

Security is Intel's Third Value Pillar

Paul Otellini Intel CEO

Intel is positioning itself to lead in three areas:

- energy-efficient performance silicon,
- · connectivity, and
- security.

There's an urgent need for security innovation as people are spending more time online and the amount of data is growing.

- Digital signatures on FW updates
- Hardware Random number generation
- Anonymous platform attestation
- Trusted Boot
- Improved protection for user authentication
- Enhancements for cryptographic performance
- Protection from Side Channel Attacks

Digital Signatures on FW Updates

- Intel FW updates are validated with a digital signature
- NIST recommending digital signatures for BIOS updates.
 - NIST SP800-147 BIOS protection Guidelines
 - Use digital signatures to verify the authenticity of BIOS updates.
 - BIOS updates verified using a Root of Trust for Update which includes:
 - The key store used to verify signatures on updates.
 - The digital signature verification algorithm.
 - Use of NIST-approved crypto algorithms.
 - Recommend rollback protection.
 - http://csrc.nist.gov/publications/nistpubs/800-147/NIST-SP800-147-April2011.pdf

- Digital signatures on FW updates
- Hardware Random number generation
- Anonymous platform attestation
- Trusted Boot
- Improved protection for user authentication
- Enhancements for cryptographic performance
- Protection from Side Channel Attacks

Digital Random Number Generator (DRNG)

A reusable circuit that provides an autonomous/self contained, complete DRNG

Provides a hardware source of high quality, high performance entropy to be embedded across Intel products. It is composed of

- An all-digital Entropy Source, (3 Gbps, 90% Entropic)
- Runtime Entropy Source health measurement via Online Health Test,
- Conditioning (via AES CBC-MAC mode) and DRBGing (via AES CTR mode) post processing and
- Built In Self Test (BIST) and Test Port

Standards compliant (NIST SP 800-90)

RDRAND Performance

Preliminary data from pre-production Ivy Bridge sample¹

- RdRand new CPU instruction which provides access to DRNG
- Up to 70 million RdRand invocations per second
- 500+ Million Bytes of random data per second
- Throughput ceiling is insensitive to number of contending parallel threads
 - ☐ Steady state maintained at peak performance

Number of Parallel Threads

Number of Parallel Threads

RdRand Response Time and Reseeding Frequency

Preliminary data from pre-production Ivy Bridge sample¹

RdRand Response Time

- ~150 clocks per invocation
- Little contention until 8 threads
 - (or 4 threads on 2 core chip)
- Simple linear increase as additional threads are added

DRNG Reseed Frequency

- Single thread worst case: Reseeds every 4 RdRand invocations
- Multiple thread worst case: Reseeds every 23 RdRand invocations
- At slower invocation rate, can expect reseed before every 2 RdRand calls
 - □ NIST SP 800-90 recommends $\leq 2^{48}$

Number of Parallel Threads

Number of Parallel Threads

- Digital signatures on FW updates
- Hardware Random number generation
- Anonymous platform attestation
- Trusted Boot
- Improved protection for user authentication
- Enhancements for cryptographic performance
- Protection from Side Channel Attacks

Overview of EPID

- EPID is a digital signature scheme with special properties
 - One group public key corresponds to multiple private keys
 - Each unique private key can be used to generate a signature
 - Signature can be verified using the group public key

Enhanced Privacy ID (EPID)

- Direct Anonymous Attestation (DAA)
 - A crypto scheme for providing anonymous signatures
 - DAA is designed specifically for TPM
 - RSA based DAA scheme adopted by TCG TPM Spec v1.2
- EPID is an extension of DAA
 - Flexible key generation and signature creation options
 - Additional revocation capabilities
 - Pairing based EPID scheme has improved efficiency

What is EPID Knows **Issuer** Issuer Secret **EPID** group public key Join **Each Member obtains** a unique EPID private key Verifier Knows Member Private **key Verify Verifies EPID signature** using the group public <u>Sign</u> key Signs a message using his private key and outputs a signature

Privacy Features of DAA/EPID

- EPID key issuing can be blinded
 - Issuer does not need to know Member Private Key
- EPID signatures are anonymous
- EPID signatures are untraceable
 - Nobody including the issuer can open an EPID signature and identify the member
 - This is the main difference between group signatures
- Unlinkability property depends upon Base
 - Signature includes a pseudonym Bf where
 - B is base chosen for a signature and revealed during the signature
 - f is unique per member and private
 - Random base: Pseudonym Rf where R is random
 - signatures are unlinkable
 - Name base: Pseudonym N^f all where N is name of verifier
 - Signatures still unlinkable for different verifiers
 - Signatures using common N are linkable

Revocations in EPID

- Private key revocation (Revealed Key List)
 - Ex: Private key is corrupted and is published
 - Revocation check performed by verifier
- Verifier Local Revocation using name base
 - Ex: Verifier can revoke a Pseudonym for his name (Nf)
 - Revocation check performed by verifier
- Signature based revocation (Signature Revocation List)
 - Issuer and/or verifier decide that they no longer want to accept signatures from whatever signed a "revoked" message with pseudonym B^f
 - For each future signature,
 - Member signs as normal
 - Member proves he didn't sign the revoked message
 - Retains same anonymity and unlinkability properties

More on signature based revocation

- Signature Revoke list
 - $-K_i = B_i^{fi}$ for many pseudonyms
- Member produces a pseudonym K = B^f in a signature
- The Member performs a Not My Pseudonym Proof, for each pseudonym in Signature Revoke list, i.e., for each (B_i, K_i), the member proves that K_i ≠ B_i^f
- Signature Revoke list signed by Revocation authority and checked by Member device

- Digital signatures on FW updates
- Hardware Random number generation
- Anonymous platform attestation
- Trusted Boot
- Improved protection for user authentication
- Enhancements for cryptographic performance
- Protection from Side Channel Attacks

TPM Measured Boot

- Measured boot
 - Boot anything
 - Store a trusted measurement of the boot process
 - Provide trusted reporting of the measurement
- TPM Trusted Platform Module
 - Separate microprocessor
- During platform boot, the HW does a hash of the initial boot code and sends that to the TPM.
- TPM can digitally sign the hash

Verified Boot

- Verified boot
 - Boot only code that passes verification
- Uses Intel's Trusted eXecution Technology Launch Control Policy
- The HW verifies that the measurements made during launch are good
- If not, then the selected policy option is invoked. Examples:
 - Platform boots to a fall back environment
 - Platform does not boot

- Digital signatures on FW updates
- Hardware Random number generation
- Anonymous platform attestation
- Improved protection for user authentication
- Enhancements for cryptographic performance
- Protection from Side Channel Attacks

IPT 1.0: One Time Password (OTP)

The first generation of Intel® IPT is a dynamic code generated on an embedded microprocessor that is protected from malware in the OS.

- Single use, (i.e. 30 second, time-limited code → OTP)
- A hardware level 2nd factor of authentication
- Works with leading OTP Solutions from Symantec & Vasco

- Digital signatures on FW updates
- Hardware Random number generation
- Anonymous platform attestation
- Improved protection for user authentication
- Enhancements for cryptographic performance
- Protection from Side Channel Attacks

Crypto Performance

- Software improvements
 - Multi-buffer
 - Function Stitching
- Hardware improvements
 - AES-NI
 - PCLMULQDQ
 - Microarchitecture improvements

Multi Buffer Performance – 1 WSM Core

Multi-buffer: Perform the same function on multiple independent data buffers

Excellent performance on AES CBC Encrypt

Function Stitching

- Protocols such as SSL/TLS and IPsec apply two functions, confidentiality and integrity
- Improved performance by using multiple execution units more efficiently
- Fine grain integration achieves higher performance
- 1.4X Speedup on AES128 CBC-Encrypt with SHA1 (Cycles/Byte)

Method to speedup combined Encrypt/Authenticate

OpenSSL Performance Improvements

- Intel developed and released highly optimized cryptographic functions into OpenSSL
- ~28 Gigabits/second of large secure connections using AES256-SHA1 with RSA1024 for session setup
- 4.8x faster than latest default version at the system level
- Dual Intel® Xeon® Processor X5680 system running the Apache Web-Server application, sending HTTP over SSL to clients on a network.

Sandy Bridge Performance

- SNB 2nd Generation Intel® Core™ improves:
 - AES-NI Throughput
 - SIMD Processing via AVX ISA extensions
 - Large-integer processing (public-key crypto)
 - Multi Buffer Performance (Cycles/byte)

Algorithm	i5-650	i7-2600	i7-2600 Gain
MD5	1.46	1.27	1.15
SHA1	2.96	2.2	1.35
SHA256	6.96	5.27	1.32
AES128-CBC-Encrypt	1.52	0.83	1.83

Modular Exponentiation Performance (Cycles)

Algorithm	i5-650	i7-2600	i7-2600 Gain
512-bit Modular Exponentiation	360,880	246,899	1.46
1024-bit Modular Exponentiation	2,722,590	1,906,555	1.43

1.2-1.8X additional performance gain on SNB!

^{*}See Intel technical paper # 10 for full description of methodology and results.

- Digital signatures on FW updates
- Hardware Random number generation
- Anonymous platform attestation
- Improved protection for user authentication
- Enhancements for cryptographic performance
- Protection from Side Channel Attacks

Software Side Channels

- Not Hardware Side Channel where adversary has physical access.
- Not Software Covert Channel where adversary has malware in a high security partition and a low security partition
- Software Side Channel Adversary has malware executing in a spy process, and tries to obtain information about an uncompromised target process executing on same platform.

Protection from software side channels

- Platform approach for software side channels
 - AES-NI: CPU instructions for a round of AES
 - PCLMULQDQ: CPU instructions for GF(2) Multiplication
 - Recommend side channel mitigated implementations of other crypto algorithms
 - No secret key or data dependent memory access (at coarser than cache line granularity)
 - No secret key or data dependent code branching
 - Ex: RSA implemented with <6% performance reduction in OpenSSL

Technical Papers - 1

- 1. Breakthrough AES performance with Intel AES New Instructions http://software.intel.com/file/26898
- 2. Processing Multiple buffers in parallel http://download.intel.com/design/intarch/papers/324101.pdf
- 3. Fast Cryptographic computation on IA processors via Function Stitching http://download.intel.com/design/intarch/PAPERS/323686.pdf
- 4. Fast and Constant-time Implementation of Modular Exponentiation http://www.cse.buffalo.edu/srds2009/escs2009_submission_Gopal.pdf
- 5. Fast CRC Computation for iSCSI Polynomial using CRC32 Instruction http://download.intel.com/design/intarch/papers/323405.pdf
- 6. Optimized Galois-Counter-Mode Implementation on IA Processors http://download.intel.com/design/intarch/PAPERS/324194.pdf
- 7. High Performance Storage Encryption on Intel® Architecture Processors

http://download.intel.com/design/intarch/PAPERS/324310.pdf

Technical Papers - 2

- 8. Fast CRC Computation for Generic Polynomials using PCLMULQDQ Instruction http://download.intel.com/design/intarch/papers/323102.pdf
- 9. High Performance DEFLATE Decompression on Intel® Architecture Processors http://edc.intel.com/Link.aspx?id=3972
- 10.Cryptographic Performance on the 2nd Generation Intel Core Processor
 - http://download.intel.com/design/intarch/PAPERS/324952.pdf
- 11.Fast Parallel CRC Computation using the Nehalem CRC32 instruction http://drdobbs.com/cpp/229401411
- 12.Using Intel® AES New Instructions and PCLMULQDQ to Significantly Improve IPSec Performance on Linux http://download.intel.com/design/intarch/papers/324238.pdf
- 13.IDF 2010 Presentation with Voice: Examining the Performance of Intel AES New Instructions on Intel Core i7 Processor http://intelstudios.edgesuite.net/idf/2010/sf/aep/SFTS012/SFTS012.htm
- 14.Improving OpenSSL Performance on IA http://download.intel.com/design/intarch/papers/326232.pdf

