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MQ problem and key size

MQ equations
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Public key = set of coefficients of polynomials

.. ~ m(n+1)(n+2) _
the number of coefficients = > I:> large key size
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— Signature of a multilayer variant of UOV

— Secret key size is also large

We_reduced by 75%

i S <

Secret key | Public key Key size of
size size RSA (secret key)
R(17,13,13) 19.1kB 25.7kB 1369bits 116.6times
R(21,16,17) 36.0kB 90.8kB 1937bits 150.7times
R(27,19,19) 60.5kB 84.0kB 2560bits 189.0times

Reference: A.Petzoldt et al. “Selecting Paranfeters for the Rainbow Signature Scheme”,

PQCrypto’'10, Springer LNCS vol. 6061/(2010) .
eduction by 62%

® Problem: reduction of key dize

— reduction of public key
CyclicRainbow INDOCRIPT’ 10, SCC’ 10, PKC’ 11)
— reduction of secret key TTS, TRMS



Proposed scheme

Rainbow using non—commutative rings
NC - Rainbow(R;V,,0,,0,,...,0,)



Non—commutative rings

R : non—commutative ring

— R: finite dimensional algebra over a finite field K (dimension=r)

Fix a A —linear isomorphism ¢ K'— >R
Example (quaternion algebra Qq (g: order of K))

{ set) Q, =K-1&K-i®K- joK-ij, (r = 4),
product) i*=j°=-1 ij=—ji.

- w4 ~
There is a natural isomorphism @ K —_)Qq



N : positive number
O<v, <V, <o <V, <V, =

=)

Fori=1,..,s

~

° Si :{1 ~} ~i :{\7| +1""’\7i+1}’

~

e 0 =V,

<I_

Central map é = (§v1+1,---, §n) 'R" > Rrﬁ, (fﬁ = ﬁ—\71)

Gy (X300 %, Z (Xla(k)X +X10‘|5k)x)

|€Oh jeSh

(k) (k.1) (k.2)
+in ij Xj+2(7i X +X%707)
i jeS, €S
+7% (k=¥ +1..A0 o, .€R).
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Key Generation
— Secret key (n = ir,m = mr)
G , two affine transformations A (K™ —» K™, A :K" — K",
— Public key
F=AogmoGog oA :K" > K.
Signature Generation
For message M € K" , calculate

(1) a=¢"(A"(M)), (2) b=G™(a), 8)c=¢" (A" (b))

in this order. ¢ is a signature.
Verification

If F(c) =M, the signature is accepted. @ginal Raian

P~ ~

If R=K, then this becomes RainbOW(K;Vy 611 02 yeney Os)
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orrespondence between N

Rainbow

/Theorem )

There exists a correspondence

NC - Rainbow(R;V;,0,,0,,...,0,)

— Rainbow(K; rv;, ro,, ro,,...,ro,)
which holds public key.

J

Secret key size of NC—Rainbow

m(m+1)+n(n+1)+ > 1o, (2V,0, +V; +2V,,, +1) field elements
h=1

Secret key size of corresponding Rainbow

. .
mm+1)+n(n+1)+ >’ rGh(rZVhGh - rvh(r\2/h +1) +1V, +lj field elements
h=1




Comparison of Secret key size

K = GF(256),
R = Q356 (r=4).
Comparison of NC - Rainbow(Q.;V;,0,,0,) and Rainbow (GF (256);4v,,40,,40,)

(V1,01,05) | NC-size | Corr. Rainbow m

(4,3,3) 4.2kB (16,12,12) 159kB  26.7%
(5,4,4) 8.0kB (20,16,16) 33.6kB  23.9%
(7,5,5) 15.1kB (28,20,20) 70.7kB  21.5%
(9,6,6) 25.5kB (36,24,24) 1282kB  19.9%

NC-size : Secret key size of NC—Rainbow
R-size : Secret key size of corresponding Rainbow

ratio = NC-size/R-size



Reason of reduction of key size

Property of “regular action”

— Ris expressed by a subring of matrix algebra of size r.

1 O OO [
1 O OO O
Q>0 O O 0O)—> . e M (4,K)
1 O O [
4 entries 16 entries
i
I\/I(d,Qq)—>M(4d,K)
4d? entries 16d? entries
'

NC - Rainbow(Q,;V;,0;,0,,...,0;)
(Map in Theorem) — Rainbow(K;4v,,40,,40,,...,40,)
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Attacks against Rainbow (1/2)

Need to analyze attacks against Rainbow to know whether
or not they work efficiently against NC—Rainbow.

Known attacks against Rainbow

— Direct attacks
Using XL and Grobner basis algorithm etc.

— UOV attack

determine a simultaneous isotropic subspace (which coincides with Oil
space in the last layer with high probability)

compute invariant spaces of certain matrices
— UOV-Reconciliation(UOV-R) attack

determine a simultaneous isotropic subspace (which coincides with Oil
space in the last layer with high probability)

Solve a system of equations w.r.t. coefficients of right affine

transformation
11



Attacks against Rainbow (2/2)

Known attacks against Rainbow (continued)
— MinRank attack

determine a matrix with minimal rank among linear combinations of
quadratic part of components of public key

— HighRank attack

determine a matrix with the second highest rank among linear
combinations of quadratic part of components of public key

— Rainbow—Band—Separation(RBS) attack
transform public key to a form of central map of Rainbow

Solve a system of equations w.r.t. coefficients of both affine
transformations

12



Security for NC—Rainbow

/ —bit security (K=GF(2%))
1. UOV attack

n-2ro, >1/a+1

2. MinRank attack
r(o,+v,)>l/a

3. HighRank attack
ro, >1/a

4. UOV-R attack

\71 > 61 —> same security level against direct attacks

5. Direct attacks, RBS attack

A.Petzoldt et al. “Selecting Parameters for the Rainbow Signature Scheme”,
PQCrypto’10, Springer LNCS vol. 6061 (2010)
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Table of security and secret key size

NC - Rainbow (Q,; V;,0,,0,) and Rainbow (GF (256);4v,,40,,40,)

NC-Rainbow (5,4,4) (7,5,5) (9,6,6)

Security level 83bits 96bits 107bits
Secret key size 8.0kB 15.1kB 25.5kB
Corr. Rainbow (20,16,16) (28,20,20) (36,24,24)
Secret key size 33.6kB 70.7kB 128.2kB
Ratio 23.9% 21.5% 19.9%

ratio=Secret key size of NCRainbow/Secret key size of corr. Rainbow



Conclusion

Conclusion

— We proposed a scheme using hon—commutative rings, which is
regarded as another construction of Rainbow.

— This scheme can reduce the secret key size in comparison with
original Rainbow.

— In paticular, the secret key size of the proposed NC—Rainbow is
reduced by about 75% in the security level of 80 bits.

Future works

— Finding a non—commutative ring with efficient arithmetic
operation.

= Speed up the signature generation



Dual Exponentiation Schemes
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o
The Problem

m Motivation: New algorithms are always useful as
there are always so many different optimisations and
conflicting pressures on resource-constrained platforms.

u Aim: Better exponentiation on space-limited chip.
(Fast memory is expensive.)

m Setting: Mixed base representation for the exponent.
m Solution: Define a dual for the associated addition chain.

m Benefits: Derive new algorithms from existing ones;
Better understanding of exponentiation.

Mﬂ“!ﬂ!lﬂ -
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r-ary Exponentiation — L2R (Brauer, 1939)

Inputs: g€ G,
D = ((dp—1r+dp_2)r+...+d1)r+dy € N where 0<d;<r.

Output: gPeG

Initialise table: T[d] « g9 for all d, 0<d<r.
P+ 1g¢
for i — n—1 downto 0 do {
if i # n—1 then P — P’
if d: # 0 then P — PxT[d] }
return P

}qjm”m -

RSACONFERENCE2012 —




r-ary Exponentiation — R2L (Yao, 1976)

Inputs: g€ G,
D =d,_1r" ' +d,_or" 2+ ... +dir'+dy where 0<d;<r.
Output: gPeG

Initialise table: T[d] < 1¢ for all d, 0<d<r.
P—g
for i — 0to n—1do {

if d; # 0 then T[d}] — T[d;]xP

if i n—1then P — P}
Jw&' l’ l‘ !g lll Information Security Group

return Hd:0<d<r T[d]d
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S
Sliding Window — L2R

Inputs: g€ G,
D = ((dn,lrn,2+dn,2)rn,3+ Ce +d1)fo+do €N, where
d:e{0,£1,£3,...,£3(r-1)}, ;e{2,2*} and d;=0 if r;=2.
Output: gPeG

Initialise table: T[d] < g9 for all d # 0.
P—1g¢
for i — n—1 downto 0 do {

if i # n—1then P — P"i

if d; 750 then P «— PXT[d,] }

return P
Information Security Grou
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S
Sliding Window — R2L

Inputs: g€ G,
D= ((d,,,lrn,z—l—dn,g)r,,,g,—l— ce +d1)r0+d0 €N, where
d:e{0,£1,£3,...,£3(r-1)}, ;,e{2,2*} and d;=0 if r;=2.
Output: gPeG

Initialise table: T[d] < 1¢ for all d # 0.
P—g
for i — 0to n—1do {

if di # 0 then T[d;] — T[d;]xP

if i #n—1then P — P" }

return [, T[d]’
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Mixed Base Exponentiation — L2R

Inputs: e G,
= ((dp—1r—2+dn—2)rn—3+...+d1)ro+do € N,
where (r;, d;) € RxD.

Output: gPeG

Initialise table: T[d] «— g9 for all d € D\ {0}.
P« 1¢
for i — n—1 downto 0 do {
if i #n—1then P — P"i
if d; # 0 then P — PxT[d] }
return P

}qjm”m -
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Mixed Base Exponentiation — R2L

Inputs: e G,
= ((dp—1r—2+dn—2)rn—3+...+d1)ro+do € N,
where (r;, d;) € RxD.

Output: gPeG

Initialise table: T[d] < 1¢ for all d € D\ {0}.
P—g
for i — 0to n—1do {
if d; # 0 then T[d}] — T[d;]xP
if i # n—1then P — P }
return [ cp (o) Td]?

}qjm”m -

RSACONFERENCE2012 —




A Compact Right-to-Left Algorithm (Arith13, 1997)

Inputs: G G,
- (( n—1rn— 2+dn Z)rn 3+ —|—d1)f0+do EN
where (r;, d;) € RxD.

Output: gPecG

T —1¢
P—g
for i — 0 to n—1 do {
if d; #0then T « TxP%
if i n—1then P — P" }
return T

The loop body involves computing P% en route to P"i.

RSACONFERENCE2012 .._-.




The Transposition Method

The Transposition Method
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The Computational Di-Graph

An addition chain for D yields a computational, acyclic di-graph:
n3 ns
Here is that for
1+1=2; 14+2=3; 2+3=5.
ny na

For convenience, nodes are numbered so ng represents g<.

m Addition i+j = k gives directed edges n;nx and n;ny.
It is acyclic, with a single root n; and a single leaf ns.
All nodes except root n; have input degree 2 as all op® are binary.
#0ps = #Nodes—1 = %#Edges.

|
[
[
m By induction, D = #paths from n; to np.

RSACONFERENCE2012




Di-Graph for the Transpose Method

n3 N5

n na
m Reverse the edges for the “transposition” method.
Node inputs are again multiplied together.
m Path count is D, as before. So it again computes gP.

m Nodes may need merging or expanding to restore in-degree 2.
The #binary operations is not changed: %#edges.

m This reverses the addition chain in some sense.

m It doesn’t preserve space requirements and
without care, sq® & mult” counts may change.

RSACONFERENCE2012




Space Duality

Space Duality
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Space-Aware Addition Chains

Definition. For a given set of registers, take five classes of “atomic” op®:

Copying one register to another;
Copying one register to another & initialising source register to 1¢;

]
|

m In-place squaring of the contents of one register;

m Multiplying two different registers into one of the input registers;
|

Multiplying two different registers into one of the input registers,
& initialising the other input to 1.

A space-aware addition chain is a sequence of such operations in which
the registers are named.

Every addition chain can be written as a space-aware addition chain.

Royal Holloway
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Matrix Representation — Space

For a device with two locations, matrix examples of each class are:

R N ER SR R e

They act on a column vector containing the values in each register.

By omitting more general op™, this set is closed under transposition.

m Copy (without initialise) becomes multiplication with initialise,
and vice versa. (The red matrices.)

m Other operations stay in their class under transposition.

Definition. The dual of a space-aware chain is its transpose.
(The transposed operations are applied in reverse order.)

The dual uses the same space but may not have the same mult" count.
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The Dual Chain — An Example

R3 «— R2; R3+ R2+R3; R1 «+; R2; R2+; R3; R2 «+—; R1+R2

In matrices acting on a col™ vector:

foo0O0[1007[010][100][100] 00 0]
110 001 000 010 010 = 030
loo1]looof[loot1|[lo11][010] 1 000 |
The dual (the transpose) is:

[100][1007[000][1007[010] [0 0 0]
011 011 100 000 010 = 030
looo[oo1]loo1]lo10][00T1] 000

i.e. Rl1<— R2; R3+—; R2; R2+—; R1; R2+— R2+R3; R2+; R2+R3
m Both have two multiplications and no squarings.
m Both compute g3 from g € G with R, for 1/0.

RSACONFERENCE2012




Extra Requirements

Extra Requirements
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The Main Problems

#Mults may not be preserved in the dual
as copying becomes mult" with initialisation.

The dual chain may not compute the same value
unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:
m Select the initialising op" when possible.
m Eliminate 15 as an operand.
m Remove operations whose output is not used.
m Fix a subset of registers for /0.

(An 1/0 register must read input and write non-trivial output.)

Definition. A space-aware chain is normalised if the above hold.
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Counting Ones

Instances of 1¢ or L arise from:
a) Initial value of a non-input register.
b) Initialised by copy or mult" op".
Instances of 1¢ or L finish their lives as:
c) Final value in a non-output register.
d) Overwritten by a copy op".

Since #a = #£c, we conclude #b = #d.
Subtracting the #{copies with init"} from #b and #d, we have

#Mult" with init" = #Copies without init"
These op" types are swapped in the dual & others stay as they are. So:

m Theorem. For a normalised space-aware chain,
#Mult™ & #Sq"* are the same for the dual.
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Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is

described by matrix M then a dual f* is described by the transpose M.

Theorem a) * computes the same values as f iff its matrix is symmetric.
b) In particular, it uses the same registers for output as input.

m In the normalised case, unused registers give columns of zeros.
m Used, non-output registers are over-written with 15: more zeros.
m Used, non-input registers are initialised to 15: more zeros.
m

So only the sub-matrix Mo on 1/O registers need be symmetric.

Theorem A normalised space-aware chain for a single
exponentiation and its dual compute the same values.

(Duals become unique only when written in atomic operations.)

RSACONFERENCE2012
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High Level Algorithms

Question: When is an algorithm dualisable if its steps are more complex
than the atomic operations?

We want to be able to decompose steps independently into atomic op™
yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must
not be used and its used non-output registers must be reset to 1.

The output registers for one step must be the input registers for the next.
(Include unused registers in the |/O set for convenience here.)

These are only requirements on how steps are realised as space-aware
chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that
given by transposing its steps and reversing their order.
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An "Old" Algorithm (Arith13, 1997)

Inputs: g c G, D= ((d,,_lrn_2+d,,_2)r,,_3—|— - +d1)r0+d0 eN
Output: gPeG

T —1g
P—g
for i — 0 to n—1 do {
if d; # 0 then T «— TxP%
if i n—1then P — P" }
return T

The loop body involves computing P en route to P"i.
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One lteration

Base/digit pairs (r, d) are chosen for compact, fast performance.
Specifically at most one register in addition to P and T.

e.g. r=241,d = 2 will involve i squarings & 2 mults.
It avoids a table entry for each d.

There is now a dual algorithm using the same space — only three registers.

.
The step T+ TP, P—P" is achieved by { cr/ (i } = { (r) (il } .

So the transpose performs the dual op™ P « P"T9.

The sequence of op® is easily determined via the dual.
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A New Compact Left-to-Right Algorithm

Inputs: g c G, D= ((dn_lrn_2+dn_2)r,,_3—|— - +d1)r0+d0 eN
Output: gPeG

T—g

P—1¢

for i — n—1 downto 0 do
P — PixTd

return P

Loop iterations are computed as described on last slide.

It is the dual of the previous R2L algorithm, as just derived.

MM!M!! -
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The Value of the Algorithm

m “Table-less” exponentiation — useful in constrained environments.

m If space for only three registers and division has the same cost as
mult", the compact algorithms are faster.

m A left-to-right version allows better use of composite op®,
e.g. double-and-add, triple-and-add, quintuple-and-add.

m Recoding is done on-the-fly for R2L exp™; in advance for L2R exp”.
The recoding typically needs up to 3 times the storage space of D.

Mﬂ“!ﬂ!lﬂ -
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Conclusion

[@ Conclusion %
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Summary & Final Remarks
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Pairings and cryptology

» used as a primitive in many protocols and devices

Boneh—Lynn—-Shacham short signature
Boneh—Franklin identity-based encryption
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Pairings and cryptology

» used as a primitive in many protocols and devices

Boneh—Lynn—-Shacham short signature
Boneh—Franklin identity-based encryption

» implementations needed for various targets

online server — high-speed software
smart card — low-resource hardware

» reach 128 bits of security (equivalent to AES)
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What’s a cryptographic pairing

e: G xG, — Gr

» where (Gy1,+), (G2, +) and (G, x) are cyclic groups of order ¢

» The discrete logarithm problem should be hard on these groups
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What’s a cryptographic pairing

e: G xG, — Gr

» where (Gy1,+), (G2, +) and (G, x) are cyclic groups of order ¢
» The discrete logarithm problem should be hard on these groups

» Bilinear map:

e(aP, bQ) = e(P, Q)ab

» Symmetric pairing (Type-1): G; = G,, exploited by some protocols

» Choice of the groups:

Gq, G,: related to an algebraic curve
G 7 related to the field of definition of the curve

N. Estibals — Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves 2 /14



Classical choice of curves

Barreto—Naehrig curves
+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
— Arithmetic modulo p ~ 256 bits

— No symmetric pairing
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» Solutions to the large base field needed by supersingular curves

(Pairing 2010) Use fields of composite extension degree: benefit from faster
field arithmetic but requires careful security analysis

N. Estibals — Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves 3/14



Classical choice of curves

Barreto—Naehrig curves Supersingular elliptic curves
+ Lots of literature + Symmetric pairing
Thanks to a distortion map
+ Huge optimization efforts Y Gy — Gy
+ Suited for 128 bits of security + Small characteristic arithmetic

— Arithmetic modulo p ~ 256 bits = No carry propagation

— No symmetric pairing — Not suited to 128-bit security level
Larger base field: [Fpizs, F3s0

» Solutions to the large base field needed by supersingular curves

(Pairing 2010) Use fields of composite extension degree: benefit from faster
field arithmetic but requires careful security analysis
(This work) Use genus-2 hyperelliptic curves: base field will be Fser
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Elliptic curves

E/K :y?+h(x)-y = f(x)
with degh <1 and degf =3

to
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Elliptic curves

E/K :y?+h(x)-y = f(x)
» E(K)is a group with degh < 1 and deg f =3
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Elliptic curves

E/K:

y2+ h(x) -y = f(x)

» E(K)is a group with degh < 1 and deg f =3

/_\
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Lpq
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Elliptic curves
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» E(K)is a group with degh < 1 and deg f =3
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Elliptic curves

E/K:y’+h(x)-y = f(x)
» E(K)is a group with degh < 1 and deg f =3

Vi

Lpq

Yo
=2

R=P+Q
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Elliptic curves

E/K:y’+h(x)-y = f(x)
» E(K)is a group with degh < 1 and deg f =3
» In practice: K is a finite field [, Vs

» E(F,) is a finite group

Lpq

Yo
=2

R=P+Q
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Elliptic curves

E/K:y’+h(x)-y = f(x)
» E(K)is a group with degh < 1 and deg f =3
» In practice: K is a finite field [, Vs

» E(F,) is a finite group

to
» (: a large prime dividing #E(F,) /\M <l
Q
» Use the cyclic subgroup A@/ \
P
E(Fq)lll = {P [P =0}

Lpq

R=P+Q

N. Estibals — Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves 4/ 14



Genus-2 hyperelliptic curves

C/K :y*+h(x)-y = f(x)
with degh <2 and degf =5

fo
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N

N. Estibals — Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves 5/ 14



Genus-2 hyperelliptic curves

C/K :y*+h(x)-y = f(x)
with degh <2 and degf =5

fo

» C(K) not a group!

I~ TN
N
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Genus-2 hyperelliptic curves

C/K:y*+h(x) y = f(x)
» C(K) not a group! with degh < 2 and degf =5

» But pairs of points T@ @
{P1, P2}

Q1

N TN
S
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Genus-2 hyperelliptic curves

C/K:y*+h(x) y = f(x)
» C(K) not a group! with degh < 2 and degf =5

» But pairs of points o) Q
{P1, P>}
P R
Ri
Py }‘ Ry @

{P1, Po} +{Q1, @} = {R1, Ro}
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Genus-2 hyperelliptic curves

C/K:y*+h(x) y = f(x)
» C(K) not a group! with degh < 2 and degf =5

» But pairs of points o Q
{P1, P>}

» More formally

use the Jacobian P R>
Jacc(K) R

R, Q1

{P1, Po} +{Q1, @} = {R1, Ro}
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Genus-2 hyperelliptic curves

C/K:y*+ h(x)-y = f(x)

» C(K) not a group! with degh < 2 and degf =5

» But pairs of points A
{P1, P2}

» More formally

use the Jacobian Dr p 2
TR L D
Jacc(K) Vs R Y| 7R

2/

R

Dp + Dq = Dg
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Genus-2 hyperelliptic curves

C/K:y*+ h(x)-y = f(x)

» C(K) not a group! with degh < 2 and degf =5

» But pairs of points A
{P1, P2}

» More formally

use the Jacobian Dr p 2
TR L D
Jacc(K) Vs R Y| 7R

2/
in

general form of the
elements (called divisor)

Dp = (P1)+(P,)—2(0O)

Dp + Dq = Dg
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Genus-2 hyperelliptic curves

C/K:y*+ h(x)-y = f(x)

» C(K) not a group! with degh < 2 and degf =5

» But pairs of points A
{P1, P2}

» More formally

use the Jacobian Dr p 2
TR L D
Jacc(K) Vs R Y| 7R

2/
in

general form of the
elements (called divisor)

Dp = (P1)+(P,)—2(0O)

degenerate form

(P)—(0)

Dp + Dq = Dg
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Computing the pairing: Miller’s algorithm (elliptic case)

e: G; x G — Gt

» Reduced Tate pairing

PN

-
N
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Computing the pairing: Miller’s algorithm (elliptic case)

e: E(Fy)[{] x G — Gr

P,
» Reduced Tate pairing

PN

-
N
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Computing the pairing: Miller’s algorithm (elliptic case)

e: E(F) x EFH[] — Gr

P , Q
» Reduced Tate pairing

» k: embedding degree (curve parameter) to

PN

-
N
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Computing the pairing: Miller’s algorithm (elliptic case)

e: E(Fg)ll] x E(Fg)ll] — mCFy

P, Q — fp(Q)T
» Reduced Tate pairing

» k: embedding degree (curve parameter) to

PN

-
N
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Computing the pairing: Miller’s algorithm (elliptic case)

e: E(Fg)ll] x E(Fg)ll] — mCFy

P, Q — fp(Q)T
» Reduced Tate pairing

» k: embedding degree (curve parameter) to

» Miller functions: f, p

PN

-
N
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Computing the pairing: Miller’s algorithm (elliptic case)

e: E(FI x EFl]l — i CF
P, Q — fp(Q)T
» Reduced Tate pairing

» k: embedding degree (curve parameter) to

» Miller functions: f, p

an inductive identity

he 1 i

PN

fovwp = fop - fop - &P [P
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Computing the pairing: Miller’s algorithm (elliptic case)

e: E(F)l x E(Fg)l] — e CF

k_1
P ) Q L &,P(Q)qT
» Reduced Tate pairing
» k: embedding degree (curve parameter) to Vin+m1p
: : - Laee
» Miller functions: f, p B[P [P = Ve

an inductive identity /—\W Linp e
=1

hp = Vi
forwp = fop - fup - gupmp /MP@ \[n+n’]P

g(n P, p derived from the addition of
[n]P and [n']P
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Computing the pairing: Miller’s algorithm (elliptic case)

e: E(F)l x E(Fg)l] — e CF

k_1
P ) Q — &,P(Q)qT
» Reduced Tate pairing
» k: embedding degree (curve parameter) to Vin+m1p
: : - Laee
» Miller functions: f, p B[P [P = Ve

an inductive identity /—\W Linp e
hp =1

C N
fn—i—n’,P = fn,P ) fn’,P " 8[n]P,[)P /[n]P@ [n+ n']P

g(n P, p derived from the addition of
[n]P and [n']P

compute f; p thanks to an addition
chain

in practice: double-and-add

log, ¢ iterations
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Miller’s algorithm (hyperelliptic case)

e: Gl XGQ —>GT

9
/1
\V
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Miller’s algorithm (hyperelliptic case)

e: Jacc(Fg)[l] x Jacc(Fu)[l] — ,UKC[FZk

to

N TN
N
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Miller’s algorithm (hyperelliptic case)

e: Jacc(Fg)[f] x Jacc(Fgo)ll] — e CFy
Di . D — o (D2)" T

» Hyperelliptic Miller functions: f, p
same inductive identity TO
hp =1

fn—l—n’,D = fn,D ) fn’,D * 8[n]D,[n"]D

N TN
N
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Miller’s algorithm (hyperelliptic case)

e: Jacc(Fg)[f] x Jacc(Fgo)ll] — e CFy
Di . D — o (D2)" T

» Hyperelliptic Miller functions: f, p
same inductive identity
_ Lio (o
fl,D =1 &[nD,[n|D = 7\[/[11,]15
fn+n’,D = fn,D ) fn’,D * 8[n]D,[n"]D

D
&[n|D,[n']D derived from the addition 7]

of [n]D and [n']D
use Cantor’'s addition algorithm

LA

L /
[n1D,[n"]1D
V[n+n’]D
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Miller’s algorithm (hyperelliptic case)

e: Jacc(Fg)[f] x Jacc(Fgo)ll] — e CFy

— 7f£,D1(D2)(177l

D , D

» Hyperelliptic Miller functions: f, p

same inductive identity
fip =1

fn+n’,D = fn,D ) fn’,D * 8[n]D,[n"]D

8(np,[np derived from the addition
of [n]D and [n']D

use Cantor’'s addition algorithm
double-and-add algorithm

log, ¢ iterations

iterations are more complex

8[nD,[n"]D =

Linp, w10

\/[n+n’]D

Limp 1D
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Genus-2 binary supersingular curve: our choice
Cy/Fom Y24ty =x"+x3+dwithd e F,

» A distortion map exists: symmetric pairing
> # Jacc,(Fom) = 22m £ 26m+1)/2 4 om 4 o(m+1)/2 1 1
» Embedding degree of the curve: k =12

» For 128 bits of security: Fom = Fp7 and d = 0
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» A distortion map exists: symmetric pairing

> # Jacc,(Fom) = 22m £ 26m+1)/2 4 om 4 o(m+1)/2 1 1
» Embedding degree of the curve: k =12

» For 128 bits of security: Fom = Fp7 and d = 0

» Key property of the curve:

21((P) = (0)) = (P)+(P)—2(0)
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» A distortion map exists: symmetric pairing

> # Jacc,(Fom) = 22m £ 26m+1)/2 4 om 4 o(m+1)/2 1 1
» Embedding degree of the curve: k =12

» For 128 bits of security: Fom = Fp7 and d = 0

» Key property of the curve:
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Genus-2 binary supersingular curve: our choice
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» A distortion map exists: symmetric pairing

> # Jacc,(Fom) = 22m £ 26m+1)/2 4 om 4 o(m+1)/2 1 1
» Embedding degree of the curve: k =12

» For 128 bits of security: Fom = Fp7 and d = 0

» Key property of the curve:

21((P) = (0)) = (P)+(P)—2(0)
[41((P) = (0)) = (Pa)+(P1) —2(0)
81((P) = (0)) = ([8]P) = (O)

octupling acts on the curve
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Genus-2 binary supersingular curve: our choice
Cy/Fom Y24ty =x"+x3+dwithd e F,

» A distortion map exists: symmetric pairing

> # Jacc,(Fom) = 22m £ 26m+1)/2 4 om 4 o(m+1)/2 1 1
» Embedding degree of the curve: k =12

» For 128 bits of security: Fom = Fp7 and d = 0

» Key property of the curve:

21((P) = (0)) = (P)+(P)—2(0)
[41((P) = (0)) = (Pa)+(P1) —2(0)
81((P) = (0)) = ([8]P) = (O)

octupling acts on the curve
fs. p has a much simpler expression than £, p
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Constructing the Optimal Eta pairing

Algorithm Tate
double & add
#iterations 2m

» Vanilla Tate pairing: log, ¢ = log, # Jacc(Fam) =~ 2m doublings
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Constructing the Optimal Eta pairing

: Tate Tate
Algorithm
double & add | octuple & add
#iterations 2m 2Tm

» Vanilla Tate pairing: log, ¢ = log, # Jacc(Fam) =~ 2m doublings

» Use of octupling: simpler iteration also!
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Constructing the Optimal Eta pairing

: Tate Tate Barreto et al.
Algorithm .
double & add | octuple & add | 77 pairing
: : 2m m
#iterations 2m 3 >

» Vanilla Tate pairing: log, ¢ = log, # Jacc(Fam) =~ 2m doublings

» Use of octupling: simpler iteration also!

» 77 pairing: Miller function is £ em2 1 p,
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Constructing the Optimal Eta pairing

Tate Tate Barreto et al.

Algorithm . Optimal Ate pairing
double & add | octuple & add | 77 pairing
. : 2m m m
#iterations 2m 3 5 6

» Vanilla Tate pairing: log, ¢ = log, # Jacc(Fam) =~ 2m doublings
» Use of octupling: simpler iteration also!
» 77 pairing: Miller function is £ em2 1 p,

» Optimal Ate pairing

distortion map v is much more complex
iterations would be roughly twice as expensive
optimal Ate pairing not considered here
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Constructing the Optimal Eta pairing

: Tate Tate Barreto et al. This paper
Algorithm . : .
double & add | octuple & add | 77 pairing | Optimal Eta pairing
. . 2m m m
#iterations 2m 3 5 3

» Vanilla Tate pairing: log, ¢ = log, # Jacc(Fam) =~ 2m doublings

» Use of octupling: simpler iteration also!

» 77 pairing: Miller function is £ em2 1 p,

» Optimal Ate pairing

distortion map v is much more complex

iterations would be roughly twice as expensive

optimal Ate pairing not considered here

» Optimal Eta pairing

cannot use 2™-th power Verschiebung: does not act on the curve

but can use 23™-th power Verschiebung

33% improvement compared to Barreto et al.'s work
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Considering degenerate divisors
» Some protocols allow to choose the form of one or two input divisors

» Consider degenerate divisors of the form

(P)—(0)

only 2 coordinates in Fym to represent such a divisor
(instead of 4 coordinates for a general one)
since octupling acts on the curve:

Bl((P) = (0)) = ([8]P) - (O)

we can work with a point!
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Considering degenerate divisors
» Some protocols allow to choose the form of one or two input divisors

» Consider degenerate divisors of the form

(P)—(0)

only 2 coordinates in Fym to represent such a divisor
(instead of 4 coordinates for a general one)
since octupling acts on the curve:

[81((P) — (O)) = (8]P) — (0)
we can work with a point!

» We may compute the pairing of
two general divisors (GG)
one degenerate and one general divisor (DG)
* halves the amount of computation
* lot of protocols allow this

two degenerate divisors (DD)

* halves again the amount of computation
* some protocols still compatible
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Software implementation

» Implementations for Intel Core 2

Computation time (x10° cycles)
25_ .............................................................................
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Barreto—Naehrig
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Software implementation
» Implementations for Intel Core 2 and Nehalem architecture
» Use of the native binary field multiplier on Nehalem

Computation time (x10° cycles)

25__ .............................................................................
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Hardware implementation

» Optimal Eta pairing on general divisors

» Implemented on a finite field coprocessor [y

addition
multiplication
Frobenius endomorphism

» Post place-and-route estimations on a Virtex 6-LX 130T results

) Area Time )
Implementation Curve . Area X time
(device usage) | (ms)
Cheung et al. E(F,,.,) 35% 0.57 4.03
Ghosh et al. E([F21223) 76 % 0.19 2.88
Estibals E(F3s97) 8% 1.73 2.68
This work Co(Fase7) (GG) 7% 3.09 4.30
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Conclusion

» A novel pairing algorithm shortening Miller's loop
» Competitive timings compared to genus-1 pairings

» Comparable timings against non-symmetric pairings
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» A novel pairing algorithm shortening Miller's loop
» Competitive timings compared to genus-1 pairings
» Comparable timings against non-symmetric pairings

» Most efficient symmetric pairing implementation

for both software and hardware
when at least one divisor is degenerate (DG and DD case)

» First hardware implementation of a genus-2 pairing reaching 128 bits of security

» Perspectives

Implement optimal Ate pairing on this curve (work in progress)
Use theta functions for faster curve arithmetic
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Thank you for your attention!

Questions?

N. Estibals — Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves 14 / 14



	CRYP-201 _Yasuda
	CRYP-201_Walter
	Background
	The Transposition Method
	Space Duality
	Extra Requirements
	New Algorithms
	Conclusion

	CRYP-201_Estibals.final.pdf
	A good curve for a fast pairing
	Classical choice of curves
	Genus-1 and genus-2 (hyper)elliptic curves
	Computing the pairing: Miller's algorithm
	Genus-2 binary supersingular curve: our choice
	Constructing the Optimal Eta pairing

	Implementation results
	Considering degenerate divisors
	Software implementation
	Hardware implementation

	Conclusion
	Conclusion
	Questions?



