Attacks on Advanced Encryption Standard: Results and Perspectives

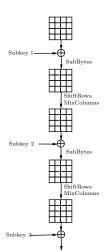
Dmitry Khovratovich

Microsoft Research

29 February 2012

Advanced Encryption Standard

AES


Algorithm

- Designed as Rijndael in 1997 by Daemen and Rijmen.
- 128/192/256-bit key.
- 10/12/14 rounds.

When selected as AES:

- Best practical attacks: 6 rounds.
- Best shortcut attack: 7 rounds.

2 rounds of AES:

Older methods

Probabilistic property:

Right pairs yield information about internal variables and hence the key.

Differential cryptanalysis (1990):

- Attack on DES with 2⁴⁷ data.
- Many other ciphers broken.

Linear cryptanalysis (1993):

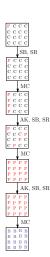
- Attack on DES in 2⁴³ time.
- Verified but impractical.

Both properties activate few non-linear components with reasonably high total probability.

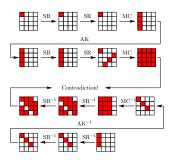
Wide trail design

AES was designed to withstand contemporary cryptanalysis:

- Lower bound on the number of active non-linear components;
- Upper bound on the probability of each active element;
- Differential and linear properties are worthless after 4 rounds.


New attacks

Square (1997)


- Consider 256 plaintexts that vary in a single byte (P).
- This property preserves for two rounds (all bytes are P).
- The sum in every byte is zero after three rounds.

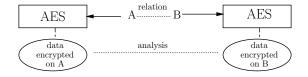
Was the most promising one, but:

- The main property has been extended by one round only (AES-128).
- Initial rounds are treated only a bit better.
- AES-128 reduced by 30% can be attacked.

Impossible differential (1998)

- Two deterministic properties meet each other.
- Transition in the middle is impossible.
- Limited by the length of deterministic properties.

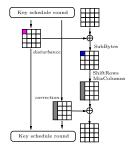
Framework Weak attacks and distinguishers Boomerang attacks


Related-key attacks

As the progress in standard attacks halted, some started to think that AES may serve as a universal primitive...

As the progress in standard attacks halted, some started to think that AES may serve as a universal primitive...

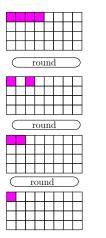
This proved to be wrong.


Related-key attacks

- Consider the difference between encryptions on unknown but related keys.
- Analyze the difference propagation.

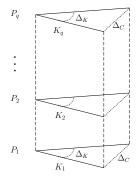
Local collision in AES

Main property exploited: local collision.



- Inject a difference in a key;
- Control the expansion;
- Cancel in the next injection.

Weak attacks


Slow diffusion in the key schedule

- One-byte difference
- Start from the last subkey
- 3 Every inverted round affects only one more byte.

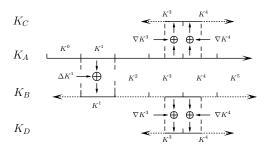
Differential q-multicollision in AES

A set of q pairs (key, plaintext) that satisfy a modified trail.

Δ_{K}	0f070709 0e070709 0f070709 0e070709		
	371f1f21 00000000 371f1f21 00000000		
Δ_{P_1}	a31f1f21 00000000 191f1f21 00000000		
Δ_{P_2}	3a1f1f21 00000000 db1f1f21 00000000		
Δ_{P_3}	131f1f21 00000000 7e1f1f21 00000000		
Δ_{P_4}	fd1f1f21 00000000 061f1f21 00000000		
Δ_{P_5}	ab1f1f21 00000000 db1f1f21 00000000		
Δ_{C}	01000000 01000000 01000000 01000000		

Framework Weak attacks and distinguisher Boomerang attacks

Boomerang attacks

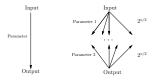

Related-key boomerang attack

First attack on the full AES-192/256:

- Used the same idea as a distinguisher;
- Encryption and decryption on four keys with the chosen relation;
- 3 Complexity 2¹⁰⁰ and higher for the full key recovery.

Key relation

The key relation was quite controversial:

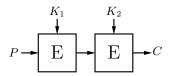

Similar relations are trivial, as every key can be recovered.

leet-in-the-middle iicliques uture of AES

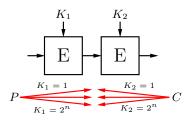
Meet-in-the-middle and bicliques

Basic

Basic meet-in-the-middle:


- Target: find a parameter that converts input I to output O;
- 2 Split the parameter into two parts;
- 3 Compute all possible middle states;
- 4 Check for matching.

Complexity $2^{n/2}$.



Double-DES

Double-DES: 64-bit state, two 56-bit keys.

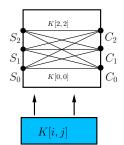
Cryptanalysis

- Obtain two plaintext/ciphertext pairs;
- Compute the middle state for 2⁵⁶ first keys;
- Compute the middle state for 2⁵⁶ second keys;
- Check for match.

Complexity 2⁵⁶.

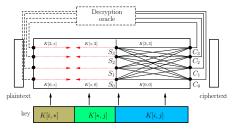
Meet-in-the-middle Bicliques Future of AES

Bicliques


Biclique

Biclique of dimension *d*:

- 2^{2d} keys K[i,j].
- \blacksquare 2^d states S_i ;
- \blacksquare 2^d ciphertexts C_i .


$$S_j \xrightarrow{K[i,j]} C_i$$
.

Example with d = 1.5:

Attack

Suppose that the first part of the cipher can be splitted into tho parts using independent key bits:

- Construct a biclique, fix states and ciphertexts;
- Ask for decrypted ciphertexts;
- Compute the matching state out of plaintexts;
- Compute the matching state out of internal states;
- Matching pair yields a candidate key.

Why it works

Suppose the key K[0,3] is the right key.

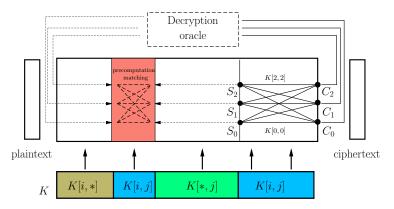
$$S_j \xrightarrow{K[i,j]} C_i.$$

Attack parameters for AES-128

Dimension 1:

- Complexity $2^{n-\varepsilon}$;
- 5-round biclique;
- 3-round matching.

Attack parameters for AES-128


Dimension 1:

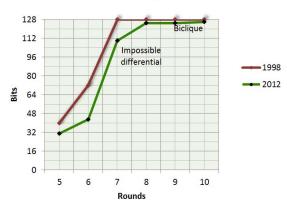
- Complexity $2^{n-\varepsilon}$;
- 5-round biclique;
- 3-round matching.

Dimension 8:

- Complexity 2^{n-8} .
- 3-round biclique;
- 3-round matching.

What is the overhead if we allow an exhaustive search in the matching part:

Only 1/5 of the full AES-192.


Results

	AES-128	AES-192	AES-256
8	2125.4		
10	2 ^{126.2}		
12		2 ^{189.7}	
14			2 ^{254.2}

Future of AES

Progress in cryptanalysis

Security level of AES-128

Any hope for improvements?

Full diffusion

Full diffusion takes 2 rounds in AES.

Natural limits:

- Short biclique length: one diffusion.
- Biclique matching: < 2 full diffusions
- Impossible differential: 2 full diffusions.
- Square/multiset: < 3 full diffusions.

Hence 3 full diffusions plus special treatment of the first and the last rounds if the attack allows.

Attack issues

Long bicliques:

Low advantage, potentially many rounds.

Short bicliques:

■ Limited rounds, brute-force elements.

Square/multiset:

■ Properties on \leq 4 rounds.

Impossible:

■ Properties on \leq 5 rounds.

Questions?