Practical realisation and elimination of an
ECC-related software bug attack

B.B. Brumley, M. Barbosa, D. Page and F. Vercauteren

Department of Information and Computer Science,
Aalto University School of Science, P.O. Box 15400, FI-00076 Aalto, Finland.
billy.brumley@aalto.fi

HASLab/INESC TEC
Universidade do Minho, Braga, Portugal.
mbb@di.uminho.pt

Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK.

page@cs.bris.ac.uk
Department of Electrical Engineering, Katholieke Universiteit Leuven,

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium.
fvercaut@esat.kuleuven.ac.be

CT-RSA 29/02/12

billy.brumley@aalto.fi
mbb@di.uminho.pt
page@cs.bris.ac.uk
fvercaut@esat.kuleuven.ac.be

Overview

» Motivation:

Quote

Decrypting ciphertexts on any computer which multiplies even one pair of numbers incorrectly can lead to full
leakage of the secret key, sometimes with a single well-chosen ciphertext.

— Biham et. al. [2, Page 1]

» Contribution:

1. an attack of this type on OpenSSL 0.9.8g, and
2. an investigation of methods to detect and prevent such attacks.

Practical realisation and eliminatio

ECC-related software bug att

Background: “bug attacks” (1)

Example: RSA bug attack

C

A D M = LTOR(C, d, N) = ¢? (mod N)

(N, d)

» Rules:

» The attacker A wants to recover the private exponent d housed in a target device D.
» Duses a (w x w)-bit integer multiplier whose operands are x and y.
» Although generalisations are possible, assume that if

1. x # aor y # 3 their product is computed correctly, but
2. x = aand y = [3 their product is computed incorrectly.

Practical realisation and elimination of an

ECC-related software bug attack

Background: “bug attacks” (2)

Algorithm (LTOR)

Input: Integers x and y, and a modulus N.
Output: The result x¥ (mod N).
t—1
fori = |y| — 1 downto 1 step —1 do
1 t — t2 (mod N)
2 if y; = 1 then
3 |t t-x (mod N)
end
end
return t

Practical realisation and elimination of an

EC ated software bug attack

Attack (Biham et. al. [2, Section 4.2])

At the j-th step, the attacker
> knows d’, some more-significant portion of the binary
expansion of d, and
» aims to recover the next less-significant unknown bit
S0 proceeds as follows:

1. Using d’, select a C st. during decryption using
LTOR, when i = j at line #2

» (3 occurs in the representation of x,
» « occurs in the representation of t
meaning that if

» y; = 1then tis then multiplied by x and the
bug is triggered,

» y; = Othen tis then squared and the bug is not
triggered.

2. Have the device decrypt C using d; if the result
» is incorrect then the bug was triggered and

hence d; = 1,
» s correct then the bug wasn't triggered and
hence d; = 0.

Feature #1: NIST-P-{256, 384} implementation (1)

Quote

The function BN_nist_mod_384 (in crypto/bn/bn_nist.c) gives wrong results for some inputs.
— Reimann [4], on the openssl-dev mailing list

Practical realisation and elimination of an

EC ated software bug attack

Feature #1: NIST-P-{256, 384} implementation (2)

Algorithm (NIST-P-256-REDUCE, per Solinas [5, Example 3, Page 20])

Input: For w = 32-bit words, a 16-word integer product z = x - y and the modulus p = 22561 o224 4 o921y 5961
Output: The result z (mod p).
1. Form the nine, 8-word intermediate variables

S = (2, zn, 2z, zz, 2, 7 Z zZ7)
S = (0 0, 0, 211, Z12, Z13, Zia, Z5)
S = (0 0, 0, zi2, Z13, Zia, Zi5,)
S = (2z, 29, 2z, O, 0, 0, Zz14, Z15)
Sq = (29, Zi0, Z11, Z13, Zi4, X5, Z3, Z3)
Ss = (z11, 2z12, z3, 0, 0, 0, zg, 210)
S = (212, z13, Z1a, Zi5, O, o, Z9, 11)
S = (23 z24, zs, %, Z9, Zios 0, Zzp)
Sg = (za, 215, O, z9, z10, 211, 0, zz3)

2. Compute
r=38y+2S8 +2S,+S3+S; — S5 — Sg — S; — Sg (mod p).

3. Return0 < r < p.

Practical realisation and elimination of an

ECC-related software bug attack

Feature #1: NIST-P-{256, 384} implementation (3)

Algorithm (NIST-P-256-REDUCE, per OpenSSL)
Input: For w = 32-bit words, a 16-word integer product z = x - y and the modulus p = 2256 — 9224 4 2192 4 596 _ 4
Output: The (potentially incorrect) result z (mod p).
1. Form the nine, 8-word intermediate variables
So = (2, =z, 2z, zz, z5 2 Z z7)
S = (0 0, 0, z11, Z12, Z13, 214, Z15)
S = (0 0, 0, zi2, 213, Zi4, Zi5, 0)
S = (z, 2, zp, O, 0, 0, zi4, 215)
S4 = (2, z10, Z11, Z13, 214, Z15, Z3, Zg)
Ss = (211, z12, z3, 0, 0, 0, Z3, Z10)
Se = (z12, 213, Zz1a, 2z15, O, 0, z9, z4)
S; = (z13, z1a, 5, 23, Z, zZ1o, 0, zp)
Sg = (z4, 2715, O, 29, z10, Z11, 0, z3)
2. Compute
S = Sy+25 +25 +S3+S; —S5—Ss—S7 — Ss
= t+c-2%8
3. Compute
r = t—c-p (mod2256)
= t—sign(c)- T[lc|] (mod 228)
for pre-computed T[i] = i-p.
4. Ifr > p(resp. r < 0) then update r < r — p (resp. r < r + p), return r.
v

Practical realisation and elimination of an

EC ated software bug attack

Feature #1: NIST-P-{256, 384} implementation (4)

» Some (limited) analysis: incorrect result (i.e., £22%)

1. is triggered randomly with probability ~ 10-2-29,

2. can be triggered deliberately with special-form operands, e.qg.,
(232 _ 1) . 2224 + 3- 2128 + X
(232 _ 1) . 2224 + 1. 296 + Yo

X
y

for any random 0 < xg, yp < 2%.

Practical realisation and elimination of an

ECC-related software bug attack

Feature #2: ECDHE implementation (1)

Algorithm (ephemeral ECDH between A and D)
A D
K 3 i 8
e {1,2,...,n—1} Ky < {1,2,...,n—1}
Q) — KalG ’ Qp — kplG
Qu
@
Ry — K410 = Ky " kp1G Rp — [kplQly = [kp - K41G

Practical realisation and elimination of an

ECC-related software bug attack

Feature #2: ECDHE implementation (1)

Algorithm (ephemeral-static ECDH between .4 and D)
A D
Kiy & {1,2,...,n—1} kp & {1,2,...,n—1}
Qly — [K4]G p Qp < [kplG
Qu
Q’D
Rl — K41Qp = Ky *kplG Rp — lkplQly = [kp *K41G

Practical realisation and elimination of an

ECC-related software bug attack

Feature #2: ECDHE implementation (2)

» OpenSSL implements this as follows

ssl/s3_lib.c

if (!(s->options & SSL_OP_SINGLE_ECDH_USE))

if (!EC_KEY_generate_key(ecdh))
{
EC_KEY_free (ecdh);
SSLerr (SSL_F_SSL3_CTRL ,ERR_R_ECDH_LIB);
return (ret);

}

meaning ECDHE

> uses a per-invocation (of the library) rather than a per-session key, unless
> one explicitly uses SSL_CTX_set_options to set SSL_OP_SINGLE_ECDH_USE.

Practical realisation and elimination of an

ECC-related software bug attack Slide 10

Attack (1)

Feature Biham et. al. [2, Section 4.2] Brumley et. al. [3, Section 3]
. Fixed kD
Target Fixed d (ECDH or ephemeral-static ECDHE)
Re-encrypt M using e, .
Leakage check against C Handshake success/failure
Arbitrary poisoned Controlled distinguisher
Input integer C € Zy, point Q' = [k'4]G € E(Fp)
Left-to-right Left-to-right (modified)
Computation binary exponentiation wWNAF scalar multiplication

Practical realisation and elimination of an

ECC-related software bug attack Slide 11

Attack (2)

Attack (Brumley et. al. [3, Section 3])

At the j-th step, the attacker
> knows a, some more-significant portion of the wWNAF expansion of k1, and
> aims to recover the next less-significant unknown non-zero digit b € S for some digit set S
so0 proceeds as follows:
1. Select a distinguisher point
Dab =[NG
for known /, st. for (enough) random paddings d

[all bl d]Da,p & E(Fp)
forallb € S, and
[all ¢l dDsp € E(Fp)
forallc € S\ {0, b}.
2. Use each distinguisher point as an input to D: if the handshake fails, that guess for b was correct.
3. Apply wNAF rules to cope with any subsequent zero digits.

Practical realisation and elimination of an

ECC-related software bug attack Slide 12

Attack (3)

» Cost: for a prototype D based on s_server ...

Queries to D by A Effort by A to find Dap

0.007 T T T T 03

less than 12 known digits ——
‘appx. 224 known digits ——-----

0.006 [

0.005 [

0.004 [

0.003 [

Relative frequency

0.002 [

0.001 |

o
400 500 600 700 800 900
Queries Steps (base 2 log)

» ... when NIST-P-256 is used, A

» can recover the fixed kp using ~ 633 queries to D, where
» each query implies a ~ 227 step brute-force distinguisher point search (assuming no
pre-computation).

Practical realisation and elimination of an

ECC-related software bug attack Slide 13

Conclusions (1)

» Reactive countermeasures:
1. The bug in NIST-P-256-REDUCE is already patched in OpenSSL 0.9.8h and higher.
2. Restarting the library to refresh kp limits impact ...
3. ... but you may as well just opt-out of ephemeral-static ECDHE instead!
4. Point or scalar blinding, or a randomised scalar multiplication algorithm prevent
selection of suitable distinguisher points.
» Proactive countermeasures (or, “second half of paper”): given
1. testing doesn’t seem robust enough, and
2. there seems to be a connection between performance-enhancing optimisations and
security

how can we make formal verification (e.g., of OpenSSL) technically and
economically viable?

Practical realisation and elimination of an

ECC-related software bug attack Slide 14

Conclusions (2)

Questions?

Practical realisation and elimination of an

EC ted software bug attack Slide 15

References and Further Reading

(1]

(2]

(3]

(4]

I. Biehl, B. Meyer, and V. Mlller.

Differential fault attacks on elliptic curve cryptosystems.

In Advances in Cryptology (CRYPTO), volume 1880 of LNCS, pages 131-146.
Springer-Verlag, 2000.

E. Biham, Y. Carmeli, and A. Shamir.

Bug attacks.

In Advances in Cryptology (CRYPTO), volume 5157 of LNCS, pages 221-240.
Springer-Verlag, 2008.

B. Brumley, M. Barbosa, D. Page, and F. Vercauteren.
Practical realisation and elimination of an ECC-related software bug attack.
In Topics in Cryptology (CT-RSA), 2012.

H. Reimann.

BN_nist_mod_384 gives wrong answers.

openssl-dev mailing list #1593, 2007.

Available from http://marc.info/7t=119271238800004.

Practical realisation and elimination of an

ECC-related software bug attack Slide 16

http://marc.info/?t=119271238800004

References and Further Reading (cont.)

[5] J.A. Solinas.
Generalized mersenne numbers.
Technical Report CORR 99-39, Centre for Applied Cryptographic Research
(CACR), University of Waterloo, 1999.

Practical realisation and elimination of an

ECC-related software bug attack Slide 17

Extra — Invalid Curve Attack (1)

Example: ECC invalid curve attack

P

A D Q= [K]P

Attack (Biehl et. al. [1, Section 4.1])

1. Given a curve E’ of order |E’| = [] r;, for each i:

1.1 Selecta point P; € E’ with order r;.
1.2 Send P; € E’ to D and have it compute Q; = [K]P; € E’.
1.3 Solve ECDLP in subgroup to get k (mod r;).

2. Use CRT to recover k given all k (mod r;).

Practical realisation and elimination of an

ECC-related software bug attack Slide 18

Extra — Invalid Curve Attack (2)

» Observation: if D uses OpenSSL, it will validate each input P = (xp, yp) by
comparing the LHS and RHS of

YB = X2 + asxp + a6

and hence prevent an invalid curve attack.
» ldea: select point P = (xp, yp) as follows,
1. Select xp such that during the computation of t = (xf, + a4)xp + ag (mod p):

> The step ty = x3 (mod p) does not trigger the bug.

> Thestep t; = (t + a4) - xp (mod p) does trigger the bug, i.e., the correct result would be
t; + 226 (mod p).

> The incorrect result t is a quadratic residue modulo p.

2. Compute yp = v/t (mod p).

meaning P now passes the OpenSSL point validation, but is actually on some
curve E’ rather than E.

Practical realisation and elimination of an

ECC-related software bug attack Slide 19

Extra — Invalid Curve Attack (3)

» (Open) problem:

» The characteristics of the bug mean it produces results that are incorrect by 2256,
> This limits the invalid curves to

S o y?2 = x84 agx + (ag + 2256)
E' s+ y2=x34 aux + (a5 — 2%9)
E = FFFFFFFF00000000FFFFFFFFFFFFFFFF
1256 \
DA0A4439003A5730FA6F898036B81 7E90(1 6)
~ 24.211 .231.2209
|EL256| = FFFFFFFF000000010000000000000001\

304C2CB870EB2102DEB81758D8933A44 16,
22.011.914.916 . 957 . 9154

Q

and hence also the P;.
» Even so, the 128-bit security level of NIST-P-256 is reduced to that of E’ ..

Practical realisation and elimination of an

ECC-related software bug attack Slide 20

A First-Order Leak-Free Masking Countermeasure

Houssem MAGHREBI, Emmanuel PROUFF,
Sylvain GUILLEY, Jean-Luc DANGER
< houssem.maghrebi@TELECOM-ParisTech.fr >

Institut TELECOM / TELECOM-ParisTech
CNRS - LTCI (UMR 5141)

SECURE
Technologles THE TRUSTED COMPUTIX

ﬁﬁm’l -ﬁiml

RSA CONFERENCE’12, San Francisco
Session Track: Cryptography Session Code: CRYP-204
Scheduled Date: 02/29/2012 Session Title: Secure
Implementation Methods Session Classification:-Advanced

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.institut-telecom.fr/
http://www.telecom-paristech.fr/
http://www.cnrs.fr/
http://www.ltci.enst.fr/
http://www.institut-telecom.fr/
http://www.telecom-paristech.fr/
http://www.cnrs.fr/
http://www.oberthur.com/
http://www.secure-ic.com/
http://www.rsaconference.com/events/2012/usa/mightier.htm

Overview

Detailed Description of GLUT Method
Leakage of the GLUT Method
Towards a New Masking Function

Presentation Outline

@ Masking Principles

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

RSACONFERENCE2012

http://www.rsaconference.com/events/2012/usa/mightier.htm

Detailed Description of GLUT Method
Leakage of the GLUT Method
Towards a New Masking Function

Masking: principle

Aims at making power consumption random
The sensitive variable Z is randomly split into two shares:

(My My = Z6 M)

My is the masked variable and @ is an inversible operation
Boolean masking is based on exclusive-or (xor) operations:

MQZZEBMl

The application of a transformation S on a variable Z split in
two shares leads the processing of two new shares My and M
such that:

S(Z) = My & M

The critical point is to deduce My from My, M; and Mj

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Detailed Description of GLUT Method

Leakage of the GLUT Method
Towards a New Masking Function

Linear Function

® 5(Z)=S(Mo® My) = S(Mo) ® S(M)
o M) = S(Mo) ® S(My) & M;

Non-Linear Function (NL)
@ Achieving first-order security is much more difficult
@ Commonly, there are three strategies:

(a) Global Look-up Table: a precomputed ROM is associated to
the function " : (X, Y,Y’) — S(X @ Y). M{ is computed by
performing a single operation: S'[Z & My, My, M|]

(b) The re-computation method: My and Mj are generated and a
table representing the function S’ : Y — S(Y @ M) & M; is
computed from S and stored in RAM

(c) The sbox secure calculation: the sbox outputs are computed
on-the-fly by using a mathematical representation of the sbox

@ The GLUT method seems to be the most appropriate method

-

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Overview

Leakage of the GLUT Method
Towards a New Masking Function

Generic Structure

The ROM lookup-table . , —
represents a (3n, n)-function S Er | B M |

such that: 2®my n T m
S(Z& My, My, M) = S(Z)® M, S |
RO(I\%/\U,: ! n !
, : a) st mast |
Security Evaluation ;‘Ej‘ update ||
: ROM ! y | ‘
It manipulates the masked data (b) P !
Z @& M; and the mask Mj at the S(z)emy "7 - m)
same time (i.e. potentially
exploitable)

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Overview
Detailed Description of GLUT Method

Towards a New Masking Function

Assumption: Only the updating of the registers leak information)

@ The masked data register leakage is:
LR = A(ZED Ml,Z/ D M{) + NR

@ The mask register leakage is: Ly = A(My, M) + Ny

Property #1: For any pair (X, Y), we have A(X,Y) = A(X & Y)J

@ The power consumption L related to the simultaneous
updating of the registers equals Lg + Ly:
L=A(A(Z) ® A(M)) + A(A(M)) + Nr + Ny, where
A(Z) and A(M) respectively denote Z & Z’ and My & Mj

@ The distribution of L (and in particular its variance) depends
on the sensitive variable A(Z2)

How to break the dependency between L and A(Z)?]

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Overview
Detailed Description of GLUT Method

Leakage of the GLUT Method

@ A simple solution is to choose a function @) such that:
Z@Q M =272 o F(M)
@ M and Z do no longer need to have the same dimension n,
so F is a (p, n)-function

@ The deterministic part of the leakage can be rewritten:

A(Z@My, Z’@M;) + A(My, My)
= A(ZeZ ® F(My) ® F(My)) + A(My & My)
A(A(Z) & F(My) & F(My)) + A(A(M,))

Necessary Conditions to be Satisfied

L is independent of A(Z) if:
O [Constant Masks Difference]: M; & M is constant and
O [Difference Uniformity]: F(M;) @ F(Mj) is uniform

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Our Proposal
Security Evaluation
Application to the Software Implementation Case

Presentation Outline

© Study in the Idealized Model

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger RSACONFERENCE2012

http://www.rsaconference.com/events/2012/usa/mightier.htm

Security Evaluation
Application to the Software Implementation Case

One Simple Solution

@ Fix the condition M; = M; & « for some nonzero constant o
@ Design F s.t. Y — F(Y) & F(Y & a) is uniform for this o

First Construction Proposal

o Choose p = n+ 1 and split F5* into E® (E @ a)

@ Choose a bijective function G from E into [}

o Define F such that for every Y € F5™!, we have
F(Y)=G(Y)if Y € E and F(Y) = 0 otherwise

Example for n = 3: E = {0} x F§ C F5™ and the constant «a is
equal to 1000 in binary, and F(x3xox1xp) = 0 if x3 =1 or xox1x0
otherwise.

A\

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Security Evaluation

Application to the Software Implementation Case

Second Construction Proposal

@ Choose p = n+ n’ with n’ < n and select one injective
function G from Fj into F§ — {0}

@ Forevery (X,Y) € Fyw xFon =Fop F(X,Y)=G(X) Y
@ The outputs of the (p, n)-function F are uniformly distributed
over g

@ The two constructions of F satisfy the difference uniformity
condition

@ The mask dimension p for the first construction is only slightly
greater than the dimension n of the data to be masked

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Security Evaluation
Application to the Software Implementation Case

Hardware Implementation

@ The registers contain Z @ F(M;) and My
@ The mask update operation is constrained to be a & with «

@ Every computation is protected with the single pair of masks
(M, M{ = M; @ «)

o S(Z) @ F(M;) is got by accessing the ROM table

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Our Proposal
Application to the Software Implementation Case

Evaluation Methodology

@ The target implementation: the proposed countermeasure
@ The target secret: the sensitive variable A(Z)

@ The Adversary model: the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

@ The Leakage model: the Hamming distance model

-

Mutual Information Analysis
ILA(A(Z) ® F(M) ® F(My)) A(Z)] =0
(perfect masking of register R = |[Lr; A(Z)] = 0)

o A(M) is constant and F(M;) @& F(Myj) is uniformly
distributed over F] and independent of A(Z)

@ Our proposal is leak-free and immune against first-order
attacks

\

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Our Proposal
Application to the Software Implementation Case

Evaluation Methodology

@ The target implementation: the proposed countermeasure
@ The target secret: the sensitive variable A(Z)

@ The Adversary model: the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

@ The Leakage model: the Hamming distance model

-

Mutual Information Analysis

I A(A(M)); B(2)] =
(hiding of register M = |[Lp; A(Z)] = 0)

o A(M) is constant and F(M;) @& F(Myj) is uniformly
distributed over F] and independent of A(Z)

@ Our proposal is leak-free and immune against first-order
attacks

\

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Our Proposal
Application to the Software Implementation Case

Evaluation Methodology

@ The target implementation: the proposed countermeasure
@ The target secret: the sensitive variable A(Z)

@ The Adversary model: the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

@ The Leakage model: the Hamming distance model

-

[A(A(Z) ® F(M1) @ F(M7))+A(A(M)); A(Z)] =0
(first-order resistance => |[Lr + Lp; A(Z)] = 0)

o A(M) is constant and F(M;) @& F(Myj) is uniformly
distributed over F] and independent of A(Z)

@ Our proposal is leak-free and immune against first-order
attacks

\

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Our Proposal
Application to the Software Implementation Case

Evaluation Methodology

@ The target implementation: the proposed countermeasure
@ The target secret: the sensitive variable A(Z)

@ The Adversary model: the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

@ The Leakage model: the Hamming distance model

-

[A(A(Z) ® F(M1) @ F(My)), A(A(M)); A(Z)]=0
(second-order resistance => |[Lgr, Lp; A(Z)] = 0)

o A(M) is constant and F(M;) @& F(Myj) is uniformly
distributed over F] and independent of A(Z)

@ Our proposal is leak-free and immune against first-order
attacks and certain second-order attacks!

\

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Our Proposal
Security Evaluation

Context: Memory Access in Von-Neumann Architecture

mov dptr, #tab
mov acc, y
movc acc, Qacc+dptr
@ dptr: the data memory pointer
@ #tab: the address of a table stored in data
@ y: the index of the value that must be read in table tab

@ The accumulator register acc contains the value tab[y]
o

Analogy

@ #tab and y refer respectively to the ROM and (Z@M;, M;)

@ The most significant bits of acc is associated to the register
R and its least significant bits to the register M

@ Taking advantage from our proposal, the memory access is
made completely secure

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Simulation Description
Simulation Results

Presentation Outline

© Study in the Imperfect Model

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Simulation Results

@ In reality A(X,Y) is a polynomial P(X1, -+, Xn, Y1,...,Ys)
o We study I[Lg + Ly; Z @ Z'] when P is of degree < d J

Methodology

@ The leakage function is:

P(Xlz 200 o X Vilpooo g Yn) = Z (u,v)€F) XF3, a(u,v))(j[u1 : Xlsln Y1V1 c YI;/n
HW(u)+HW(v)<d

@ The coefficients a(,) are drawn at random from this law:

A(u,v) ~)+L{([Gaiidon .y deleilen])
A(u,v) —0 if HW(u,v) > d .

@ The deviation is {0.1,0.2,0.5,1.0}, i.e. 10%, 20%, 50% or
100%

@ The computed mutual information is I[L; Z, Z'], where
L=P(Z&F(M),Z & FIM& a))+ Ng+ P(M,M& a)+ Ny

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Simulation Description

Simulation Results for low deviation

1=, model deviation=. of order d<2 1=, model deviation=. of order <
No M (unnoised HDJ —— No M (unnoised HDJ ——

1stordar CM ((nnoised HD) 1st.ordor CM (unnoised HD)

o Ist.ordor G (noised HD) o Ist.ordor G (noised HD)

Our GM, Ean. 5) (noised HD) Our GM, Ean. 5) (noised HD)

10 10
15 15 N
o 05 1 15 2 25 3 35 “ 5 5 o 05 1 15 2 25 3 35 4 5 5
1=3, model deviation=.2 of order d<2 1=, model deviation=.2 of order d<i
2 2
No OM (unnoised HDJ —— No OM (unnoised HDJ ——

tst-order CM (unnoised HD)
Ist-ordor G (noised HD) o
Our CM, Ean. 5) (noised HD)

tst-order CM (unnoised HD)
Ist-ordor Gl (noised HD)
Our CM, Ean. 5) (noised HD)

ff + S. Guilley + J Danger RSI\CONFERF.!\!SE.&OH

http://www.rsaconference.com/events/2012/usa/mightier.htm

Simulation Results for high deviation

Simulation Description

H. Maghrek

1=, model deviation=.. of order d<2

1=, model deviation=. of order d<3

2

No M (unnoised HDJ —— No M (unnoised HDJ ——
1stordar CM ((nnoised HD) 1st.ordor CM (unnoised HD)
Ist.ordor G (noised HD) Ist.ordor G (noised HD)
Our GM, Ean. 5) (noised HD) 0 Our GM, Ean. 5) (noised HD)

05 1 15 2 25 3 35 “ 5

1=3, model devialion=1.0 of order d<2

2 25 3 35 4 5 5

1=3, model devialion=1.0 of order d<3

2

No OM (unnoised HDJ —— No OM (unnoised HDJ ——
tst-order CM (unnoised HD) tst-order CM (unnoised HD)
Ist-ordor G (noised HD) Ist-ordor Gl (noised HD)
Our CM, Ean. 5) (noised HD) o Our CM, Ean. 5) (noised HD)

+ E. Prouff + S. Guilley + J Danger

RSACONFI

http://www.rsaconference.com/events/2012/usa/mightier.htm

Presentation Outline

Q@ Conclusions and Perspective

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Conclusions

@ A new masking scheme for hardware sbox implementations is
presented

@ The countermeasure proposed is a leak-free countermeasure
under some realistic assumptions about the device architecture

@ The solution has been evaluated within an
information-theoretic study, proving its security against
10-SCA under the Hamming distance assumption

@ When the leakage function deviates slightly from this
assumption, our solution still achieves excellent results

Perspective

@ Adapt the countermeasure to reach 2nd-order security

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.rsaconference.com/events/2012/usa/mightier.htm

Thanks
For Your

Attention.

An up-to-date version of the paper (with some corrections in the
construction of the F functions (in §4.1)) is on the eprint: [1].

References

[1] Houssem Maghrebi, Emmanuel Prouff, Sylvain Guilley, and Jean-Luc Danger.
A First-Order Leak-Free Masking Countermeasure.
Cryptology ePrint Archive, Report 2012/028, 2012
http://eprint.iacr.org/2012/028

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://eprint.iacr.org/2012/028
http://www.rsaconference.com/events/2012/usa/mightier.htm

A First-Order Leak-Free Masking Countermeasure

Houssem MAGHREBI, Emmanuel PROUFF,
Sylvain GUILLEY, Jean-Luc DANGER
< houssem.maghrebi@TELECOM-ParisTech.fr >

Institut TELECOM / TELECOM-ParisTech
CNRS - LTCI (UMR 5141)

SECURE
Technologles THE TRUSTED COMPUTIX

ﬁﬁm’l -ﬁiml

RSA CONFERENCE’12, San Francisco
Session Track: Cryptography Session Code: CRYP-204
Scheduled Date: 02/29/2012 Session Title: Secure
Implementation Methods Session Classification:-Advanced

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger

http://www.institut-telecom.fr/
http://www.telecom-paristech.fr/
http://www.cnrs.fr/
http://www.ltci.enst.fr/
http://www.institut-telecom.fr/
http://www.telecom-paristech.fr/
http://www.cnrs.fr/
http://www.oberthur.com/
http://www.secure-ic.com/
http://www.rsaconference.com/events/2012/usa/mightier.htm

	CRYP-204_Page.pdf
	CRYP-204_Maghrebi final

