Reducing the Key Size of Rainbow using Non-Commutative Rings

Takanori Yasuda (Institute of systems, Information Technologies and Nanotechnologies (ISIT)), Kouichi Sakurai (ISIT, Kyushu university) and Tsuyoshi Takagi (Kyushu university).

MQ problem and key size

MQ equations

$$
\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i, j \leq n} a_{i j}^{(1)} x_{i} x_{j}+\sum_{1 \leq i \leq n} b_{i}^{(1)} x_{i}+c^{(1)}=d_{1} \\
f_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i, j \leq n} a_{i j}^{(2)} x_{i} x_{j}+\sum_{1 \leq i \leq n} b_{i}^{(2)} x_{i}+c^{(2)}=d_{2} \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i, j \leq n} a_{i j}^{(m)} x_{i} x_{j}+\sum_{1 \leq i \leq n} b_{i}^{(m)} x_{i}+c^{(m)}=d_{m}
\end{array}\right.
$$

Public key $=$ set of coefficients of polynomials
the number of coefficients $=\frac{m(n+1)(n+2)}{2}$ large key size

Rainbow

- Signature of a multilayer variant of UOV
- Secret key size is also large

Werreduced by 75%

Rainbow	Secret key size	Public key size	Key size of RSA	Ratio (secret key)
$R(17,13,13)$	19.1 kB	25.7 kB	1369 bits	116.6 times
$\mathrm{R}(21,16,17)$	36.5 kB	50.8 kB	1937 bits	150.7 times
$R(27,19,19)$	60.5 kB	84.0 kB	2560 bits	189.0 times

Reference: A.Petzoldt et al. "Selecting Paranfeters for the Rainbow Signature Scheme",
PQCrypto'10, Springer LNCS vol. 6061 (2010)

- Problem: reduction of kizeduction by 62%
- reduction of public key

CyclicRainbow (INDOCRIPT' 10, SCC' 10, PKC' 11)

- reduction of secret key TTS, TRMS

Proposed scheme

Rainbow using non-commutative rings

NC-Rainbow $\left(R ; \tilde{v}_{1}, \tilde{o}_{1}, \tilde{o}_{2}, \ldots, \widetilde{o}_{s}\right)$

Non-commutative rings

R : non-commutative ring

- R : finite dimensional algebra over a finite field K (dimension= r)

Fix a K-linear isomorphism $\phi: K^{r} \longrightarrow R$
Example (quaternion algebra $Q_{q}(q$: order of $K)$)

$$
\left\{\begin{array}{l}
\text { set) } Q_{q}=K \cdot 1 \oplus K \cdot i \oplus K \cdot j \oplus K \cdot i j, \quad(r=4) \\
\text { product }) i^{2}=j^{2}=-1, \quad i j=-j i .
\end{array}\right.
$$

There is a natural isomorphism

$$
\phi: K^{4} \longrightarrow Q_{q}
$$

$\operatorname{NC}-\operatorname{Rainbow}\left(R ; \tilde{v}_{1}, \tilde{o}_{1}, \tilde{o}_{2}, \ldots, \tilde{o}_{s}\right) \quad(1 / 2)$

\tilde{n} : positive number

$$
0<\tilde{v}_{1}<\tilde{v}_{2}<\cdots<\tilde{v}_{s}<\tilde{v}_{s+1}=\tilde{n}
$$

For $i=1, \ldots, s$

- $\tilde{S}_{i}=\left\{1, \ldots, \tilde{v}_{i}\right\}, \tilde{O}_{i}=\left\{\tilde{v}_{i}+1, \ldots, \tilde{v}_{i+1}\right\}$,
- $\tilde{o}_{i}=\tilde{v}_{i+1}-\tilde{v}_{i}$.

Central map $\tilde{G}=\left(\tilde{g}_{\tilde{v}_{1}+1}, \ldots, \tilde{g}_{n}\right): R^{\tilde{n}} \rightarrow R^{\tilde{m}}, \quad\left(\tilde{m}=\tilde{n}-\tilde{v}_{1}\right)$

$$
\begin{aligned}
\tilde{g}_{k}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{i \in \tilde{O}_{h}, j \in \tilde{S}_{h}}\left(x_{i} \alpha_{i j}^{(k)} x_{j}+x_{j} \alpha_{i j}^{(k)} x_{i}\right) \\
& +\sum_{i, j \in \bar{S}_{i}} x_{i} \beta_{i j}^{(k)} x_{j}+\sum_{i \in \tilde{S}_{h+1}}\left(\gamma_{i}^{(k, 1)} x_{i}+x_{i} \gamma_{i}^{(k, 2)}\right) \\
& +\eta^{(k)} \quad\left(k=\tilde{v}_{1}+1, \ldots, \tilde{n}, \quad \alpha_{i j}^{(k)}, . . \in R\right) .
\end{aligned}
$$

$\operatorname{NC}-\operatorname{Rainbow}\left(R ; \tilde{v}_{1}, \tilde{o}_{1}, \tilde{2}_{2}, \ldots, \tilde{o}_{s}\right) \quad(2 / 2)$

- Key Generation
- Secret key ($n=\tilde{n} r, m=\tilde{m} r$)
- \tilde{G}, two affine transformations $A_{1}: K^{m} \rightarrow K^{m}, A_{2}: K^{n} \rightarrow K^{n}$.
- Public key
- $\tilde{F}=A_{1} \circ \phi^{-\tilde{m}} \circ \tilde{G} \circ \phi^{\tilde{n}} \circ A_{2}: K^{n} \rightarrow K^{m}$.
- Signature Generation

For message $M \in K^{m}$, calculate

$$
\text { (1) } a=\phi^{\tilde{m}}\left(A_{1}^{-1}(M)\right), \text { (2) } b=\tilde{G}^{-1}(a), \text { (3) } c=\phi^{-\tilde{n}}\left(A_{2}^{-1}(b)\right)
$$

in this order. c is a signature.

- Verification

If $\widetilde{F}(c)=M$, the signature is accepted. Original Rainbow

If $R=K$, then this becomes Rainbow $\left(K ; \tilde{v}_{1}, \tilde{o}_{1}, \tilde{o}_{2}, \ldots, \tilde{o}_{s}\right)$

Correspondence between NC-Rainbow and Rainbow

Theorem

There exists a correspondence

$$
\begin{aligned}
& \operatorname{NC}-\operatorname{Rainbow}\left(R ; \tilde{v}_{1}, \tilde{o}_{1}, \tilde{o}_{2}, \ldots, \tilde{o}_{s}\right) \\
& \quad \rightarrow \operatorname{Rainbow}\left(K ; r \tilde{v}_{1}, r \tilde{o}_{1}, r \tilde{o}_{2}, \ldots, r \tilde{o}_{s}\right)
\end{aligned}
$$

which holds public key.

- Secret key size of NC-Rainbow

$$
m(m+1)+n(n+1)+\sum_{h=1}^{s} r \widetilde{o}_{h}\left(2 \widetilde{v}_{h} \tilde{o}_{h}+\tilde{v}_{h}^{2}+2 \tilde{v}_{h+1}+1\right) \text { field elements }
$$

- Secret key size of corresponding Rainbow

$$
m(m+1)+n(n+1)+\sum_{h=1}^{s} r \tilde{o}_{h}\left(r^{2} \tilde{v}_{h} \tilde{o}_{h}+\frac{r \tilde{v}_{h}\left(r \tilde{v}_{h}+1\right)}{2}+r \tilde{r}_{h+1}+1\right) \text { field elements }
$$

Comparison of Secret key size

$$
\begin{aligned}
& K=G F(256), \\
& R=Q_{256} \quad(r=4) .
\end{aligned}
$$

Comparison of NC-Rainbow $\left(Q_{256} ; \tilde{v}_{1}, \tilde{o}_{1}, \tilde{o}_{2}\right)$ and $\operatorname{Rainbow}\left(G F(256) ; 4 \widetilde{v}_{1}, 4 \widetilde{o}_{1}, 4 \widetilde{o}_{2}\right)$

$\left(\widetilde{v}_{1}, \widetilde{\sigma}_{1}, \widetilde{\sigma}_{2}\right)$	NG-size	Corr. Rainbow	R-size	ratio
$(4,3,3)$	4.2 kB	$(16,12,12)$	15.9 kB	26.7%
$(5,4,4)$	8.0 kB	$(20,16,16)$	33.6 kB	23.9%
$(7,5,5)$	15.1 kB	$(28,20,20)$	70.7 kB	21.5%
$(9,6,6)$	25.5 kB	$(36,24,24)$	128.2 kB	19.9%

NC-size : Secret key size of NC-Rainbow
R-size : Secret key size of corresponding Rainbow ratio = NC-size/R-size

Reason of reduction of key size

Property of "regular action"

- R is expressed by a subring of matrix algebra of size r.

$$
M\left(d, Q_{q}\right) \longrightarrow M(4 d, K)
$$

$$
4 d^{2} \text { entries } \quad 16 d^{2} \text { entries }
$$

NC-Rainbow $\left(Q_{q} ; \tilde{v}_{1}, \tilde{o}_{1}, \tilde{o}_{2}, \ldots, \tilde{o}_{s}\right)$
(Map in Theorem) $\rightarrow \operatorname{Rainbow}\left(K ; 4 \widetilde{v}_{1}, 4 \widetilde{o}_{1}, 4 \widetilde{o}_{2}, \ldots, 4 \widetilde{o}_{s}\right)$

Attacks against Rainbow (1/2)

Need to analyze attacks against Rainbow to know whether or not they work efficiently against NC-Rainbow.

- Known attacks against Rainbow

- Direct attacks
- Using XL and Grobner basis algorithm etc.
- UOV attack
- determine a simultaneous isotropic subspace (which coincides with Oil space in the last layer with high probability)
- compute invariant spaces of certain matrices
- UOV-Reconciliation(UOV-R) attack
- determine a simultaneous isotropic subspace (which coincides with Oil space in the last layer with high probability)
- Solve a system of equations w.r.t. coefficients of right affine transformation

Attacks against Rainbow (2/2)

- Known attacks against Rainbow (continued)
- MinRank attack
- determine a matrix with minimal rank among linear combinations of quadratic part of components of public key
- HighRank attack
- determine a matrix with the second highest rank among linear combinations of quadratic part of components of public key
- Rainbow-Band-Separation(RBS) attack
- transform public key to a form of central map of Rainbow
- Solve a system of equations w.r.t. coefficients of both affine transformations

Security for NC-Rainbow

/-bit security ($K=\mathrm{GF}\left(2^{a}\right)$)

1. UOV attack

$$
n-2 r \tilde{o}_{s} \geq l / a+1
$$

2. MinRank attack

$$
r\left(\tilde{o}_{1}+\tilde{v}_{1}\right) \geq l / a
$$

3. HighRank attack

$$
r \tilde{o}_{s} \geq l / a
$$

4. $\mathrm{UOV}-\mathrm{R}$ attack
$\widetilde{v}_{1} \geq \widetilde{o}_{1} \Rightarrow$ same security level against direct attacks
5. Direct attacks, RBS attack
A.Petzoldt et al. "Selecting Parameters for the Rainbow Signature Scheme", PQCrypto'10, Springer LNCS vol. 6061 (2010)

Table of security and secret key size

NC-Rainbow $\left(Q_{256} ; \tilde{v}_{1}, \tilde{o}_{1}, \tilde{o}_{2}\right)$ and Rainbow $\left(G F(256) ; 4 \tilde{v}_{1}, 4 \widetilde{o}_{1}, 4 \widetilde{o}_{2}\right)$

NC-Rainbow	$(5,4,4)$	$(7,5,5)$	$(9,6,6)$
Security level	$83 b i t s$	96 bits	107 bits
Secret key size	8.0 kB	15.1 kB	25.5 kB
Corr. Rainbow	$(20,16,16)$	$(28,20,20)$	$(36,24,24)$
Secret key size	33.6 kB	70.7 kB	128.2 kB
Ratio	23.9%	21.5%	19.9%

ratio $=$ Secret key size of NCRainbow/Secret key size of corr. Rainbow

Conclusion

- Conclusion
- We proposed a scheme using non-commutative rings, which is regarded as another construction of Rainbow.
- This scheme can reduce the secret key size in comparison with original Rainbow.
- In paticular, the secret key size of the proposed NC-Rainbow is reduced by about 75% in the security level of 80 bits.
- Future works
- Finding a non-commutative ring with efficient arithmetic operation.
\Rightarrow Speed up the signature generation

Dual Exponentiation Schemes

Colin D. Walter

Information Security Group
Royal Holloway University of London
Colin.Walter@rhul.ac.uk

RS^CONFERENCE2012

The Problem

- Motivation: New algorithms are always useful as there are always so many different optimisations and conflicting pressures on resource-constrained platforms.
- Aim: Better exponentiation on space-limited chip. (Fast memory is expensive.)
- Setting: Mixed base representation for the exponent.
- Solution: Define a dual for the associated addition chain.
- Benefits: Derive new algorithms from existing ones; Better understanding of exponentiation.

Outline

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

Background

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

r-ary Exponentiation - L2R (Brauer, 1939)

Inputs:

$$
\begin{aligned}
& g \in G, \\
& D=\left(\left(d_{n-1} r+d_{n-2}\right) r+\ldots+d_{1}\right) r+d_{0} \in \mathbb{N} \text { where } 0 \leq d_{i}<r .
\end{aligned}
$$

Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow g^{d}$ for all $d, 0<d<r$.
$P \leftarrow 1_{G}$
for $i \leftarrow n-1$ downto 0 do $\{$
if $i \neq n-1$ then $P \leftarrow P^{r}$
if $d_{i} \neq 0$ then $\left.P \leftarrow P \times T\left[d_{i}\right]\right\}$
return P

r-ary Exponentiation - R2L (Yao, 1976)

Inputs: $g \in G$, $D=d_{n-1} r^{n-1}+d_{n-2} r^{n-2}+\ldots+d_{1} r^{1}+d_{0}$ where $0 \leq d_{i}<r$.
Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow 1_{G}$ for all $d, 0<d<r$.
$P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do $\{$
if $d_{i} \neq 0$ then $T\left[d_{i}\right] \leftarrow T\left[d_{i}\right] \times P$
if $i \neq n-1$ then $\left.P \leftarrow P^{r}\right\}$
return $\prod_{d: 0<d<r} T[d]^{d}$

Sliding Window - L2R

Inputs: $g \in G$,

$$
\begin{aligned}
& D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N}, \text { where } \\
& d_{i} \in\left\{0, \pm 1, \pm 3, \ldots, \pm \frac{1}{2}(r-1)\right\}, r_{i} \in\left\{2,2^{w}\right\} \text { and } d_{i}=0 \text { if } r_{i}=2 .
\end{aligned}
$$

Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow g^{d}$ for all $d \neq 0$.
$P \leftarrow 1_{G}$
for $i \leftarrow n-1$ downto 0 do $\{$
if $i \neq n-1$ then $P \leftarrow P^{r_{i}}$
if $d_{i} \neq 0$ then $\left.P \leftarrow P \times T\left[d_{i}\right]\right\}$
return P

Sliding Window - R2L

Inputs: $g \in G$,

$$
\begin{aligned}
& D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N}, \text { where } \\
& d_{i} \in\left\{0, \pm 1, \pm 3, \ldots, \pm \frac{1}{2}(r-1)\right\}, r_{i} \in\left\{2,2^{w}\right\} \text { and } d_{i}=0 \text { if } r_{i}=2 .
\end{aligned}
$$

Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow 1_{G}$ for all $d \neq 0$.
$P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do $\{$
if $d_{i} \neq 0$ then $T\left[d_{i}\right] \leftarrow T\left[d_{i}\right] \times P$
if $i \neq n-1$ then $\left.P \leftarrow P^{r_{i}}\right\}$
return $\prod_{d \neq 0} T[d]^{d}$

Mixed Base Exponentiation - L2R

Inputs: $g \in G$,

$$
\begin{array}{r}
D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N} \\
\text { where }\left(r_{i}, d_{i}\right) \in \mathcal{R} \times \mathcal{D}
\end{array}
$$

Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow g^{d}$ for all $d \in \mathcal{D} \backslash\{0\}$.
$P \leftarrow 1_{G}$
for $i \leftarrow n-1$ downto 0 do $\{$
if $i \neq n-1$ then $P \leftarrow P^{r_{i}}$
if $d_{i} \neq 0$ then $\left.P \leftarrow P \times T\left[d_{i}\right]\right\}$
return P

Mixed Base Exponentiation - R2L

Inputs: $g \in G$,

$$
\begin{array}{r}
D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N}, \\
\text { where }\left(r_{i}, d_{i}\right) \in \mathcal{R} \times \mathcal{D} .
\end{array}
$$

Output: $g^{D} \in G$

Initialise table: $T[d] \leftarrow 1_{G}$ for all $d \in \mathcal{D} \backslash\{0\}$.
$P \leftarrow g$
for $i \leftarrow 0$ to $n-1$ do $\{$
if $d_{i} \neq 0$ then $T\left[d_{i}\right] \leftarrow T\left[d_{i}\right] \times P$
if $i \neq n-1$ then $\left.P \leftarrow P^{r_{i}}\right\}$
return $\prod_{d \in \mathcal{D} \backslash\{0\}} T[d]^{d}$
didnd insuld Information Security Group

A Compact Right-to-Left Algorithm (Arith13, 1997)

Inputs: $g \in G$,

$$
\begin{array}{r}
D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N} \\
\text { where }\left(r_{i}, d_{i}\right) \in \mathcal{R} \times \mathcal{D}
\end{array}
$$

Output: $g^{D} \in G$

$$
\begin{aligned}
& T \leftarrow 1_{G} \\
& P \leftarrow g \\
& \text { for } i \leftarrow 0 \text { to } n-1 \text { do }\{ \\
& \quad \text { if } d_{i} \neq 0 \text { then } T \leftarrow T \times P^{d_{i}} \\
& \left.\quad \text { if } i \neq n-1 \text { then } P \leftarrow P^{r_{i}}\right\} \\
& \text { return } T
\end{aligned}
$$

The loop body involves computing $P^{d_{i}}$ en route to $P^{r_{i}}$.

The Transposition Method

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

The Computational Di-Graph

An addition chain for D yields a computational, acyclic di-graph:

Here is that for

$$
1+1=2 ; 1+2=3 ; 2+3=5 .
$$

For convenience, nodes are numbered so n_{d} represents g^{d}.

- Addition $i+j=k$ gives directed edges $n_{i} n_{k}$ and $n_{j} n_{k}$.
- It is acyclic, with a single root n_{1} and a single leaf n_{5}.
- All nodes except root n_{1} have input degree 2 as all op ${ }^{5}$ are binary.
- \#Ops $=\#$ Nodes $-1=\frac{1}{2} \#$ Edges.
- By induction, $D=\#$ paths from n_{1} to n_{D}.

Di-Graph for the Transpose Method

- Reverse the edges for the "transposition" method. Node inputs are again multiplied together.
- Path count is D, as before. So it again computes g^{D}.
- Nodes may need merging or expanding to restore in-degree 2. The \#binary operations is not changed: $\frac{1}{2} \#$ edges.
- This reverses the addition chain in some sense.
- It doesn't preserve space requirements and without care, sq^{g} \& mult ${ }^{\mathrm{n}}$ counts may change.

Space Duality

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

Space-Aware Addition Chains

Definition. For a given set of registers, take five classes of "atomic" ops:

- Copying one register to another;
- Copying one register to another \& initialising source register to 1_{G};
- In-place squaring of the contents of one register;
- Multiplying two different registers into one of the input registers;
- Multiplying two different registers into one of the input registers, \& initialising the other input to 1_{G}.

A space-aware addition chain is a sequence of such operations in which the registers are named.

Every addition chain can be written as a space-aware addition chain.

Matrix Representation - Space

For a device with two locations, matrix examples of each class are:

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \text { and }\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] .
$$

They act on a column vector containing the values in each register.
By omitting more general $\mathrm{op}^{\mathrm{ns}}$, this set is closed under transposition.

- Copy (without initialise) becomes multiplication with initialise, and vice versa. (The red matrices.)
- Other operations stay in their class under transposition.

Definition. The dual of a space-aware chain is its transpose. (The transposed operations are applied in reverse order.)
The dual uses the same space but may not have the same mult ${ }^{n}$ count.

Matrix Representation - Space

For a device with two locations, matrix examples of each class are:

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \text { and }\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] .
$$

They act on a column vector containing the values in each register.
By omitting more general $\mathrm{op}^{\mathrm{ns}}$, this set is closed under transposition.

- Copy (without initialise) becomes multiplication with initialise, and vice versa. (The red matrices.)
- Other operations stay in their class under transposition.

Definition. The dual of a space-aware chain is its transpose. (The transposed operations are applied in reverse order.)
The dual uses the same space but may not have the same mult ${ }^{n}$ count.

Matrix Representation - Space

For a device with two locations, matrix examples of each class are:

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], \text { and }\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right] .
$$

They act on a column vector containing the values in each register.
By omitting more general $\mathrm{op}^{\mathrm{ns}}$, this set is closed under transposition.

- Copy (without initialise) becomes multiplication with initialise, and vice versa. (The red matrices.)
- Other operations stay in their class under transposition.

Definition. The dual of a space-aware chain is its transpose.
(The transposed operations are applied in reverse order.)
The dual uses the same space but may not have the same mult ${ }^{n}$ count.

The Dual Chain - An Example

$$
R 3 \leftarrow R 2 ; R 3 \leftarrow R 2+R 3 ; R 1 \leftarrow, R 2 ; R 2 \leftarrow, R 3 ; R 2 \leftarrow, R 1+R 2
$$

In matrices acting on a col ${ }^{m n}$ vector:

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The dual (the transpose) is:
$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0\end{array}\right]$
i.e. $R 1 \leftarrow R 2 ; R 3 \leftarrow, R 2 ; R 2 \leftarrow, R 1 ; R 2 \leftarrow R 2+R 3 ; R 2 \leftarrow, R 2+R 3$

- Both have two multiplications and no squarings.
- Both compute g^{3} from $g \in G$ with R_{2} for I/O.

Extra Requirements

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

The Main Problems

1 \#Mults may not be preserved in the dual as copying becomes mult ${ }^{n}$ with initialisation.

2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:
■ Select the initialising op ${ }^{n}$ when possible.
■ Eliminate 1_{G} as an operand.

- Remove operations whose output is not used.
- Fix a subset of registers for I/O.
(An I/O register must read input and write non-trivial output.)
Definition. A space-aware chain is normalised if the above hold.

RSNCONFERENCE2012

The Main Problems

1 \#Mults may not be preserved in the dual as copying becomes mult ${ }^{\mathrm{n}}$ with initialisation.

2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:
■ Select the initialising op ${ }^{n}$ when possible.

- Eliminate 1_{G} as an operand.
- Remove operations whose output is not used.
- Fix a subset of registers for I/O.
(An I/O register must read input and write non-trivial output.)
Definition. A space-aware chain is normalised if the above hold.

The Main Problems

[1 \#Mults may not be preserved in the dual as copying becomes mult ${ }^{\mathrm{n}}$ with initialisation.
2 The dual chain may not compute the same value unless the matrix product is symmetric.

To overcome the first of these, extra conditions are required:

- Select the initialising op^{n} when possible.
- Eliminate 1_{G} as an operand.
- Remove operations whose output is not used.
- Fix a subset of registers for I/O.
(An I/O register must read input and write non-trivial output.)
Definition. A space-aware chain is normalised if the above hold.

Counting Ones

Instances of 1_{G} or \perp arise from:
a) Initial value of a non-input register.
b) Initialised by copy or mult ${ }^{\mathrm{n}} \mathrm{op}^{\mathrm{n}}$.

Instances of 1_{G} or \perp finish their lives as:
c) Final value in a non-output register.
d) Overwritten by a copy $o p^{n}$.

Since $\# \mathrm{a}=\# \mathrm{c}$, we conclude $\# \mathrm{~b}=\# \mathrm{~d}$.
Subtracting the \#\{copies with init $\left.{ }^{\text {n }}\right\}$ from \#b and \#d, we have

$$
\text { \#Mult }{ }^{\text {ns }} \text { with init }{ }^{n}=\# \text { Copies without init }{ }^{n}
$$

These op ${ }^{n}$ types are swapped in the dual \& others stay as they are. So:

- Theorem. For a normalised space-aware chain, \#Mult ${ }^{\text {ns }} \& \#$ Sq $^{\text {res }}$ are the same for the dual.

Counting Ones

Instances of 1_{G} or \perp arise from:
a) Initial value of a non-input register.
b) Initialised by copy or mult ${ }^{\mathrm{n}} \mathrm{op}^{\mathrm{n}}$.

Instances of 1_{G} or \perp finish their lives as:
c) Final value in a non-output register.
d) Overwritten by a copy op^{n}.

Since \#a = \#c, we conclude \#b = \#d.
Subtracting the \#\{copies with init $\left.{ }^{\mathrm{n}}\right\}$ from $\# \mathrm{~b}$ and $\# \mathrm{~d}$, we have

$$
\# \text { Mult }^{\text {ns }} \text { with init }{ }^{\mathrm{n}}=\# \text { Copies without init }{ }^{\mathrm{n}}
$$

These op ${ }^{n}$ types are swapped in the dual \& others stay as they are. So:

- Theorem. For a normalised space-aware chain, \#Mult ${ }^{\text {ns }} \& \#$ Sq $^{\text {res }}$ are the same for the dual.

Counting Ones

Instances of 1_{G} or \perp arise from:
a) Initial value of a non-input register.
b) Initialised by copy or mult ${ }^{\mathrm{n}} \mathrm{op}^{\mathrm{n}}$.

Instances of 1_{G} or \perp finish their lives as:
c) Final value in a non-output register.
d) Overwritten by a copy $o p^{n}$.

Since \#a = \#c, we conclude \#b = \#d.
Subtracting the \#\{copies with init $\left.{ }^{\text {n }}\right\}$ from \#b and \#d, we have \#Mult ${ }^{\text {ns }}$ with init ${ }^{\text {n }}=\#$ Copies without init ${ }^{\text {n }}$
These op ${ }^{n}$ types are swapped in the dual \& others stay as they are. So:

- Theorem. For a normalised space-aware chain, \#Mult ${ }^{\text {ns }} \& \#$ Sq $^{\text {res }}$ are the same for the dual.

Counting Ones

Instances of 1_{G} or \perp arise from:
a) Initial value of a non-input register.
b) Initialised by copy or mult ${ }^{\mathrm{n}} \mathrm{op}^{\mathrm{n}}$.

Instances of 1_{G} or \perp finish their lives as:
c) Final value in a non-output register.
d) Overwritten by a copy $o p^{n}$.

Since \#a = \#c, we conclude \#b = \#d.
Subtracting the \#\{copies with init $\left.{ }^{\text {n }}\right\}$ from \#b and \#d, we have \#Mult ${ }^{\text {ns }}$ with init ${ }^{\text {n }}=$ \#Copies without init ${ }^{\text {n }}$
These op ${ }^{n}$ types are swapped in the dual \& others stay as they are. So:

- Theorem. For a normalised space-aware chain, \#Mult ${ }^{\text {ns }} \& \#$ Sq $^{\text {res }}$ are the same for the dual.

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^{*} is described by the transpose M^{\top}.

Theorem a) f^{*} computes the same values as f iff its matrix is symmetric.
b) In particular, it uses the same registers for output as input.

■ In the normalised case, unused registers give columns of zeros.
■ Used, non-output registers are over-written with 1_{G} : more zeros.
■ Used, non-input registers are initialised to 1_{G} : more zeros.

- So only the sub-matrix $M_{I O}$ on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a single exponentiation and its dual compute the same values.
(Duals become unique only when written in atomic operations.)

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^{*} is described by the transpose M^{\top}.

Theorem a) f^{*} computes the same values as f iff its matrix is symmetric.
b) In particular, it uses the same registers for output as input.

■ In the normalised case, unused registers give columns of zeros.
■ Used, non-output registers are over-written with 1_{G} : more zeros.

- Used, non-input registers are initialised to 1_{G} : more zeros.
- So only the sub-matrix $M_{I O}$ on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a single exponentiation and its dual compute the same values.
(Duals become unique only when written in atomic operations.)

Symmetric Cases

If the action of a (multi-) exponentiation function f on registers is described by matrix M then a dual f^{*} is described by the transpose M^{\top}.

Theorem a) f^{*} computes the same values as f iff its matrix is symmetric.
b) In particular, it uses the same registers for output as input.

■ In the normalised case, unused registers give columns of zeros.
■ Used, non-output registers are over-written with 1_{G} : more zeros.

- Used, non-input registers are initialised to 1_{G} : more zeros.
- So only the sub-matrix $M_{I O}$ on I/O registers need be symmetric.

Theorem A normalised space-aware chain for a single exponentiation and its dual compute the same values.
(Duals become unique only when written in atomic operations.)

New Algorithms

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

High Level Algorithms

Question: When is an algorithm dualisable if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op ${ }^{\text {ns }}$ yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_{G}.
The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)
These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

High Level Algorithms

Question: When is an algorithm dualisable if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op ${ }^{\text {ns }}$ yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_{G}.
The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)
These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

High Level Algorithms

Question: When is an algorithm dualisable if its steps are more complex than the atomic operations?

We want to be able to decompose steps independently into atomic op ${ }^{\text {ns }}$ yet obtain the normalised property when all steps are concatenated.

Solution: For each step the values initially in its non-input registers must not be used and its used non-output registers must be reset to 1_{G}.

The output registers for one step must be the input registers for the next. (Include unused registers in the I/O set for convenience here.)
These are only requirements on how steps are realised as space-aware chains. So not a restriction on algorithm formulation.

Definition The dual of a high level exponentiation algorithm is that given by transposing its steps and reversing their order.

An "Old" Algorithm (Arith13, 1997)

Inputs: $g \in G, \quad D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N}$
Output: $g^{D} \in G$

$$
\begin{aligned}
& T \leftarrow 1_{G} \\
& P \leftarrow g \\
& \text { for } i \leftarrow 0 \text { to } n-1 \text { do }\{ \\
& \quad \text { if } d_{i} \neq 0 \text { then } T \leftarrow T \times P^{d_{i}} \\
& \left.\quad \text { if } i \neq n-1 \text { then } P \leftarrow P^{r_{i}}\right\} \\
& \text { return } T
\end{aligned}
$$

The loop body involves computing $P^{d_{i}}$ en route to $P^{r_{i}}$.

One Iteration

Base/digit pairs (r, d) are chosen for compact, fast performance. Specifically at most one register in addition to P and T.
e.g. $r=2^{i} \pm 1, d=2^{j}$ will involve i squarings \& 2 mults s.

It avoids a table entry for each d.
There is now a dual algorithm using the same space - only three registers.
The step $T \leftarrow T P^{d}, P \leftarrow P^{r}$ is achieved by $\left[\begin{array}{ll}r & 0 \\ d & 1\end{array}\right]=\left[\begin{array}{ll}r & d \\ 0 & 1\end{array}\right]^{\top}$.
So the transpose performs the dual op ${ }^{n} P \leftarrow P^{r} T^{d}$.
The sequence of $o p^{5}$ is easily determined via the dual.

One Iteration

Base/digit pairs (r, d) are chosen for compact, fast performance. Specifically at most one register in addition to P and T.
e.g. $r=2^{i} \pm 1, d=2^{j}$ will involve i squarings \& 2 mult s.

It avoids a table entry for each d.
There is now a dual algorithm using the same space - only three registers.
The step $T \leftarrow T P^{d}, P \leftarrow P^{r}$ is achieved by $\left[\begin{array}{ll}r & 0 \\ d & 1\end{array}\right]=\left[\begin{array}{ll}r & d \\ 0 & 1\end{array}\right]^{\top}$.
So the transpose performs the dual op ${ }^{n} P \leftarrow P^{r} T^{d}$.
The sequence of $o p^{5}$ is easily determined via the dual.

A New Compact Left-to-Right Algorithm

Inputs: $g \in G, \quad D=\left(\left(d_{n-1} r_{n-2}+d_{n-2}\right) r_{n-3}+\ldots+d_{1}\right) r_{0}+d_{0} \in \mathbb{N}$
Output: $g^{D} \in G$

$$
\begin{aligned}
& T \leftarrow g \\
& P \leftarrow 1_{G} \\
& \text { for } i \leftarrow n-1 \text { downto } 0 \text { do } \\
& \quad P \leftarrow P^{r_{i}} \times T^{d_{i}}
\end{aligned}
$$

return P

Loop iterations are computed as described on last slide.
It is the dual of the previous R2L algorithm, as just derived.

The Value of the Algorithm

■ "Table-less" exponentiation - useful in constrained environments.

- If space for only three registers and division has the same cost as mult ${ }^{\mathrm{n}}$, the compact algorithms are faster.
- A left-to-right version allows better use of composite op ${ }^{\text {s }}$, e.g. double-and-add, triple-and-add, quintuple-and-add.
- Recoding is done on-the-fly for R2L $\exp ^{\mathrm{n}}$; in advance for L2R $\exp ^{\mathrm{n}}$. The recoding typically needs up to 3 times the storage space of D.

Conclusion

1 Background

2 The Transposition Method

3 Space Duality

4 Extra Requirements

5 New Algorithms

6 Conclusion

Summary \& Final Remarks

■ A general setting enabling most $\exp ^{n}$ algorithms to be described naturally, namely a mixed base recoding.

■ A new space- and time-preserving duality between left-to-right and right-to-left $\exp ^{n}$ algorithms.

■ A new tableless $\exp ^{n}$ algorithm. It enables new speed records to be set in certain environments.

■ New understanding of $\exp ^{n}$ is possible, e.g. a comparison of R2L initialisation with L2R finalisation steps.

■ . .

Summary \& Final Remarks

■ A general setting enabling most exp ${ }^{n}$ algorithms to be described naturally, namely a mixed base recoding.

- A new space- and time-preserving duality between left-to-right and right-to-left exp ${ }^{\mathrm{n}}$ algorithms.
- A new tableless $\exp ^{n}$ algorithm.

It enables new speed records to be set in certain environments.

- New understanding of exp ${ }^{n}$ is possible, e.g. a comparison of R2L initialisation with L2R finalisation steps.
-..

Summary \& Final Remarks

■ A general setting enabling most exp ${ }^{n}$ algorithms to be described naturally, namely a mixed base recoding.

- A new space- and time-preserving duality between left-to-right and right-to-left exp ${ }^{\mathrm{n}}$ algorithms.
- A new tableless $\exp ^{n}$ algorithm. It enables new speed records to be set in certain environments.
- New understanding of exp ${ }^{n}$ is possible, e.g. a comparison of R2L initialisation with L2R finalisation steps.
-..

Summary \& Final Remarks

■ A general setting enabling most exp ${ }^{n}$ algorithms to be described naturally, namely a mixed base recoding.

- A new space- and time-preserving duality between left-to-right and right-to-left exp ${ }^{n}$ algorithms.
- A new tableless $\exp ^{n}$ algorithm. It enables new speed records to be set in certain environments.
- New understanding of exp ${ }^{n}$ is possible, e.g. a comparison of R2L initialisation with L2R finalisation steps.

■...

Summary \& Final Remarks

- A general setting enabling most $\exp ^{n}$ algorithms to be described naturally, namely a mixed base recoding.
- A new space- and time-preserving duality between left-to-right and right-to-left $\exp ^{n}$ algorithms.
- A new tableless $\exp ^{n}$ algorithm. It enables new speed records to be set in certain environments.
- New understanding of $\exp ^{n}$ is possible, e.g. a comparison of R2L initialisation with L2R finalisation steps.

■ . .

Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves

Nicolas Estibals
CARAMEL project-team, LORIA, Université de Lorraine / CNRS / INRIA, France Nicolas.Estibals@loria.fr

Joint work with:
Diego F. Aranha Institute of Computing, University of Campinas, Brazil
Jean-Luc Beuchat Graduate School of Systems and Information Engineering, University of Tsukuba, Japan
Jérémie Detrey CARAMEL project-team, LORIA, INRIA / Université de Lorraine / CNRS, France

UNIVERSITÉ DE LORRAINE

Pairings and cryptology

- used as a primitive in many protocols and devices
- Boneh-Lynn-Shacham short signature
- Boneh-Franklin identity-based encryption

Pairings and cryptology

- used as a primitive in many protocols and devices
- Boneh-Lynn-Shacham short signature
- Boneh-Franklin identity-based encryption
- ...
- implementations needed for various targets
- online server \rightarrow high-speed software
- smart card \rightarrow low-resource hardware
- reach 128 bits of security (equivalent to AES)

What's a cryptographic pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}
$$

- where $\left(\mathbb{G}_{1},+\right),\left(\mathbb{G}_{2},+\right)$ and $\left(\mathbb{G}_{T}, \times\right)$ are cyclic groups of order ℓ
- The discrete logarithm problem should be hard on these groups

What's a cryptographic pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}
$$

- where $\left(\mathbb{G}_{1},+\right),\left(\mathbb{G}_{2},+\right)$ and $\left(\mathbb{G}_{T}, \times\right)$ are cyclic groups of order ℓ
- The discrete logarithm problem should be hard on these groups
- Bilinear map:

$$
e(a P, b Q)=e(P, Q)^{a b}
$$

What's a cryptographic pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}
$$

- where $\left(\mathbb{G}_{1},+\right),\left(\mathbb{G}_{2},+\right)$ and $\left(\mathbb{G}_{T}, \times\right)$ are cyclic groups of order ℓ
- The discrete logarithm problem should be hard on these groups
- Bilinear map:

$$
e(a P, b Q)=e(P, Q)^{a b}
$$

- Symmetric pairing (Type-1): $\mathbb{G}_{1}=\mathbb{G}_{2}$, exploited by some protocols

What's a cryptographic pairing

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \longrightarrow \mathbb{G}_{T}
$$

- where $\left(\mathbb{G}_{1},+\right),\left(\mathbb{G}_{2},+\right)$ and $\left(\mathbb{G}_{T}, \times\right)$ are cyclic groups of order ℓ
- The discrete logarithm problem should be hard on these groups
- Bilinear map:

$$
e(a P, b Q)=e(P, Q)^{a b}
$$

- Symmetric pairing (Type-1): $\mathbb{G}_{1}=\mathbb{G}_{2}$, exploited by some protocols
- Choice of the groups:
- $\mathbb{G}_{1}, \mathbb{G}_{2}$: related to an algebraic curve
- \mathbb{G}_{T} : related to the field of definition of the curve

Classical choice of curves

Barreto-Naehrig curves

+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Classical choice of curves

Barreto-Naehrig curves

+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

+ Symmetric pairing
Thanks to a distortion map
$\psi: \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$
+ Small characteristic arithmetic \Rightarrow No carry propagation
- Not suited to 128-bit security level

Larger base field: $\mathbb{F}_{2^{1223}}, \mathbb{F}_{3509}$

Classical choice of curves

Barreto-Naehrig curves

+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

+ Symmetric pairing
Thanks to a distortion map
$\psi: \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$
+ Small characteristic arithmetic \Rightarrow No carry propagation
- Not suited to 128-bit security level

Larger base field: $\mathbb{F}_{2^{1223}}, \mathbb{F}_{3509}$

Classical choice of curves

Barreto-Naehrig curves

+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

+ Symmetric pairing
Thanks to a distortion map
$\psi: \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$
+ Small characteristic arithmetic
\Rightarrow No carry propagation
- Not suited to 128-bit security level

Larger base field: $\mathbb{F}_{2^{1223}}, \mathbb{F}_{3509}$

- Solutions to the large base field needed by supersingular curves
- (Pairing 2010) Use fields of composite extension degree: benefit from faster field arithmetic but requires careful security analysis

Classical choice of curves

Barreto-Naehrig curves

+ Lots of literature
+ Huge optimization efforts
+ Suited for 128 bits of security
- Arithmetic modulo $p \approx 256$ bits
- No symmetric pairing

Supersingular elliptic curves

+ Symmetric pairing
Thanks to a distortion map
$\psi: \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}$
+ Small characteristic arithmetic \Rightarrow No carry propagation
- Not suited to 128-bit security level

Larger base field: $\mathbb{F}_{2^{1223}}, \mathbb{F}_{3509}$

- Solutions to the large base field needed by supersingular curves
- (Pairing 2010) Use fields of composite extension degree: benefit from faster field arithmetic but requires careful security analysis
- (This work) Use genus-2 hyperelliptic curves: base field will be $\mathbb{F}_{2^{367}}$

Elliptic curves

$$
\begin{gathered}
E / K: y^{2}+h(x) \cdot y=f(x) \\
\text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{gathered}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

Elliptic curves

- $E(K)$ is a group

$$
\begin{aligned}
& E / K: y^{2}+h(x) \cdot y=f(x) \\
& \text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{aligned}
$$

- In practice: K is a finite field \mathbb{F}_{q}
- $E\left(\mathbb{F}_{q}\right)$ is a finite group

Elliptic curves

- $E(K)$ is a group

$$
\begin{gathered}
E / K: y^{2}+h(x) \cdot y=f(x) \\
\text { with } \operatorname{deg} h \leq 1 \text { and } \operatorname{deg} f=3
\end{gathered}
$$

- In practice: K is a finite field \mathbb{F}_{q}
- $E\left(\mathbb{F}_{q}\right)$ is a finite group
- ℓ : a large prime dividing $\# E\left(\mathbb{F}_{q}\right)$
- Use the cyclic subgroup

$$
E\left(\mathbb{F}_{q}\right)[\ell]=\{P \mid[\ell] P=\mathcal{O}\}
$$

Genus-2 hyperelliptic curves

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

- But pairs of points
$\left\{P_{1}, P_{2}\right\}$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

- But pairs of points
$\left\{P_{1}, P_{2}\right\}$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

- But pairs of points
$\left\{P_{1}, P_{2}\right\}$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

- More formally
- use the Jacobian
$\operatorname{Jac}_{C}(K)$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

- More formally
- use the Jacobian
$\operatorname{Jac}_{C}(K)$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

$$
\text { with } \operatorname{deg} h \leq 2 \text { and } \operatorname{deg} f=5
$$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

- More formally
- use the Jacobian
$\operatorname{Jac}_{C}(K)$
- general form of the elements (called divisor) $D_{P}=\left(P_{1}\right)+\left(P_{2}\right)-2(\mathcal{O})$

Genus-2 hyperelliptic curves

- $C(K)$ not a group!

$$
C / K: y^{2}+h(x) \cdot y=f(x)
$$

with $\operatorname{deg} h \leq 2$ and $\operatorname{deg} f=5$

- But pairs of points

$$
\left\{P_{1}, P_{2}\right\}
$$

- More formally
- use the Jacobian
$\operatorname{Jac}_{C}(K)$
- general form of the elements (called divisor) $D_{P}=\left(P_{1}\right)+\left(P_{2}\right)-2(\mathcal{O})$
- degenerate form

$$
(P)-(\mathcal{O})
$$

Computing the pairing: Miller's algorithm (elliptic case)

$$
e: \quad \mathbb{G}_{1} \times \mathbb{G}_{2} \quad \longrightarrow \mathbb{G}_{T}
$$

- Reduced Tate pairing

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
& e: E\left(\mathbb{F}_{q}\right)[\ell] \times \mathbb{G}_{2} \\
& P
\end{aligned}
$$

- Reduced Tate pairing

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
e: E\left(\mathbb{F}_{q}\right)[\ell] & \times E\left(\mathbb{F}_{q^{k}}\right)[\ell] \longrightarrow \mathbb{G}_{T} \\
P & , Q
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
& e: E\left(\mathbb{F}_{q}\right)[\ell] \times E\left(\mathbb{F}_{q^{k}}\right)[] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*} \\
& P, Q \quad \longmapsto f_{\ell, P}(Q)^{\frac{q^{x}-1}{c}}
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
& e: E\left(\mathbb{F}_{q}\right)[\ell] \times E\left(\mathbb{F}_{q^{k}}\right)[] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*} \\
& P, Q \quad \longmapsto f_{\ell, P}(Q)^{\frac{q^{k^{2}-1}}{l}}
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)
- Miller functions: $f_{n, P}$

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
e: E\left(\mathbb{F}_{q}\right)\left[[] \times E\left(\mathbb{F}_{\left.q^{k}\right)}[]\right.\right. & \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{*}}^{*} \\
P, Q & \longmapsto f_{\ell, p}(Q)^{\frac{\varepsilon_{k}}{\epsilon}}
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)
- Miller functions: $f_{n, P}$
- an inductive identity

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
e: E\left(\mathbb{F}_{q}\right)[\ell] & \times E\left(\mathbb{F}_{q^{k}}\right)[\ell] \\
P & \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q_{k}^{k}}^{*} \\
P & \longmapsto f_{\ell, P}(Q)^{q^{k}-1} \ell
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)
- Miller functions: $f_{n, P}$
- an inductive identity

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

- $g_{[n] P,\left[n^{\prime}\right] P}$ derived from the addition of $[n] P$ and $\left[n^{\prime}\right] P$

Computing the pairing: Miller's algorithm (elliptic case)

$$
\begin{aligned}
e: E\left(\mathbb{F}_{q}\right)\left[[] \times E\left(\mathbb{F}_{\left.q^{*}\right)}[]\right.\right. & \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{*}}^{*} \\
P, Q & \longmapsto f_{\ell, P}(Q)^{\frac{\varepsilon^{*}-1}{c}}
\end{aligned}
$$

- Reduced Tate pairing
- k : embedding degree (curve parameter)
- Miller functions: $f_{n, P}$
- an inductive identity

$$
\begin{aligned}
f_{1, P} & =1 \\
f_{n+n^{\prime}, P} & =f_{n, P} \cdot f_{n^{\prime}, P} \cdot g_{[n] P,\left[n^{\prime}\right] P}
\end{aligned}
$$

- $g_{[n] P,\left[n^{\prime}\right] P}$ derived from the addition of $[n] P$ and $\left[n^{\prime}\right] P$
- compute $f_{\ell, P}$ thanks to an addition
 chain
- in practice: double-and-add $\log _{2} \ell$ iterations

Miller's algorithm (hyperelliptic case)

$$
e: \quad \mathbb{G}_{1} \times \mathbb{G}_{2} \quad \longrightarrow \mathbb{G}_{T}
$$

Miller's algorithm (hyperelliptic case)

$$
e: \operatorname{Jac}_{c}\left(\mathbb{F}_{q}\right)[\ell] \times \operatorname{Jac}_{(}\left(\mathbb{F}_{q^{*}}\right)[\ell] \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{*}}^{*}
$$

Miller's algorithm (hyperelliptic case)

$$
\left.\left.\begin{array}{rl}
e: \operatorname{Jac}_{C}\left(\mathbb{F}_{q}\right)[\ell] & \times \operatorname{Jac}_{C}\left(\mathbb{F}_{q^{k}}\right)[\ell]
\end{array}\right) \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*}\right)
$$

- Hyperelliptic Miller functions: $f_{n, D}$
- same inductive identity

$$
\begin{aligned}
f_{1, D} & =1 \\
f_{n+n^{\prime}, D} & =f_{n, D} \cdot f_{n^{\prime}, D} \cdot g_{[n] D,\left[n^{\prime}\right] D}
\end{aligned}
$$

Miller's algorithm (hyperelliptic case)

$$
\left.\left.\begin{array}{rl}
e: \operatorname{Jac}_{C}\left(\mathbb{F}_{q}\right)[\ell] & \times \operatorname{Jac}_{C}\left(\mathbb{F}_{q^{k}}\right)[\ell]
\end{array}\right) \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*}\right)
$$

- Hyperelliptic Miller functions: $f_{n, D}$
- same inductive identity

$$
\begin{aligned}
f_{1, D} & =1 \\
f_{n+n^{\prime}, D} & =f_{n, D} \cdot f_{n^{\prime}, D} \cdot g_{[n] D,\left[n^{\prime}\right] D}
\end{aligned}
$$

- $g_{[n] D,\left[n^{\prime}\right] D}$ derived from the addition of $[n] D$ and $\left[n^{\prime}\right] D$
- use Cantor's addition algorithm

Miller's algorithm (hyperelliptic case)

$$
\left.\left.\begin{array}{rl}
e: \operatorname{Jac}_{C}\left(\mathbb{F}_{q}\right)[\ell] & \times \operatorname{Jac}_{C}\left(\mathbb{F}_{q^{k}}\right)[\ell]
\end{array}\right) \longrightarrow \mu_{\ell} \subset \mathbb{F}_{q^{k}}^{*}\right)
$$

- Hyperelliptic Miller functions: $f_{n, D}$
- same inductive identity

$$
\begin{aligned}
f_{1, D} & =1 \\
f_{n+n^{\prime}, D} & =f_{n, D} \cdot f_{n^{\prime}, D} \cdot g_{[n] D,\left[n^{\prime}\right] D}
\end{aligned}
$$

- $g_{[n] D,\left[n^{\prime}\right] D}$ derived from the addition of $[n] D$ and $\left[n^{\prime}\right] D$
- use Cantor's addition algorithm
- double-and-add algorithm $\log _{2} \ell$ iterations
- iterations are more complex

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
$\Rightarrow \# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
$\Rightarrow \# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$
- Key property of the curve:

$$
[2]((P)-(\mathcal{O}))=(P)+(P)-2(\mathcal{O})
$$

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
$\Rightarrow \# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$
- Key property of the curve:

$$
\begin{aligned}
& {[2]((P)-(\mathcal{O}))=(P)+(P)-2(\mathcal{O})} \\
& {[4]((P)-(\mathcal{O}))=\left(P_{4}\right)+\left(P_{4}^{\prime}\right)-2(\mathcal{O})}
\end{aligned}
$$

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
- $\# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$
- Key property of the curve:

$$
\begin{aligned}
& {[2]((P)-(\mathcal{O}))=(P)+(P)-2(\mathcal{O})} \\
& {[4]((P)-(\mathcal{O}))=\left(P_{4}\right)+\left(P_{4}^{\prime}\right)-2(\mathcal{O})} \\
& {[8]((P)-(\mathcal{O}))=\left(P_{8}\right)-(\mathcal{O})}
\end{aligned}
$$

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
$\Rightarrow \# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$
- Key property of the curve:

$$
\begin{aligned}
& {[2]((P)-(\mathcal{O}))=(P)+(P)-2(\mathcal{O})} \\
& {[4]((P)-(\mathcal{O}))=\left(P_{4}\right)+\left(P_{4}^{\prime}\right)-2(\mathcal{O})} \\
& {[8]((P)-(\mathcal{O}))=([8] P)-(\mathcal{O})}
\end{aligned}
$$

- octupling acts on the curve

Genus-2 binary supersingular curve: our choice

$$
C_{d} / \mathbb{F}_{2^{m}}: y^{2}+y=x^{5}+x^{3}+d \text { with } d \in \mathbb{F}_{2}
$$

- A distortion map exists: symmetric pairing
$\Rightarrow \# \operatorname{Jac}_{C_{d}}\left(\mathbb{F}_{2^{m}}\right)=2^{2 m} \pm 2^{(3 m+1) / 2}+2^{m} \pm 2^{(m+1) / 2}+1$
- Embedding degree of the curve: $k=12$
- For 128 bits of security: $\mathbb{F}_{2^{m}}=\mathbb{F}_{2^{367}}$ and $d=0$
- Key property of the curve:

$$
\begin{aligned}
& {[2]((P)-(\mathcal{O}))=(P)+(P)-2(\mathcal{O})} \\
& {[4]((P)-(\mathcal{O}))=\left(P_{4}\right)+\left(P_{4}^{\prime}\right)-2(\mathcal{O})} \\
& {[8]((P)-(\mathcal{O}))=([8] P)-(\mathcal{O})}
\end{aligned}
$$

- octupling acts on the curve
- $f_{8, D}$ has a much simpler expression than $f_{2, D}$

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add			
\#iterations	$2 m$			

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add		
\#iterations	$2 m$	$\frac{2 m}{3}$		

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add	Barreto et al. η_{T} pairing	
\#iterations	$2 m$	$\frac{2 m}{3}$	$\frac{m}{2}$	

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!
- η_{T} pairing: Miller function is $f_{ \pm 2^{(3 m+1) / 2}-1, D_{1}}$

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add	Barreto et al. η_{T} pairing	Optimal Ate pairing
\#iterations	$2 m$	$\frac{2 m}{3}$	$\frac{m}{2}$	$\frac{m}{6}$

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!
- η_{T} pairing: Miller function is $f_{ \pm 2^{2(3 m+1) / 2}-1, D_{1}}$
- Optimal Ate pairing
- distortion map ψ is much more complex
- iterations would be roughly twice as expensive
- optimal Ate pairing not considered here

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add	Barreto et al. η_{T} pairing	This paper Optimal Eta pairing
\#iterations	$2 m$	$\frac{2 m}{3}$	$\frac{m}{2}$	$\frac{m}{6}$

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!
- η_{T} pairing: Miller function is $f_{ \pm 2^{(3 m+1) / 2}-1, D_{1}}$
- Optimal Ate pairing
- distortion map ψ is much more complex
- iterations would be roughly twice as expensive
- optimal Ate pairing not considered here
- Optimal Eta pairing

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add	Barreto et al. η_{T} pairing	This paper Optimal Eta pairing
\#iterations	$2 m$	$\frac{2 m}{3}$	$\frac{m}{2}$	$\frac{m}{6}$

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!
- η_{T} pairing: Miller function is $f_{ \pm 2(3 m+1) / 2-1, D_{1}}$
- Optimal Ate pairing
- distortion map ψ is much more complex
- iterations would be roughly twice as expensive
- optimal Ate pairing not considered here
- Optimal Eta pairing
- cannot use 2^{m}-th power Verschiebung: does not act on the curve

Constructing the Optimal Eta pairing

Algorithm	Tate double \& add	Tate octuple \& add	Barreto et al. η_{T} pairing	This paper Optimal Eta pairing
\#iterations	$2 m$	$\frac{2 m}{3}$	$\frac{m}{2}$	$\frac{m}{3}$

- Vanilla Tate pairing: $\log _{2} \ell \approx \log _{2} \# \operatorname{Jac}_{C}\left(\mathbb{F}_{2^{m}}\right) \approx 2 m$ doublings
- Use of octupling: simpler iteration also!
- η_{T} pairing: Miller function is $f_{ \pm 2^{(3 m+1) / 2}-1, D_{1}}$
- Optimal Ate pairing
- distortion map ψ is much more complex
- iterations would be roughly twice as expensive
- optimal Ate pairing not considered here
- Optimal Eta pairing
- cannot use 2^{m}-th power Verschiebung: does not act on the curve
- but can use $2^{3 m}$-th power Verschiebung
- 33\% improvement compared to Barreto et al.'s work

Considering degenerate divisors

- Some protocols allow to choose the form of one or two input divisors
- Consider degenerate divisors of the form

$$
(P)-(\mathcal{O})
$$

- only 2 coordinates in $\mathbb{F}_{2^{m}}$ to represent such a divisor (instead of 4 coordinates for a general one)
- since octupling acts on the curve:

$$
[8]((P)-(\mathcal{O}))=([8] P)-(\mathcal{O})
$$

- we can work with a point!

Considering degenerate divisors

- Some protocols allow to choose the form of one or two input divisors
- Consider degenerate divisors of the form

$$
(P)-(\mathcal{O})
$$

- only 2 coordinates in $\mathbb{F}_{2^{m}}$ to represent such a divisor (instead of 4 coordinates for a general one)
- since octupling acts on the curve:

$$
[8]((P)-(\mathcal{O}))=([8] P)-(\mathcal{O})
$$

- we can work with a point!
- We may compute the pairing of
- two general divisors (GG)
- one degenerate and one general divisor (DG)
* halves the amount of computation
* lot of protocols allow this
- two degenerate divisors (DD)
* halves again the amount of computation
\star some protocols still compatible

Software implementation

- Implementations for Intel Core 2

Computation time ($\times 10^{6}$ cycles)

Software implementation

- Implementations for Intel Core 2 and Nehalem architecture
- Use of the native binary field multiplier on Nehalem

Computation time ($\times 10^{6}$ cycles)

Hardware implementation

- Optimal Eta pairing on general divisors
- Implemented on a finite field coprocessor $\mathbb{F}_{2^{367}}$
- addition
- multiplication
- Frobenius endomorphism
- Post place-and-route estimations on a Virtex 6-LX 130 T results

Implementation	Curve	Area (device usage)	Time $(\mathbf{m s})$	Area \times time
Cheung et al.	$E\left(\mathbb{F}_{p_{254}}\right)$	35%	0.57	4.03
Ghosh et al.	$E\left(\mathbb{F}_{2^{1223}}\right)$	76%	0.19	2.88
Estibals	$E\left(\mathbb{F}_{3^{5.97}}\right)$	8%	1.73	2.68
This work	$C_{0}\left(\mathbb{F}_{2^{367}}\right)(\mathrm{GG})$	7%	3.09	4.30

Conclusion

- A novel pairing algorithm shortening Miller's loop
- Competitive timings compared to genus-1 pairings
- Comparable timings against non-symmetric pairings

Conclusion

- A novel pairing algorithm shortening Miller's loop
- Competitive timings compared to genus-1 pairings
- Comparable timings against non-symmetric pairings
- Most efficient symmetric pairing implementation
- for both software and hardware
- when at least one divisor is degenerate (DG and DD case)
- First hardware implementation of a genus-2 pairing reaching 128 bits of security

Conclusion

- A novel pairing algorithm shortening Miller's loop
- Competitive timings compared to genus-1 pairings
- Comparable timings against non-symmetric pairings
- Most efficient symmetric pairing implementation
- for both software and hardware
- when at least one divisor is degenerate (DG and DD case)
- First hardware implementation of a genus-2 pairing reaching 128 bits of security
- Perspectives
- Implement optimal Ate pairing on this curve (work in progress)
- Use theta functions for faster curve arithmetic

Thank you for your attention!

Questions?

