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encryption is not always enough

� an encryption scheme permits to hide a confidential information

� but what if one wants to make a search on the encrypted data?

� some practical use cases
− delegation of keyword search on private databases
− delegation of search to an email gateway

� different cases
− case of public vs. private database
− case of public vs. secret words
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related work

� based on symmetric-key cryptography (out of scope)

� decryptable searchable encryption
− initial work from Ostrovsky and Skeith [JoC07]
− decryptable version by Fuhr and Paillier [ProvSec07]
− use of a trapdoor to make the search
− from c and Trap(tk,m), check if c = Enc(pk,m)

� encryption with equality test
− proposed by Yang, Tan, Huang and Wong [CT-RSA10]
− search using a candidate ciphertext
− from c1 and c2, public check if Dec(sk, c1) = Dec(sk, c2)
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introduction to PCE

� PCE stands for plaintext-checkable encryption

� what do we mean by “plaintext-checkable”?
− we DO NOT need a trapdoor
− we DO NOT need a candidate ciphertext
− we only need a candidate plaintext

� from c and m, public check if c = Enc(pk,m)
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agenda

� security definition of PCE

� a generic construction in the ROM

� a practical construction in the standard model

� application to VLR group signatures
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security definition of PCE
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definition for a PCE

� as for a standard encryption scheme
− c ←− Encrypt(pk,m)
− m←− Decrypt(c, sk)

� additional public algorithm: PCheck(c ,m) returns
− 1 if c is an encryption of m
− 0 otherwise

� what can we expect for security property?
− regarding indistinguishability (IND)
− we focus on a Chosen Plaintext Attack (CPA) adversary
− similar work can be done in the Chosen Ciphertext Attack (CCA)

case
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IND-CPA?

� let Π = (G, E ,D) be a probabilistic encryption scheme

� experiment Expind-cpa
Π,A (k)

− b
$←− {0, 1}

− (pk, sk)← G(1k)
− (m0,m1, st)← Af (1k , pk)
− c ← E(1k , pk,mb)
− b′ ← Ag (1k , c, st)
− return (b′ = b)

� A = (Af ,Ag ) can easily win this experiment if Π is a PCE
− Ag knows m0 and m1 (by st)
− Ag can make use of the PCheck procedure with c and e.g. m0

� what else regarding indistinguishability?
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notion of high min-entropy

� the adversary can always use the PCheck procedure to test if a
randomly chosen message works

=⇒ the adversary should not be able to retrieve a given unknown
message “by chance”

Definition (High min-entropy)

– we say that an adversary A = (Af ,Ag ) has min-entropy µ if

∀k ∈ N ∀c ∀m : Pr
[
m′ ← Af (1k , c) : m′ = m

]
≤ 2−µ(k) .

– A is said to have high min-entropy if it has min-entropy µ with
µ(k) ∈ ω(log k).
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IND-DET?
� let Π = (G, E ,D) be a deterministic encryption scheme

� experiment Expind-det
Π,A (k)

− b
$←− {0, 1}

− m← Af (1k , b)
− (pk, sk)← G(1k)
− c ← E(1k , pk,m)
− b′ ← Ag (1k , pk, c)
− return (b′ = b)

� A = (Af ,Ag ) should have high min-entropy

� definition∗ given by Bellare, Fischlin, O’Neill, Ristenpart [Crypto08]

� it seems to work, but this may be not enough

� can we do better?

∗Here in the case of a message, and not a vector of messages
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a new notion called UNLINK
� infeasibility to decide if two ciphertexts encrypt the same message

� let Π = (G, E ,D) be an encryption scheme

� experiment Expunlink
Π,A (k)

− b
$←− {0, 1}

− (pk, sk)← G(1k)
− m0 ← Af (1k , pk)
− m1 ← Af (1k , pk)
− c0 ← E(1k , pk,mb)
− c1 ← E(1k , pk,m1)
− b′ ← Ag (1k , pk, c0, c1)
− return (b′ = b)

� A = (Af ,Ag ) should have high min-entropy
− otherwise, A can easily win the experiment
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relation between security properties

� in the paper, we show that
− every scheme that achieves IND-CPA achieves UNLINK
− every scheme that achieves UNLINK achieves IND-DET

IND-CPA  UNLINK  IND-DET.

� UNLINK is most of time sufficient (see group signature with VLR)

� UNLINK is the best we can hope for a PCE scheme
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can we reach the UNLINK property?

� an IND-CPA probabilistic scheme cannot be plaintext-checkable

� an IND-DET deterministic scheme cannot reach UNLINK

� using an encryption scheme with equality test
− encrypt the putative message m and make use of the “equality test”

procedure
− this scheme does not reach UNLINK since the adversary can do the

same

� using a decryptable searchable encryption
− it seems to work... but can we do better?

� three constructions in the paper
− one based on any probabilistic encryption scheme, in the ROM
− one based on any deterministic encryption scheme, in the ROM
− one based on ElGamal and secure in the standard model
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a generic construction in the ROM
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in a nutshell

� useful cryptographic tools
− let Πp = (Gp, Ep,Dp) be an IND-CPA probabilistic encryption scheme
− let H : {0, 1}∗ −→ {0, 1}`(k) be a hash function modeled as a

random oracle

� high-level idea
− the message m is encrypted using Πp

− the random coin of Πp.Ep is computed using the message m and
some randomly chosen r

− r is given together with the resulting ciphertext
− the PCheck procedure consists in re-computing the random coin,

using r and the putative message m
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in details
Algorithm KeyGen(1k )

(pk, sk)
$←− Πp .Gp(1k )

pk ← pk
sk ← sk
return (pk, sk)

Algorithm Encrypt(1k , pk,m)

pk ← pk

r
$←− {0, 1}`(k)

ρ←H(m‖r)
c ← Πp .Ep(1k , pk,m; ρ)
C ← (c, r)
return C

Algorithm Decrypt(1k , sk,C)

(c, r)← C
sk ← sk
m← Πp .Dp(1k , sk, c)
return m

Algorithm PCheck(1k , pk,C ,m)

(c, r)← C
pk ← pk
ρ←H(m‖r)
c̃ ← Πp .Ep(1k , pk,m; ρ)
if c̃ = c then return 1
else return 0

Theorem

If Πp satisfies IND-CPA, then the above PCE scheme satisfies UNLINK,
in the random oracle model.
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a practical construction in the
standard model
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based on ElGamal

� in an asymmetric bilinear group setting
− p is a prime number
− G1, G2 and GT are cyclic groups of order p
− e : G1 ×G2 −→ GT is a non-degenerated bilinear map

− ∀g , h ∈ G1 × G2, ∀a, b ∈ Zp , e(ga, hb) = e(g , h)ab

− g (resp. h) is a generator of G1 (resp. G2)

� remember ElGamal
− secret key x ∈ Z∗p , public key y = g x

− given m ∈ G1, choose r ∈R Z∗p
− c = (T1,T2) with T1 = my r and T2 = g r
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in a nutshell

� message m

� random coin r ∈R Z∗p
� ciphertext T1 = my r , T2 = g r

� adding T4 = hr

− PCheck becomes possible, using a putative m
− test if e(T1m−1, h) = e(y ,T4)

− but we do not achieved UNLINK
− given c0 = Encrypt(1k , pk,mb) and c1 = Encrypt(1k , pk,m1)
− test whether “c0/c1” encrypts 1, using PCheck!
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in a nutshell

� message m

� random coin r ∈R Z∗p
� ciphertext T1 = my r , T2 = g r

� we use a random base T3 = ha

� adding T4 = (ha)r

− PCheck is still possible
− test if e(T1m−1,T3) = e(y ,T4)

− we achieve UNLINK
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in details

Algorithm KeyGen(1k )

x
$←− Z∗p

y ← gx

(pk, sk)← (y , x)
return (pk, sk)

Algorithm Encrypt(1k , pk,m)

y ← pk

r , a
$←− Z∗p

C ← (my r , g r , ha, har )
return C

Algorithm Decrypt(1k , sk,C)

x ← sk
(T1,T2,T3,T4)← C
if e(g ,T4) 6= e(T2,T3) then return ⊥
m← T1/T x

2
return m

Algorithm PCheck(1k , pk,C ,m)

y ← pk
(T1,T2,T3,T4)← C
if e(g ,T4) 6= e(T2,T3) then return 0
if e(T1/m,T3) = e(y ,T4) then return 1
else return 0

Theorem

Under a new assumption∗, the proposed construction is a PCE scheme
which is UNLINK against adversaries outputting the uniform distribution.
∗This assumption, related to both DDH and DLIN, is secure in the generic-group model.
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application to VLR group signatures
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VLR group signatures
� group signatures

− introduced by Chaum and van Heyst in 1991
− permit group members to anonymously sign messages on behalf of

the group
− anonymity revocation by a designated authority

� membership revocation
− not easy as the signer is anonymous!
− based on the verifier local revocation (VLR)

− introduced by Boneh-Shacham [ACM-CCS04]
− the verifier has to test each entry of a revocation list before accepting

a group signature

� our contributions
− PCE is a new building block for VLR group signatures
− instantiation by a very efficient scheme
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adding the VLR property
� backward unlinkability

− the revocation of a member should not compromise the anonymity of
her previously generated group signatures

− we use the idea of Nakanishi and Funabiki [Asiacrypt05]
=⇒ time is divided into periods

� construction of one revocation token tk[i , j ] per group member i and
time period j

− revocation at j0 =⇒ publication of the revocation tokens for all j > j0
− used by the verifier to check the revocation
− tk[i , j ] cannot be revealed as it compromised the anonymity
− idea: output a PCE of tk[i , j ]

� instantiation using the Abe et al. group signatures [Crypto10]
− based on automorphic signatures
− based on Groth-Sahai NIWI proof system
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additional remarks

� security
− standard model (under the assumption that the PCE scheme is

UNLINK)
− with backward unlinkability
− (with anonymity revocation)

� efficiency (comparison with the Libert-Vergnaud (LV) scheme)
− group signature size = 12|G1|+ 18|G2| (better than LV)
− signer’s work: 6 modular exponentiations, 1 quadratic GS proof, 5

linear GS proofs (better than LV)
− revocation check: 2 pairing computations per element in the

revocation list (LV is better)
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conclusion

� we have introduced a new cryptographic tool

� we have provided several concrete instantiations
− generic construction in the ROM
− a practical construction in the standard model

� we have proved its usability
− in the case of data search in databases or in cloud storage
− in the case of VLR group signature schemes
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thank you
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Conclusion 

 

 We define CCA security of PRE.  
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CCA secure Single Use PRE.  
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construction which is CCA secure in the 
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Apply Slide 

 

 In order to use CCA secure SUPRE in cloud 
computing services, we should construct specific 
and efficient scheme by reference to our 
proposed generic construction. 

 

 We should discuss whether our generic 
construction is secure under other security 
requirements. 
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Receiver B 
(tskA.1, tskA.2) Split(tskA) 

We define Resplittable TPKE and It’s security requirements. 

 

 

 

 

 

Boneh, Boyen, and Halevi 

(CT-RSA 2006)  
Arita and Tsurudome 

(ACNS 2009)  

are examples of 

Resplittable TPKE. 

  E  (tskA.1) pkB 

tskA 



Basic Idea: Encryption and Re-Encryption 
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rkAB=(tskA.2, =E     (tskA.1)) 

cAThEnc     (m) 

A.2ThDec       (cA) 

CB  E   (cA,A.2, ) 

Sender Proxy 

Receiver A 

ReceiverB 

pkB 

tskA.2 

tpkA 

pkB 

CCA PKE 



Basic Idea: First-Level Decryption 
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A.2ThDec        (cA) 

CB  E   (cA,A.2, ) 

CB 

tskA.1  D     () 

 cA,A.2,   D     (CB) 

Receiver B 
mCom(A.1,A.2) 

pkB 

tskA.2 

dkB 

dkB 

tskA.1 

Proxy 

dkB 

rkAB=(tskA.2, =E     (tskA.1)) pkB 

A.1ThDec       (cA) 
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A.2ThDec       (cA) 

CB  E   (cA,’A.2, ) 

CB 

tskA.1  D     () 

A.1ThDec      (cA) 

 cA,’A.2,   D     (CB) 

Receiver B 
m’Com(A.1,’A.2) 

pkB 

tskA.2 

dkB 

dkB 

tskA.1 

Proxy 

The malicious proxy might encrypt  

another (invalid) . 

B has to check  

the validity of . 



Robustness of TPKE 
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ThV(c,,tvk) (in)valid 

 

 

 

 

 

Boneh, Boyen, and Halevi 

(CT-RSA 2006)  
Arita and Tsurudome 

(ACNS 2009)  

are examples of 

Robustness TPKE. 

using Paring Computation 



Modified Scheme 
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A.2ThDec       (cA) 

CB  E   (cA,A.2,,tvk) 

CB 

tskA.1  D     () 

Receiver B 
mCom(A.1,A.2) 

pkB 

tskA.2 

dkB 

dkB 

tskA.1 

Proxy 

rkAB=(tskA.2, =E     (tskA.1), tvk) pkB 

A.1ThDec      (cA) 

 cA,A.2,  ,tvkD    (CB) 

 If valid ThV(cA,A.2,tvk) 



Modified Scheme 
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A.2ThDec       (cA) 

CB  E   (cA,A.2,,tvk’≠tvk) 

CB 

tskA.1  D     () 

Receiver B 
mComb(A.1,A.2) 

pkB 

tskA.2 

dkB 

dkB 

tskA.1 

Proxy 

rkAB=(tskA.2, =E     (tskA.1), tvk) pkB 

A.1ThDec      (cA) 

 cA,A.2,,tvk’D    (CB) 

 If invalidThV(cA,A.2,tvk’) 

B cannot check whether tvk is  

generated by the original receiver.  



Rekey Generation Algorithm 

24 

rkAB=(tskA.2, , tvk, ) Receiver A 

tskA 

 Sig  (,tvk) skA 

rkAB=(tskA.2, , tvk) Receiver A 

(tvk, tskA.1, tskA.2) Split(tskA) 

  E  (tskA.1) pkB 

tskA 

(tvk, tskA.1, tskA.2) Split(tskA) 

  E  (tskA.1) pkB 

sk,vk 



25 

(tskA.2, =E     (tskA.1) ,tvk, ) 

cAThEnc     (m) 

A.2ThDec      (cA) 

CB 

tskA.1  D     () 

A.1ThDec       (cA) 

 cA,A.2,,tvk,D     (CB) 

Sender 

Receiver B 

Proxy 

mCom(A.1,A.2) 

pkB 

tskA.2 

tpkA 

dkB 

dkB 

tskA.1 

CBE     (cA,A.2,,tvk,) 

valid ThV(cA,A.2,tvk ) 

If validVer     (,tvk, ) vkA 

dkB 

pkA 



Our Contribution 
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Strongly Unforgeable 

Signature 

CCA secure PKE  

Resplittable CCA 

secure TPKE 

CCA secure  

SUPRE 



Previous Works and Our work 
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Scheme Uni/Bi Security model ROM/ 

STM 

Pairing 

computation 

[AFGH06] Uni CPA ROM ✔ 

[HRSV07] Uni CPA STM ✔ 

[CH07] Bi CCA STM ✔ 

[LV08] Uni RCCA (weak CCA) STM ✔ 

[AABH09] Uni CPA ROM ✔ 

[CWYD10] Uni CCA 

+ several restrictions 

ROM 

Ours Uni CCA STM ✔ 



Conclusion and Remark 

 

 We define CCA security of PRE.  

 We present the first generic construction of 
CCA secure Single Use PRE.  

 Via our generic construction, we present first 
construction which is CCA secure in the 
standard model. 

 We should construct specific and efficient scheme by 
reference to our proposed generic construction. 
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Thanks for your 
attention 
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