Reducing the Key Size of Rainbow using Non-Commutative Rings

Takanori Yasuda (Institute of systems, Information Technologies and Nanotechnologies (ISIT)), Kouichi Sakurai (ISIT, Kyushu university) and Tsuyoshi Takagi (Kyushu university).

1

MQ problem and key size

MQ equations

$$\int f_1(x_1,...,x_n) = \sum_{1 \le i,j \le n} a_{ij}^{(1)} x_i x_j + \sum_{1 \le i \le n} b_i^{(1)} x_i + c^{(1)} = d_1$$

$$f_2(x_1,...,x_n) = \sum_{1 \le i,j \le n} a_{ij}^{(2)} x_i x_j + \sum_{1 \le i \le n} b_i^{(2)} x_i + c^{(2)} = d_2$$

$$\vdots$$

$$f_m(x_1,...,x_n) = \sum_{1 \le i,j \le n} a_{ij}^{(m)} x_i x_j + \sum_{1 \le i \le n} b_i^{(m)} x_i + c^{(m)} = d_m$$

Public key = set of coefficients of polynomials

the number of coefficients =
$$\frac{m(n+1)(n+2)}{2}$$
 arge key size

Rainbow

- Signature of a multilayer variant of UOV
- Secret key size is also large
 - We reduced by 75%

Rainbow	Secret key size	Public key size	Key size of RSA	Ratio (secret key)	
R(17,13,13)	19.1kB	25.7kB	1369bits	116.6times	
R(21,16,17)	36.5kB	50.8kB	1937bits	150.7times	
R(27,19,19)	60.5kB	84.0kB	2560bits	189.0times	

Reference: A.Petzoldt et al. "Selecting Parameters for the Rainbow Signature Scheme", PQCrypto'10, Springer LNCS vol. 6061 (2010) Reduction by 62%

- Problem: reduction of key size
 - reduction of public key
 - CyclicRainbow (INDOCRIPT' 10, SCC' 10, PKC' 11)
 - reduction of secret key TTS, TRMS

Proposed scheme Rainbow using non-commutative rings NC-Rainbow($R; \tilde{v}_1, \tilde{o}_1, \tilde{o}_2, ..., \tilde{o}_s$)

Non-commutative rings

R: non-commutative ring

- R: finite dimensional algebra over a finite field K (dimension=r)

Fix a *K*-linear isomorphism $\phi: K^r \xrightarrow{\sim} R$

• Example (quaternion algebra Q_q (q: order of K))

$$\begin{cases} set) \quad Q_q = K \cdot 1 \oplus K \cdot i \oplus K \cdot j \oplus K \cdot ij, \quad (r = 4), \\ product) \quad i^2 = j^2 = -1, \quad ij = -ji. \end{cases}$$

There is a natural isomorphism $\phi: K^4 \xrightarrow{\sim} Q_q$

NC-Rainbow(
$$R; \tilde{v}_1, \tilde{o}_1, \tilde{o}_2, ..., \tilde{o}_s$$
) (1/2)

 \tilde{n} : positive number

$$0 < \widetilde{v}_{1} < \widetilde{v}_{2} < \dots < \widetilde{v}_{s} < \widetilde{v}_{s+1} = \widetilde{n}$$

For $i = 1, \dots, s$
• $\widetilde{S}_{i} = \{1, \dots, \widetilde{v}_{i}\}, \ \widetilde{O}_{i} = \{\widetilde{v}_{i} + 1, \dots, \widetilde{v}_{i+1}\},$
• $\widetilde{o}_{i} = \widetilde{v}_{i+1} - \widetilde{v}_{i}.$
Central map $\widetilde{G} = (\widetilde{g}_{\widetilde{v}_{1}+1}, \dots, \widetilde{g}_{n}) : R^{\widetilde{n}} \to R^{\widetilde{m}}, \quad (\widetilde{m} = \widetilde{n} - \widetilde{v}_{1})$
 $\widetilde{g}_{k}(x_{1}, \dots, x_{n}) = \sum_{i \in \widetilde{O}_{h}, j \in \widetilde{S}_{h}} (x_{i}\alpha_{ij}^{(k)}x_{j} + x_{j}\alpha_{ij}^{(k)}x_{i}) + \sum_{i, j \in \widetilde{S}_{h}} x_{i}\beta_{ij}^{(k)}x_{j} + \sum_{i \in \widetilde{S}_{h+1}} (\gamma_{i}^{(k,1)}x_{i} + x_{i}\gamma_{i}^{(k,2)}) + \eta^{(k)} \quad (k = \widetilde{v}_{1} + 1, \dots, \widetilde{n}, \ \alpha_{ij}^{(k)}, \dots \in R).$

NC-Rainbow($R; \tilde{v}_1, \tilde{o}_1, \tilde{o}_2, ..., \tilde{o}_s$) (2/2)

- Key Generation
 - Secret key $(n = \tilde{n}r, m = \tilde{m}r)$

• \tilde{G} , two affine transformations $A_1: K^m \to K^m, A_2: K^n \to K^n.$

Public key

$$\widetilde{F} = A_1 \circ \phi^{-\widetilde{m}} \circ \widetilde{G} \circ \phi^{\widetilde{n}} \circ A_2 : K^n \to K^m.$$

Signature Generation

For message $M \in K^m$, calculate

(1) $a = \phi^{\tilde{m}}(A_1^{-1}(M)), (2) \ b = \tilde{G}^{-1}(a), (3) \ c = \phi^{-\tilde{n}}(A_2^{-1}(b))$

Rainbow($K; \tilde{v}_1, \tilde{o}_1, \tilde{o}_2, ..., \tilde{o}_s$)

in this order. *c* is a signature.

Verification

- If $\widetilde{F}(c) = M$, the signature is accepted. \subset Original Rainbow

If R=K, then this becomes

Theorem
There exists a correspondence
NC - Rainbow(
$$R; \tilde{v}_1, \tilde{o}_1, \tilde{o}_2, ..., \tilde{o}_s$$
)
 \rightarrow Rainbow($K; r\tilde{v}_1, r\tilde{o}_1, r\tilde{o}_2, ..., r\tilde{o}_s$)
which holds public key.

 Secret key size of NC-Rainbow
 m(m+1) + n(n+1) + \sum_{h=1}^{s} r\tilde{o}_{h} (2\tilde{v}_{h}\tilde{o}_{h} + \tilde{v}_{h}^{2} + 2\tilde{v}_{h+1} + 1) field elements

 Secret key size of corresponding Rainbow

$$m(m+1) + n(n+1) + \sum_{h=1}^{s} r \widetilde{o}_h \left(r^2 \widetilde{v}_h \widetilde{o}_h + \frac{r \widetilde{v}_h (r \widetilde{v}_h + 1)}{2} + r \widetilde{v}_{h+1} + 1 \right)$$
field elements

Comparison of Secret key size

$$K = GF(256),$$

 $R = Q_{256} (r = 4)$

Comparison of NC - Rainbow($Q_{256}; \tilde{v}_1, \tilde{o}_1, \tilde{o}_2$) and Rainbow($GF(256); 4\tilde{v}_1, 4\tilde{o}_1, 4\tilde{o}_2$)

$(\widetilde{v}_1,\widetilde{o}_1,\widetilde{o}_2)$	NC-size	Corr. Rainbow	R-size	ratio
(4,3,3)	4.2kB	(16,12,12)	15.9kB	26.7%
(5,4,4)	8.0kB	(20,16,16)	33.6kB	23.9%
(7,5,5)	15.1kB	(28,20,20)	70.7kB	21.5%
(9,6,6)	25.5kB	(36,24,24)	128.2kB	19.9%

- NC-size : Secret key size of NC-Rainbow
- R-size : Secret key size of corresponding Rainbow
- ratio = NC-size/R-size

Reason of reduction of key size

Property of "regular action"

- R is expressed by a subring of matrix algebra of size r.

Attacks against Rainbow (1/2)

Need to analyze attacks against Rainbow to know whether or not they work efficiently against NC-Rainbow.

- Known attacks against Rainbow
 - Direct attacks
 - Using XL and Grobner basis algorithm etc.
 - UOV attack
 - determine a simultaneous isotropic subspace (which coincides with Oil space in the last layer with high probability)
 - compute invariant spaces of certain matrices
 - UOV-Reconciliation(UOV-R) attack
 - determine a simultaneous isotropic subspace (which coincides with Oil space in the last layer with high probability)
 - Solve a system of equations w.r.t. coefficients of right affine transformation

Attacks against Rainbow (2/2)

Known attacks against Rainbow (continued)

- MinRank attack
 - determine a matrix with minimal rank among linear combinations of quadratic part of components of public key
- HighRank attack
 - determine a matrix with the second highest rank among linear combinations of quadratic part of components of public key
- Rainbow-Band-Separation(RBS) attack
 - transform public key to a form of central map of Rainbow
 - Solve a system of equations w.r.t. coefficients of both affine transformations

Security for NC-Rainbow

/-bit security (
$$K$$
=GF(2^{*a*}))

1. UOV attack

$$n - 2r\widetilde{o}_s \ge l/a + 1$$

2. MinRank attack

$$r(\widetilde{o}_1 + \widetilde{v}_1) \ge l / a$$

3. HighRank attack

$$r\widetilde{o}_{s} \geq l/a$$

4. UOV-R attack

 $\widetilde{v}_1 \geq \widetilde{o}_1 \Longrightarrow \;\; \text{same security level against direct attacks}$

5. Direct attacks, RBS attack

A.Petzoldt et al. "Selecting Parameters for the Rainbow Signature Scheme", PQCrypto'10, Springer LNCS vol. 6061 (2010)

Table of security and secret key size

NC - Rainbow($Q_{256}; \tilde{v}_1, \tilde{o}_1, \tilde{o}_2$) and Rainbow($GF(256); 4\tilde{v}_1, 4\tilde{o}_1, 4\tilde{o}_2$)

NC-Rainbow	(5,4,4)	(7, 5, 5)	(9,6,6)
Security level	83bits	96bits	107bits
Secret key size	8.0kB	15.1kB	25.5kB
Corr. Rainbow	(20,16,16)	(28,20,20)	(36,24,24)
Secret key size	33.6kB	70.7kB	128.2kB
Ratio	23.9%	21.5%	19.9%

ratio=Secret key size of NCRainbow/Secret key size of corr. Rainbow

Conclusion

Conclusion

- We proposed a scheme using non-commutative rings, which is regarded as another construction of Rainbow.
- This scheme can reduce the secret key size in comparison with original Rainbow.
- In paticular, the secret key size of the proposed NC-Rainbow is reduced by about 75% in the security level of 80 bits.

Future works

- Finding a non-commutative ring with efficient arithmetic operation.
 - \Rightarrow Speed up the signature generation

Dual Exponentiation Schemes

Colin D. Walter

Information Security Group

Royal Holloway University of London

Colin.Walter@rhul.ac.uk

29 Feb 2012

The Problem

- Motivation: New algorithms are always useful as there are always so many different optimisations and conflicting pressures on resource-constrained platforms.
- Aim: Better exponentiation on space-limited chip. (Fast memory is expensive.)
- Setting: Mixed base representation for the exponent.
- *Solution*: Define a *dual* for the associated addition chain.
- Benefits: Derive new algorithms from existing ones; Better understanding of exponentiation.

Outline

- 1 Background
- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

Background

1 Background

- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

r-ary Exponentiation — L2R (Brauer, 1939)

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r+d_{n-2})r+\ldots+d_1)r+d_0 \in \mathbb{N}$ where $0 \le d_i < r$.
Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow g^d$$
 for all $d, 0 < d < r$.
 $P \leftarrow 1_G$
for $i \leftarrow n-1$ downto 0 do {
if $i \neq n-1$ then $P \leftarrow P^r$
if $d_i \neq 0$ then $P \leftarrow P \times T[d_i]$ }
return P

r-ary Exponentiation — R2L (Yao, 1976)

Inputs:
$$g \in G$$
,
 $D = d_{n-1}r^{n-1} + d_{n-2}r^{n-2} + \ldots + d_1r^1 + d_0$ where $0 \le d_i < r$.
Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow 1_G$$
 for all $d, 0 < d < r$.
 $P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do {
if $d_i \neq 0$ then $T[d_i] \leftarrow T[d_i] \times P$
if $i \neq n-1$ then $P \leftarrow P^r$ }
return $\prod_{d:0 < d < r} T[d]^d$

Royal Holloway University of London

Sliding Window — L2R

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+\ldots+d_1)r_0+d_0 \in \mathbb{N}$, where
 $d_i \in \{0, \pm 1, \pm 3, \ldots, \pm \frac{1}{2}(r-1)\}$, $r_i \in \{2, 2^w\}$ and $d_i = 0$ if $r_i = 2$.
Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow g^d$$
 for all $d \neq 0$.
 $P \leftarrow 1_G$
for $i \leftarrow n-1$ downto 0 do {
if $i \neq n-1$ then $P \leftarrow P^{r_i}$
if $d_i \neq 0$ then $P \leftarrow P \times T[d_i]$ }
return P

Royal Holloway University of London

Sliding Window — R2L

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+\ldots+d_1)r_0+d_0 \in \mathbb{N}$, where
 $d_i \in \{0, \pm 1, \pm 3, \ldots, \pm \frac{1}{2}(r-1)\}$, $r_i \in \{2, 2^w\}$ and $d_i = 0$ if $r_i = 2$.
Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow 1_G$$
 for all $d \neq 0$.
 $P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do {
if $d_i \neq 0$ then $T[d_i] \leftarrow T[d_i] \times P$
if $i \neq n-1$ then $P \leftarrow P^{r_i}$ }
return $\prod_{d\neq 0} T[d]^d$

Royal Holloway University of London

Mixed Base Exponentiation — L2R

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+\ldots+d_1)r_0+d_0 \in \mathbb{N},$
where $(r_i, d_i) \in \mathcal{R} \times \mathcal{D}.$

Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow g^d$$
 for all $d \in \mathcal{D} \setminus \{0\}$.
 $P \leftarrow 1_G$
for $i \leftarrow n-1$ downto 0 do {
if $i \neq n-1$ then $P \leftarrow P^{r_i}$
if $d_i \neq 0$ then $P \leftarrow P \times T[d_i]$ }
return P

Royal Holloway University of London

Mixed Base Exponentiation — R2L

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+\ldots+d_1)r_0+d_0 \in \mathbb{N},$
where $(r_i, d_i) \in \mathcal{R} \times \mathcal{D}.$

Output: $g^D \in G$

Initialise table:
$$T[d] \leftarrow 1_G$$
 for all $d \in \mathcal{D} \setminus \{0\}$.
 $P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do {
if $d_i \neq 0$ then $T[d_i] \leftarrow T[d_i] \times P$
if $i \neq n-1$ then $P \leftarrow P^{r_i}$ }
return $\prod_{d \in \mathcal{D} \setminus \{0\}} T[d]^d$

A Compact Right-to-Left Algorithm (Arith13, 1997)

Inputs:
$$g \in G$$
,
 $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+\ldots+d_1)r_0+d_0 \in \mathbb{N},$
where $(r_i, d_i) \in \mathcal{R} \times \mathcal{D}.$

Output: $g^D \in G$

$$T \leftarrow 1_{G}$$

$$P \leftarrow g$$
for $i \leftarrow 0$ to $n-1$ do {
 if $d_{i} \neq 0$ then $T \leftarrow T \times P^{d_{i}}$
 if $i \neq n-1$ then $P \leftarrow P^{r_{i}}$ }
return T

The loop body involves computing P^{d_i} en route to P^{r_i} .

The Transposition Method

1 Background

- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

The Computational Di-Graph

An addition chain for *D* yields a computational, acyclic *di-graph*:

Here is that for 1+1=2; 1+2=3; 2+3=5.

RSACONFERENCE2012

For convenience, nodes are numbered so n_d represents g^d .

- Addition i+j = k gives directed edges $n_i n_k$ and $n_j n_k$.
- It is *acyclic*, with a single root n_1 and a single leaf n_5 .
- All nodes except root n_1 have input degree 2 as all op^s are binary.

•
$$\#Ops = \#Nodes - 1 = \frac{1}{2} \#Edges.$$

By induction, D = # paths from n_1 to n_D .

Di-Graph for the Transpose Method

- Reverse the edges for the "transposition" method. Node inputs are again multiplied together.
- Path count is D, as before. So it again computes g^D.
- Nodes may need merging or expanding to restore in-degree 2. The #binary operations is not changed: ¹/₂#edges.
- This reverses the addition chain in some sense.
- It doesn't preserve space requirements and without care, sq^g & multⁿ counts may change.

Space Duality

- 1 Background
- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

Space-Aware Addition Chains

Definition. For a given set of registers, take five classes of "atomic" op^s :

- Copying one register to another;
- Copying one register to another & initialising source register to 1_G ;
- In-place squaring of the contents of one register;
- Multiplying two different registers into one of the input registers;
- Multiplying two different registers into one of the input registers, & initialising the other input to 1_G .

A **space-aware addition chain** is a sequence of such operations in which the registers are named.

Every addition chain can be written as a space-aware addition chain.

Matrix Representation — Space

For a device with two locations, matrix examples of each class are:

$$\left[\begin{array}{cc}1&0\\1&0\end{array}\right],\quad \left[\begin{array}{cc}0&0\\1&0\end{array}\right],\quad \left[\begin{array}{cc}2&0\\0&1\end{array}\right],\quad \left[\begin{array}{cc}1&1\\0&1\end{array}\right],\quad \text{and}\quad \left[\begin{array}{cc}1&1\\0&0\end{array}\right].$$

They act on a column vector containing the values in each register.

By omitting more general op^{ns}, this set is *closed under transposition*.

- Copy (without initialise) becomes multiplication with initialise, and *vice versa*. (The *red* matrices.)
- Other operations stay in their class under transposition.

Definition. The *dual* of a space-aware chain is its transpose. (The transposed operations are applied in reverse order.)

The dual uses the same space but may not have the same mult^n count.

Matrix Representation — Space

For a device with two locations, matrix examples of each class are:

$$\left[\begin{array}{cc}1&0\\1&0\end{array}\right],\quad \left[\begin{array}{cc}0&0\\1&0\end{array}\right],\quad \left[\begin{array}{cc}2&0\\0&1\end{array}\right],\quad \left[\begin{array}{cc}1&1\\0&1\end{array}\right],\quad \text{and}\quad \left[\begin{array}{cc}1&1\\0&0\end{array}\right].$$

They act on a column vector containing the values in each register.

By omitting more general op^{ns}, this set is *closed under transposition*.

- Copy (without initialise) becomes multiplication with initialise, and vice versa. (The red matrices.)
- Other operations stay in their class under transposition.

Definition. The *dual* of a space-aware chain is its transpose. (The transposed operations are applied in reverse order.)

The dual uses the same space but may not have the same mult^n count.

Matrix Representation — Space

For a device with two locations, matrix examples of each class are:

$$\left[\begin{array}{cc}1&0\\1&0\end{array}\right], \quad \left[\begin{array}{cc}0&0\\1&0\end{array}\right], \quad \left[\begin{array}{cc}2&0\\0&1\end{array}\right], \quad \left[\begin{array}{cc}1&1\\0&1\end{array}\right], \text{ and } \left[\begin{array}{cc}1&1\\0&0\end{array}\right].$$

They act on a column vector containing the values in each register.

By omitting more general op^{ns}, this set is *closed under transposition*.

- Copy (without initialise) becomes multiplication with initialise, and vice versa. (The red matrices.)
- Other operations stay in their class under transposition.

Definition. The *dual* of a space-aware chain is its transpose. (The transposed operations are applied in reverse order.)

The dual uses the same space but may not have the same multⁿ count.

The Dual Chain — An Example

 $R3 \leftarrow R2$; $R3 \leftarrow R2+R3$; $R1 \leftarrow_I R2$; $R2 \leftarrow_I R3$; $R2 \leftarrow_I R1+R2$ In matrices acting on a col^{mn} vector:

 $\left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right] \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{array}\right] = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{array}\right]$

The dual (the transpose) is:

 $\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right] \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right] = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{array}\right]$

i.e. $R1 \leftarrow R2$; $R3 \leftarrow_I R2$; $R2 \leftarrow_I R1$; $R2 \leftarrow R2+R3$; $R2 \leftarrow_I R2+R3$

- Both have two multiplications and no squarings.
- Both compute g^3 from $g \in G$ with R_2 for I/O.

Extra Requirements

1 Background

- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

The Main Problems

- #Mults may not be preserved in the dual as copying becomes multⁿ with initialisation.
- 2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:

- Select the initialising opⁿ when possible.
- Eliminate 1_G as an operand.
- Remove operations whose output is not used.
- Fix a subset of registers for I/O. (An I/O register *must* read input *and* write non-trivial output.)

Definition. A space-aware chain is *normalised* if the above hold.

20 / 30

The Main Problems

- #Mults may not be preserved in the dual as copying becomes multⁿ with initialisation.
- 2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:

- Select the initialising opⁿ when possible.
- Eliminate 1_G as an operand.
- Remove operations whose output is not used.
- Fix a subset of registers for I/O.
 (An I/O register *must* read input *and* write non-trivial output.)

Definition. A space-aware chain is *normalised* if the above hold.

20 / 30

The Main Problems

- #Mults may not be preserved in the dual as copying becomes multⁿ with initialisation.
- Intersection 2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:

- Select the initialising opⁿ when possible.
- Eliminate 1_G as an operand.
- Remove operations whose output is not used.
- Fix a subset of registers for I/O. (An I/O register *must* read input *and* write non-trivial output.)

Definition. A space-aware chain is normalised if the above hold.

Instances of 1_G or \perp arise from:

a) Initial value of a non-input register.

b) Initialised by copy or multⁿ opⁿ.

Instances of 1_G or \perp finish their lives as:

c) Final value in a non-output register.

d) Overwritten by a copy op^n .

Since #a = #c, we conclude #b = #d. Subtracting the $#\{copies with init^n\}$ from #b and #d, we have $#Mult^{ns}$ with initⁿ = #Copies without initⁿ

These opⁿ types are swapped in the dual & others stay as they are. So:

 Theorem. For a normalised space-aware chain, #Mult^{ns} & #Sq^{res} are the same for the dual.

Instances of 1_G or \perp arise from:

a) Initial value of a non-input register.

b) Initialised by copy or multⁿ opⁿ.

Instances of 1_G or \perp finish their lives as:

c) Final value in a non-output register.

d) Overwritten by a copy op^n .

Since #a = #c, we conclude #b = #d. Subtracting the $#\{copies with init^n\}$ from #b and #d, we have $#Mult^{ns}$ with initⁿ = #Copies without initⁿ

These opⁿ types are swapped in the dual & others stay as they are. So:

 Theorem. For a normalised space-aware chain, #Mult^{ns} & #Sq^{res} are the same for the dual.

Instances of 1_G or \perp arise from:

a) Initial value of a non-input register.

b) Initialised by copy or multⁿ opⁿ.

Instances of 1_G or \perp finish their lives as:

c) Final value in a non-output register.

d) Overwritten by a copy opⁿ.

Since #a = #c, we conclude #b = #d. Subtracting the $#{copies with init^n}$ from #b and #d, we have

 $#Mult^{ns}$ with initⁿ = #Copies without initⁿ

These opⁿ types are swapped in the dual & others stay as they are. So:

 Theorem. For a normalised space-aware chain, #Mult^{ns} & #Sq^{res} are the same for the dual.

Instances of 1_G or \perp arise from:

a) Initial value of a non-input register.

b) Initialised by copy or multⁿ opⁿ.

Instances of $\mathbf{1}_{G}$ or \bot finish their lives as:

c) Final value in a non-output register.

d) Overwritten by a copy opⁿ.

Since #a = #c, we conclude #b = #d. Subtracting the $#{copies with init^n}$ from #b and #d, we have

 $#Mult^{ns}$ with initⁿ = #Copies without initⁿ

These opⁿ types are swapped in the dual & others stay as they are. So:

Theorem. For a normalised space-aware chain, #Mult^{ns} & #Sq^{res} are the same for the dual.

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^* is described by the transpose M^{T} .

Theorem a) f* computes the same values as f iff its matrix is symmetric.b) In particular, it uses the same registers for output as input.

- In the normalised case, unused registers give columns of zeros.
- Used, non-output registers are over-written with 1_G : more zeros.
- Used, non-input registers are initialised to 1_G : more zeros.
- So only the sub-matrix M_{IO} on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a *single* exponentiation and its dual compute the same values.

(Duals become unique only when written in atomic operations.)

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^* is described by the transpose M^{T} .

Theorem a) f* computes the same values as f iff its matrix is symmetric.b) In particular, it uses the same registers for output as input.

- In the normalised case, unused registers give columns of zeros.
- Used, non-output registers are over-written with 1_G : more zeros.
- Used, non-input registers are initialised to 1_G : more zeros.
- So only the sub-matrix M_{IO} on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a *single* exponentiation and its dual compute the same values.

(Duals become unique only when written in atomic operations.)

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^* is described by the transpose M^{T} .

Theorem a) f* computes the same values as f iff its matrix is symmetric.b) In particular, it uses the same registers for output as input.

- In the normalised case, unused registers give columns of zeros.
- Used, non-output registers are over-written with 1_G : more zeros.
- Used, non-input registers are initialised to 1_G : more zeros.
- So only the sub-matrix M_{IO} on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a *single* exponentiation and its dual compute the same values.

(Duals become unique only when written in atomic operations.)

New Algorithms

- 1 Background
- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

High Level Algorithms

Question: When is an algorithm *dualisable* if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op^{ns} yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_G .

The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)

These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

High Level Algorithms

Question: When is an algorithm *dualisable* if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op^{ns} yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_G .

The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)

These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

High Level Algorithms

Question: When is an algorithm *dualisable* if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op^{ns} yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_G .

The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)

These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

An "Old" Algorithm (Arith13, 1997)

Inputs: $g \in G$, $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+...+d_1)r_0+d_0 \in \mathbb{N}$ **Output:** $g^D \in G$

$$T \leftarrow 1_G$$

$$P \leftarrow g$$

for $i \leftarrow 0$ to $n-1$ do {
if $d_i \neq 0$ then $T \leftarrow T \times P^{d_i}$
if $i \neq n-1$ then $P \leftarrow P^{r_i}$ }
return T

The loop body involves computing P^{d_i} en route to P^{r_i} .

One Iteration

Base/digit pairs (r, d) are chosen for compact, fast performance. Specifically at most one register in addition to P and T.

e.g. $r = 2^{i} \pm 1$, $d = 2^{j}$ will involve *i* squarings & 2 mult^s.

It avoids a table entry for each d.

There is now a dual algorithm using the same space - only three registers.

The step
$$T \leftarrow TP^d$$
, $P \leftarrow P^r$ is achieved by $\begin{bmatrix} r & 0 \\ d & 1 \end{bmatrix} = \begin{bmatrix} r & d \\ 0 & 1 \end{bmatrix}^T$.

So the transpose performs the dual opⁿ $P \leftarrow P^r T^d$.

The sequence of op^s is easily determined via the dual.

One Iteration

Base/digit pairs (r, d) are chosen for compact, fast performance. Specifically at most one register in addition to P and T.

e.g. $r = 2^{i} \pm 1, d = 2^{j}$ will involve *i* squarings & 2 mult^s.

It avoids a table entry for each d.

There is now a dual algorithm using the same space - only three registers.

The step
$$T \leftarrow TP^d$$
, $P \leftarrow P^r$ is achieved by $\begin{bmatrix} r & 0 \\ d & 1 \end{bmatrix} = \begin{bmatrix} r & d \\ 0 & 1 \end{bmatrix}^T$.

So the transpose performs the dual $op^n P \leftarrow P^r T^d$.

The sequence of op^s is easily determined via the dual.

A New Compact Left-to-Right Algorithm

Inputs: $g \in G$, $D = ((d_{n-1}r_{n-2}+d_{n-2})r_{n-3}+...+d_1)r_0+d_0 \in \mathbb{N}$ **Output:** $g^D \in G$

$$\begin{array}{l} T \leftarrow g \\ P \leftarrow 1_G \\ \text{for } i \leftarrow n-1 \text{ downto } 0 \text{ do} \\ P \leftarrow P^{r_i} \times T^{d_i} \\ \text{return } P \end{array}$$

Loop iterations are computed as described on last slide.

It is the dual of the previous R2L algorithm, as just derived.

The Value of the Algorithm

- "Table-less" exponentiation useful in constrained environments.
- If space for only three registers and division has the same cost as multⁿ, the compact algorithms are faster.
- A left-to-right version allows better use of composite op^s, e.g. double-and-add, triple-and-add, quintuple-and-add.
- Recoding is done on-the-fly for R2L expⁿ; in advance for L2R expⁿ. The recoding typically needs up to 3 times the storage space of D.

Conclusion

- 1 Background
- 2 The Transposition Method
- 3 Space Duality
- 4 Extra Requirements
- 5 New Algorithms
- 6 Conclusion

- A general setting enabling most expⁿ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left expⁿ algorithms.
- A new tableless expⁿ algorithm.
 It enables new speed records to be set in certain environments.
- New understanding of expⁿ is possible,
 e.g. a comparison of R2L initialisation with L2R finalisation steps.

RSACONFERENCE2012

. . . .

- A general setting enabling most expⁿ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left expⁿ algorithms.
- A new tableless expⁿ algorithm.
 It enables new speed records to be set in certain environments.
- New understanding of expⁿ is possible,
 e.g. a comparison of R2L initialisation with L2R finalisation steps.

RSACONFERENCE2012

. . . .

- A general setting enabling most expⁿ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left expⁿ algorithms.
- A new tableless expⁿ algorithm.
 It enables new speed records to be set in certain environments.
- New understanding of expⁿ is possible,
 e.g. a comparison of R2L initialisation with L2R finalisation steps.

Information Security Group

RSACONFERENCE2012

- A general setting enabling most expⁿ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left expⁿ algorithms.
- A new tableless expⁿ algorithm.
 It enables new speed records to be set in certain environments.
- New understanding of expⁿ is possible,
 e.g. a comparison of R2L initialisation with L2R finalisation steps.
 - Information Security Group

RSACONFERENCE 2012

- A general setting enabling most expⁿ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left expⁿ algorithms.
- A new tableless expⁿ algorithm.
 It enables new speed records to be set in certain environments.
- New understanding of expⁿ is possible,
 e.g. a comparison of R2L initialisation with L2R finalisation steps.

RSACONFERENCE2012

. . . .

CT-RSA 2012 — February 29th, 2012

Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves

Nicolas Estibals

CARAMEL project-team, LORIA, Université de Lorraine / CNRS / INRIA, France Nicolas.Estibals@loria.fr

Joint work with:

 Diego F. Aranha Institute of Computing, University of Campinas, Brazil
 Jean-Luc Beuchat Graduate School of Systems and Information Engineering, University of Tsukuba, Japan
 Jérémie Detrey CARAMEL project-team, LORIA, INRIA / Université de Lorraine / CNRS, France

Pairings and cryptology

used as a primitive in many protocols and devices

- Boneh–Lynn–Shacham short signature
- Boneh–Franklin identity-based encryption

• . . .

Pairings and cryptology

used as a primitive in many protocols and devices

- Boneh–Lynn–Shacham short signature
- Boneh–Franklin identity-based encryption

• . . .

- implementations needed for various targets
 - online server \rightarrow high-speed software
 - smart card \rightarrow low-resource hardware

reach 128 bits of security (equivalent to AES)

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T$$

- ▶ where (\mathbb{G}_1 , +), (\mathbb{G}_2 , +) and (\mathbb{G}_T , ×) are cyclic groups of order ℓ
- ▶ The discrete logarithm problem should be hard on these groups

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_7$$

- ▶ where (\mathbb{G}_1 , +), (\mathbb{G}_2 , +) and (\mathbb{G}_T , ×) are cyclic groups of order ℓ
- ▶ The discrete logarithm problem should be hard on these groups
- **Bilinear** map:

$$e(aP, bQ) = e(P, Q)^{ab}$$

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T$$

- ▶ where (\mathbb{G}_1 , +), (\mathbb{G}_2 , +) and (\mathbb{G}_T , ×) are cyclic groups of order ℓ
- ▶ The discrete logarithm problem should be hard on these groups
- **Bilinear** map:

$$e(aP, bQ) = e(P, Q)^{ab}$$

Symmetric pairing (Type-1): $\mathbb{G}_1 = \mathbb{G}_2$, exploited by some protocols

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T$$

▶ where (\mathbb{G}_1 , +), (\mathbb{G}_2 , +) and (\mathbb{G}_T , ×) are cyclic groups of order ℓ

The discrete logarithm problem should be hard on these groups

Bilinear map:

$$e(aP, bQ) = e(P, Q)^{ab}$$

- Symmetric pairing (Type-1): $\mathbb{G}_1 = \mathbb{G}_2$, exploited by some protocols
- Choice of the groups:
 - G_1 , G_2 : related to an algebraic curve
 - **G**_T: related to the field of definition of the curve

Barreto-Naehrig curves

- + Lots of literature
- + Huge optimization efforts
- + Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Barreto-Naehrig curves

- + Lots of literature
- + Huge optimization efforts
- + Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

- + Symmetric pairing Thanks to a distortion map $\psi: \mathbb{G}_1 \to \mathbb{G}_2$
- + Small characteristic arithmetic \Rightarrow No carry propagation
- Not suited to 128-bit security level Larger base field: $\mathbb{F}_{2^{1223}}$, $\mathbb{F}_{3^{509}}$

Barreto-Naehrig curves

- + Lots of literature
- + Huge optimization efforts
- + Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

- + Symmetric pairing Thanks to a distortion map $\psi: \mathbb{G}_1 \to \mathbb{G}_2$
- + Small characteristic arithmetic \Rightarrow No carry propagation
- Not suited to 128-bit security level Larger base field: $\mathbb{F}_{2^{1223}}$, $\mathbb{F}_{3^{509}}$

Barreto-Naehrig curves

- + Lots of literature
- + Huge optimization efforts
- + Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

- + Symmetric pairing Thanks to a distortion map $\psi: \mathbb{G}_1 \to \mathbb{G}_2$
- + Small characteristic arithmetic \Rightarrow No carry propagation
- Not suited to 128-bit security level Larger base field: $\mathbb{F}_{2^{1223}}$, $\mathbb{F}_{3^{509}}$
- Solutions to the large base field needed by supersingular curves
 - (Pairing 2010) Use fields of composite extension degree: benefit from faster field arithmetic but requires careful security analysis
Classical choice of curves

Barreto-Naehrig curves

- + Lots of literature
- + Huge optimization efforts
- + Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

- + Symmetric pairing Thanks to a distortion map $\psi: \mathbb{G}_1 \to \mathbb{G}_2$
- + Small characteristic arithmetic \Rightarrow No carry propagation
- Not suited to 128-bit security level Larger base field: $\mathbb{F}_{2^{1223}}$, $\mathbb{F}_{3^{509}}$
- Solutions to the large base field needed by supersingular curves
 - (Pairing 2010) Use fields of composite extension degree: benefit from faster field arithmetic but requires careful security analysis
 - (This work) Use genus-2 hyperelliptic curves: base field will be $\mathbb{F}_{2^{367}}$

 $E/K: y^2 + h(x) \cdot y = f(x)$ with deg $h \le 1$ and deg f = 3

 $E/K: y^2 + h(x) \cdot y = f(x)$ with deg $h \le 1$ and deg f = 3

 $E/K: y^2 + h(x) \cdot y = f(x)$ with deg $h \le 1$ and deg f = 3

 $E/K: y^2 + h(x) \cdot y = f(x)$ with deg $h \le 1$ and deg f = 3

 $E/K: y^2 + h(x) \cdot y = f(x)$ with deg $h \le 1$ and deg f = 3

- E(K) is a group
- ▶ In practice: *K* is a finite field \mathbb{F}_q
- $E(\mathbb{F}_q)$ is a finite group

 \blacktriangleright C(K) not a group!

• But pairs of points $\{P_1, P_2\}$

 $\{P_1, P_2\} + \{Q_1, Q_2\} = \{R_1, R_2\}$

 $D_P + D_Q = D_R$

 $e: \qquad \mathbb{G}_1 \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T$

Reduced Tate pairing

$$e: E(\mathbb{F}_q)[\ell] \times \mathbb{G}_2 \longrightarrow \mathbb{G}_T$$

$$P \quad ,$$

$$\blacktriangleright \text{ Reduced Tate pairing}$$

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \longrightarrow \mathbb{G}_T$$
$$P \quad , \quad Q$$

Reduced Tate pairing

► k: embedding degree (curve parameter)

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^k}^*$$
$$P \quad , \quad Q \qquad \longmapsto \quad f_{\ell,P}(Q)^{\frac{q^k-1}{\ell}}$$

- Reduced Tate pairing
- ► k: embedding degree (curve parameter)

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^k}^*$$
$$P \quad , \quad Q \qquad \longmapsto \quad f_{\ell,P}(Q)^{\frac{q^k-1}{\ell}}$$

- Reduced Tate pairing
- ▶ *k*: embedding degree (curve parameter)
- ▶ Miller functions: $f_{n,P}$

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^k}^*$$
$$P \quad , \quad Q \qquad \longmapsto \quad f_{\ell,P}(Q)^{\frac{q^k-1}{\ell}}$$

Reduced Tate pairing

▶ k: embedding degree (curve parameter)

- Miller functions: $f_{n,P}$
 - an inductive identity

$$f_{1,P} = 1$$

 $f_{n+n',P} = f_{n,P} \cdot f_{n',P} \cdot g_{[n]P,[n']P}$

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^k}^*$$

$$P \quad , \quad Q \qquad \longmapsto \quad f_{\ell,P}(Q)^{\frac{q^k-1}{\ell}}$$

Reduced Tate pairing

- ► k: embedding degree (curve parameter)
- Miller functions: $f_{n,P}$
 - an inductive identity

$$f_{1,P} = 1$$

 $f_{n+n',P} = f_{n,P} \cdot f_{n',P} \cdot g_{[n]P,[n']P}$

 g_{[n]P,[n']P} derived from the addition of [n]P and [n']P

$$e: E(\mathbb{F}_q)[\ell] \times E(\mathbb{F}_{q^k})[\ell] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^k}^*$$

$$P \quad , \quad Q \qquad \longmapsto \quad f_{\ell,P}(Q)^{\frac{q^k-1}{\ell}}$$

Reduced Tate pairing

- k: embedding degree (curve parameter)
- Miller functions: $f_{n,P}$
 - an inductive identity

$$f_{1,P} = 1$$

 $f_{n+n',P} = f_{n,P} \cdot f_{n',P} \cdot g_{[n]P,[n']P}$

- g_{[n]P,[n']P} derived from the addition of [n]P and [n']P
- compute $f_{\ell,P}$ thanks to an addition chain
- in practice: double-and-add

 $\log_2 \ell$ iterations

$$e: \; \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)[\ell] \; imes \; \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^k})[\ell] \; \longrightarrow \; \mu_\ell \subset \mathbb{F}_{q^k}^*$$

$$egin{array}{rcl} e: & \mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_q)[\ell] & imes & \mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_{q^k})[\ell] & \longrightarrow & \mu_\ell \subset \mathbb{F}_{q^k}^* \ D_1 &, & D_2 & \longmapsto & f_{\ell,D_1}(D_2)^{rac{q^k-1}{\ell}} \end{array}$$

- ▶ Hyperelliptic Miller functions: $f_{n,D}$
 - same inductive identity

$$f_{1,D} = 1$$

 $f_{n+n',D} = f_{n,D} \cdot f_{n',D} \cdot g_{[n]D,[n']D}$

$$\begin{array}{rcl} e: & \mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_q)[\ell] & \times & \mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_{q^k})[\ell] & \longrightarrow & \mu_\ell \subset \mathbb{F}_{q^k}^* \\ & D_1 & , & D_2 & \longmapsto & f_{\ell,D_1}(D_2)^{\frac{q^k-1}{\ell}} \end{array}$$

- ▶ Hyperelliptic Miller functions: $f_{n,D}$
 - same inductive identity

$$f_{1,D} = 1$$

 $f_{n+n',D} = f_{n,D} \cdot f_{n',D} \cdot g_{[n]D,[n']D}$

- g_{[n]D,[n']D} derived from the addition of [n]D and [n']D
- use Cantor's addition algorithm

$$\begin{array}{rcl} e: & \mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_q)[\ell] & \times & \mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_{q^k})[\ell] & \longrightarrow & \mu_\ell \subset \mathbb{F}_{q^k}^* \\ & D_1 & , & D_2 & \longmapsto & f_{\ell,D_1}(D_2)^{\frac{q^k-1}{\ell}} \end{array}$$

- ▶ Hyperelliptic Miller functions: $f_{n,D}$
 - same inductive identity

$$f_{1,D} = 1$$

 $f_{n+n',D} = f_{n,D} \cdot f_{n',D} \cdot g_{[n]D,[n']D}$

- g_{[n]D,[n']D} derived from the addition of [n]D and [n']D
- use Cantor's addition algorithm
- double-and-add algorithm $\log_2 \ell$ iterations
- iterations are more complex

$$C_d/\mathbb{F}_{2^m}: y^2+y=x^5+x^3+d$$
 with $d\in\mathbb{F}_2$

► A distortion map exists: symmetric pairing

•
$$\# \operatorname{Jac}_{C_d}(\mathbb{F}_{2^m}) = 2^{2m} \pm 2^{(3m+1)/2} + 2^m \pm 2^{(m+1)/2} + 1$$

Embedding degree of the curve: k = 12

For 128 bits of security:
$$\mathbb{F}_{2^m} = \mathbb{F}_{2^{367}}$$
 and $d = 0$

$$C_d/\mathbb{F}_{2^m}: y^2+y=x^5+x^3+d$$
 with $d\in\mathbb{F}_2$

► A distortion map exists: symmetric pairing

•
$$\# \operatorname{Jac}_{C_d}(\mathbb{F}_{2^m}) = 2^{2m} \pm 2^{(3m+1)/2} + 2^m \pm 2^{(m+1)/2} + 1$$

Embedding degree of the curve: k = 12

▶ For 128 bits of security: $\mathbb{F}_{2^m} = \mathbb{F}_{2^{367}}$ and d = 0

▶ Key property of the curve:

$$[2]((P) - (\mathcal{O})) = (P) + (P) - 2(\mathcal{O})$$

$$C_d/\mathbb{F}_{2^m}: y^2+y=x^5+x^3+d$$
 with $d\in\mathbb{F}_2$

► A distortion map exists: symmetric pairing

•
$$\# \operatorname{Jac}_{C_d}(\mathbb{F}_{2^m}) = 2^{2m} \pm 2^{(3m+1)/2} + 2^m \pm 2^{(m+1)/2} + 1$$

Embedding degree of the curve: k = 12

▶ For 128 bits of security: $\mathbb{F}_{2^m} = \mathbb{F}_{2^{367}}$ and d = 0

► Key property of the curve:

$$[2] ((P) - (\mathcal{O})) = (P) + (P) - 2(\mathcal{O})$$

[4] ((P) - (\mathcal{O})) = (P_4) + (P'_4) - 2(\mathcal{O})

$$C_d/\mathbb{F}_{2^m}: y^2+y=x^5+x^3+d$$
 with $d\in\mathbb{F}_2$

► A distortion map exists: symmetric pairing

•
$$\# \operatorname{Jac}_{C_d}(\mathbb{F}_{2^m}) = 2^{2m} \pm 2^{(3m+1)/2} + 2^m \pm 2^{(m+1)/2} + 1$$

Embedding degree of the curve: k = 12

▶ For 128 bits of security: $\mathbb{F}_{2^m} = \mathbb{F}_{2^{367}}$ and d = 0

Key property of the curve:

$$[2] ((P) - (\mathcal{O})) = (P) + (P) - 2(\mathcal{O}) [4] ((P) - (\mathcal{O})) = (P_4) + (P'_4) - 2(\mathcal{O}) [8] ((P) - (\mathcal{O})) = (P_8) - (\mathcal{O})$$
Genus-2 binary supersingular curve: our choice

$$C_d/\mathbb{F}_{2^m}: y^2+y=x^5+x^3+d$$
 with $d\in\mathbb{F}_2$

► A distortion map exists: symmetric pairing

•
$$\# \operatorname{Jac}_{C_d}(\mathbb{F}_{2^m}) = 2^{2m} \pm 2^{(3m+1)/2} + 2^m \pm 2^{(m+1)/2} + 1$$

Embedding degree of the curve: k = 12

▶ For 128 bits of security: $\mathbb{F}_{2^m} = \mathbb{F}_{2^{367}}$ and d = 0

Key property of the curve:

$$[2] ((P) - (\mathcal{O})) = (P) + (P) - 2(\mathcal{O})$$

$$[4] ((P) - (\mathcal{O})) = (P_4) + (P'_4) - 2(\mathcal{O})$$

$$[8] ((P) - (\mathcal{O})) = ([8]P) - (\mathcal{O})$$

octupling acts on the curve

Genus-2 binary supersingular curve: our choice

$$C_d/\mathbb{F}_{2^m}: y^2+y=x^5+x^3+d$$
 with $d\in\mathbb{F}_2$

► A distortion map exists: symmetric pairing

•
$$\# \operatorname{Jac}_{C_d}(\mathbb{F}_{2^m}) = 2^{2m} \pm 2^{(3m+1)/2} + 2^m \pm 2^{(m+1)/2} + 1$$

Embedding degree of the curve: k = 12

▶ For 128 bits of security: $\mathbb{F}_{2^m} = \mathbb{F}_{2^{367}}$ and d = 0

► Key property of the curve:

$$[2] ((P) - (\mathcal{O})) = (P) + (P) - 2(\mathcal{O}) [4] ((P) - (\mathcal{O})) = (P_4) + (P'_4) - 2(\mathcal{O}) [8] ((P) - (\mathcal{O})) = ([8]P) - (\mathcal{O})$$

- octupling acts on the curve
- $f_{8,D}$ has a much simpler expression than $f_{2,D}$

Algorithm	Tate		
	double & add		
#iterations	2 <i>m</i>		

▶ Vanilla Tate pairing: $\log_2 \ell \approx \log_2 \# \operatorname{Jac}_C(\mathbb{F}_{2^m}) \approx 2m$ doublings

Algorithm	Tate	Tate	
Algorithm	double & add	octuple & add	
#iterations	2m	$\frac{2m}{3}$	

- ▶ Vanilla Tate pairing: $\log_2 \ell \approx \log_2 \# \operatorname{Jac}_C(\mathbb{F}_{2^m}) \approx 2m$ doublings
- ► Use of octupling: simpler iteration also!

Algorithm	Tate	Tate	Barreto <i>et al.</i>	
Aigontiini	double & add	octuple & add	η_T pairing	
#iterations	2 <i>m</i>	$\frac{2m}{3}$	$\frac{m}{2}$	

- ▶ Vanilla Tate pairing: $\log_2 \ell \approx \log_2 \# \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{2^m}) \approx 2m$ doublings
- ► Use of octupling: simpler iteration also!
- ▶ η_T pairing: Miller function is $f_{\pm 2^{(3m+1)/2}-1,D_1}$

Algorithm	Tate	Tate	Barreto <i>et al.</i>	Optimal Ato pairing
	double & add	octuple & add	η_T pairing	Optimal Ate pairing
#iterations	2m	$\frac{2m}{3}$	<u>m</u> 2	<u>m</u> 6

- ▶ Vanilla Tate pairing: $\log_2 \ell \approx \log_2 \# \operatorname{Jac}_C(\mathbb{F}_{2^m}) \approx 2m$ doublings
- ► Use of octupling: simpler iteration also!
- ▶ η_T pairing: Miller function is $f_{\pm 2^{(3m+1)/2}-1,D_1}$
- Optimal Ate pairing
 - distortion map ψ is much more complex
 - iterations would be roughly twice as expensive
 - optimal Ate pairing not considered here

Algorithm	Tate	Tate	Barreto <i>et al.</i>	This paper
Algorithm	double & add	octuple & add	η_T pairing	Optimal Eta pairing
#iterations	2m	$\frac{2m}{3}$	<u>m</u> 2	<u>m</u> 6

- ▶ Vanilla Tate pairing: $\log_2 \ell \approx \log_2 \# \operatorname{Jac}_C(\mathbb{F}_{2^m}) \approx 2m$ doublings
- ► Use of octupling: simpler iteration also!
- ▶ η_T pairing: Miller function is $f_{\pm 2^{(3m+1)/2}-1,D_1}$
- Optimal Ate pairing
 - distortion map ψ is much more complex
 - iterations would be roughly twice as expensive
 - optimal Ate pairing not considered here
- Optimal Eta pairing

Algorithm	Tate	Tate	Barreto <i>et al.</i>	This paper
Algorithm	double & add	octuple & add	η_T pairing	Optimal Eta pairing
#iterations	2 <i>m</i>	$\frac{2m}{3}$	<u>m</u> 2	<u>m</u> 6

- ▶ Vanilla Tate pairing: $\log_2 \ell \approx \log_2 \# \operatorname{Jac}_C(\mathbb{F}_{2^m}) \approx 2m$ doublings
- ► Use of octupling: simpler iteration also!
- ▶ η_T pairing: Miller function is $f_{\pm 2^{(3m+1)/2}-1,D_1}$
- Optimal Ate pairing
 - distortion map ψ is much more complex
 - iterations would be roughly twice as expensive
 - optimal Ate pairing not considered here
- Optimal Eta pairing
 - cannot use 2^m -th power Verschiebung: does not act on the curve

Algorithm	Tate	Tate	Barreto <i>et al.</i>	This paper
Algorithm	double & add	octuple & add	η_T pairing	Optimal Eta pairing
#iterations	2 <i>m</i>	$\frac{2m}{3}$	<u>m</u> 2	$\frac{m}{3}$

- ▶ Vanilla Tate pairing: $\log_2 \ell \approx \log_2 \# \operatorname{Jac}_C(\mathbb{F}_{2^m}) \approx 2m$ doublings
- ► Use of octupling: simpler iteration also!
- ▶ η_T pairing: Miller function is $f_{\pm 2^{(3m+1)/2}-1,D_1}$
- Optimal Ate pairing
 - distortion map ψ is much more complex
 - iterations would be roughly twice as expensive
 - optimal Ate pairing not considered here
- Optimal Eta pairing
 - cannot use 2^{*m*}-th power Verschiebung: does not act on the curve
 - but can use 2^{3m}-th power Verschiebung
 - 33% improvement compared to Barreto et al.'s work

Considering degenerate divisors

- ▶ Some protocols allow to choose the form of one or two input divisors
- Consider degenerate divisors of the form

 $(P) - (\mathcal{O})$

- only 2 coordinates in F_{2^m} to represent such a divisor (instead of 4 coordinates for a general one)
- since octupling acts on the curve:

$$[8]((P) - (O)) = ([8]P) - (O)$$

• we can work with a point!

Considering degenerate divisors

- Some protocols allow to choose the form of one or two input divisors
- Consider degenerate divisors of the form

 $(P) - (\mathcal{O})$

- only 2 coordinates in F_{2^m} to represent such a divisor (instead of 4 coordinates for a general one)
- since octupling acts on the curve:

$$[8]((P) - (\mathcal{O})) = ([8]P) - (\mathcal{O})$$

• we can work with a point!

- ▶ We may compute the pairing of
 - two general divisors (GG)
 - one degenerate and one general divisor (DG)
 - \star halves the amount of computation
 - \star lot of protocols allow this
 - two degenerate divisors (DD)
 - \star halves again the amount of computation
 - \star some protocols still compatible

Software implementation

► Implementations for Intel Core 2

Software implementation

- Implementations for Intel Core 2 and Nehalem architecture
- Use of the native binary field multiplier on Nehalem

Hardware implementation

- Optimal Eta pairing on general divisors
- ▶ Implemented on a finite field coprocessor $\mathbb{F}_{2^{367}}$
 - addition
 - multiplication
 - Frobenius endomorphism
- ▶ Post place-and-route estimations on a Virtex 6-LX 130T results

Implementation	Curvo	Area	Time	∧ roa×timo
Implementation	Curve	(device usage)	(device usage) (ms)	
Cheung et al.	$E(\mathbb{F}_{p_{254}})$	35 %	0.57	4.03
Ghosh <i>et al.</i>	$E(\mathbb{F}_{2^{1223}})$	76 %	0.19	2.88
Estibals	$E(\mathbb{F}_{3^{5\cdot97}})$	8 %	1.73	2.68
This work	$C_0(\mathbb{F}_{2^{367}})$ (GG)	7 %	3.09	4.30

Conclusion

- ► A novel pairing algorithm shortening Miller's loop
- Competitive timings compared to genus-1 pairings
- Comparable timings against non-symmetric pairings

Conclusion

- ► A novel pairing algorithm shortening Miller's loop
- Competitive timings compared to genus-1 pairings
- Comparable timings against non-symmetric pairings
- Most efficient symmetric pairing implementation
 - for both software and hardware
 - when at least one divisor is degenerate (DG and DD case)
- ▶ First hardware implementation of a genus-2 pairing reaching 128 bits of security

Conclusion

- ► A novel pairing algorithm shortening Miller's loop
- Competitive timings compared to genus-1 pairings
- Comparable timings against non-symmetric pairings
- Most efficient symmetric pairing implementation
 - for both software and hardware
 - when at least one divisor is degenerate (DG and DD case)
- ▶ First hardware implementation of a genus-2 pairing reaching 128 bits of security
- Perspectives
 - Implement optimal Ate pairing on this curve (work in progress)
 - Use theta functions for faster curve arithmetic

Thank you for your attention!

Questions?

N. Estibals — Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves