 1-2 weeks (depending on size and complexity of the code base)
- The kickoff is to sync between the team doing the assessment and the application development team.
 - Ask outstanding questions about key artifacts found during discovery
 - Have an application walk through of key features (live demo)
 - Gain an understanding of any secure development practices already implemented and how they are utilized
 - Outline the assessment process and identify development points of contact

Initial Assessment and Planning

- Initial assessment
 - Tools, Tools, Tools
- Leveraging both SAST, DAST the initial assessment is to gain initial understanding of the application typically using default tool configurations
- Focus on building scan assurance
 - Do you have all the expected data flows in the application
 - Is your black box scan complete
- The goal of the assessment is building high assurance, defensible results so ensuring that the tools are giving the most complete picture possible is critical
- Create plan for handling tool gaps
 - Manual analysis, pen testing, code review

Assessment

- Triage, Triage, Triage
- Divide and conquer
 - Identify common insecure patterns
 - Validate findings against test web site

Communicate with development on critical

findings

Rem

Remediating Found Issues

Remediating Found Issues

- Nobody wants to read a 500 page PDF
 - Leverage tooling to provide access to detailed findings
 - Summary report should contain
 - representative examples of the most critical findings
 - Architectural findings
 - Lack of standardized encoding
 - Lack of consistent use of secure practices
 - Risk Ranking for the findings
 - DREAD,CVSS (pick one but be consistent)
 - Meet with development team and walk through the high level findings and major areas of concern.

Remediating Found Issues

- All issues that require remediation need to be tracked
 - Leverage defect tracking system but make sure you can identify security from nonsecurity issues
- Prioritize based on Risk ranking
- Avoid spot fixing
 - XSS requires development of a consistent framework for proper handling.
- Avoid duplicate fixes for similar issue
- Leverage secure development framework (if you don't have one now is the time to invest)

An Integrated Assessment Effort

A Practical Cycle Described

Design Phase

- Consideration is given to security requirements of the application
- •Issues such as required controls and best practices are documented on par with functional requirements

Development Phase

- •Software is checked during coding for:
 - > Implementation error vulnerabilities
 - > Compliance with security requirements

Build & Test Phase

- Testing begins for errors and compliance with security requirements across the entire application
- •Applications are also tested for exploitability in deployment scenario

Deployment Phase

- Configure infrastructure for application policies
- Deploy applications into production

Operational Phase

•Continuously monitor applications for appropriate application usage, vulnerabilities and defend against attacks

Applying All of This Information

- In the first three months following this conversation, you should go forth and:
 - Document your thoughts on organizational need or opportunity for a Software Security Practice
 - Evaluate your capability to provide these services, finding areas of necessary growth
 - Identify internal champions or external clients interested in working through the process
- In the first 6 months following this conversation, you should plan to:
 - Develop the necessary skills and take on your first project, documenting all the way along. Then drop us an email.

Questions?