
Practical realisation and elimination of an
ECC-related software bug attack

B.B. Brumley, M. Barbosa, D. Page and F. Vercauteren

Department of Information and Computer Science,
Aalto University School of Science, P.O. Box 15400, FI-00076 Aalto, Finland.

billy.brumley@aalto.fi

HASLab/INESC TEC
Universidade do Minho, Braga, Portugal.

mbb@di.uminho.pt

Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK.

page@cs.bris.ac.uk

Department of Electrical Engineering, Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium.

fvercaut@esat.kuleuven.ac.be

CT-RSA 29/02/12

billy.brumley@aalto.fi
mbb@di.uminho.pt
page@cs.bris.ac.uk
fvercaut@esat.kuleuven.ac.be

Overview

I Motivation:

Quote
Decrypting ciphertexts on any computer which multiplies even one pair of numbers incorrectly can lead to full
leakage of the secret key, sometimes with a single well-chosen ciphertext.

– Biham et. al. [2, Page 1]

I Contribution:
1. an attack of this type on OpenSSL 0.9.8g, and
2. an investigation of methods to detect and prevent such attacks.

Practical realisation and elimination of an
ECC-related software bug attack Slide 2

Background: “bug attacks” (1)

Example: RSA bug attack

DA

(N, d)

C

M
M = LTOR(C, d,N) = Cd (mod N)

I Rules:
I The attacker A wants to recover the private exponent d housed in a target device D.
I D uses a (w × w)-bit integer multiplier whose operands are x and y .
I Although generalisations are possible, assume that if

1. x 6= α or y 6= β their product is computed correctly, but
2. x = α and y = β their product is computed incorrectly.

Practical realisation and elimination of an
ECC-related software bug attack Slide 3

Background: “bug attacks” (2)

Algorithm (LTOR)
Input: Integers x and y , and a modulus N.
Output: The result xy (mod N).

t ← 1
for i = |y| − 1 downto 1 step−1 do

1 t ← t2 (mod N)
2 if yi = 1 then
3 t ← t · x (mod N)

end
end
return t

Attack (Biham et. al. [2, Section 4.2])
At the j-th step, the attacker

I knows d′, some more-significant portion of the binary
expansion of d , and

I aims to recover the next less-significant unknown bit

so proceeds as follows:

1. Using d′, select a C st. during decryption using
LTOR, when i = j at line #2

I β occurs in the representation of x ,
I α occurs in the representation of t

meaning that if
I yi = 1 then t is then multiplied by x and the

bug is triggered,
I yi = 0 then t is then squared and the bug is not

triggered.

2. Have the device decrypt C using d ; if the result
I is incorrect then the bug was triggered and

hence dj = 1,
I is correct then the bug wasn’t triggered and

hence dj = 0.

Practical realisation and elimination of an
ECC-related software bug attack Slide 4

Feature #1: NIST-P-{256, 384} implementation (1)

Quote
The function BN_nist_mod_384 (in crypto/bn/bn_nist.c) gives wrong results for some inputs.

– Reimann [4], on the openssl-dev mailing list

Practical realisation and elimination of an
ECC-related software bug attack Slide 5

Feature #1: NIST-P-{256, 384} implementation (2)

Algorithm (NIST-P-256-REDUCE, per Solinas [5, Example 3, Page 20])

Input: For w = 32-bit words, a 16-word integer product z = x · y and the modulus p = 2256 − 2224 + 2192 + 296 − 1.

Output: The result z (mod p).

1. Form the nine, 8-word intermediate variables

S0 = 〈 z0, z1, z2, z3, z4, z5, z6, z7 〉
S1 = 〈 0, 0, 0, z11, z12, z13, z14, z15 〉
S2 = 〈 0, 0, 0, z12, z13, z14, z15, 0 〉
S3 = 〈 z8, z9, z10, 0, 0, 0, z14, z15 〉
S4 = 〈 z9, z10, z11, z13, z14, z15, z13, z8 〉
S5 = 〈 z11, z12, z13, 0, 0, 0, z8, z10 〉
S6 = 〈 z12, z13, z14, z15, 0, 0, z9, z11 〉
S7 = 〈 z13, z14, z15, z8, z9, z10, 0, z12 〉
S8 = 〈 z14, z15, 0, z9, z10, z11, 0, z13 〉

2. Compute
r = S0 + 2S1 + 2S2 + S3 + S4 − S5 − S6 − S7 − S8 (mod p).

3. Return 0 ≤ r < p.

Practical realisation and elimination of an
ECC-related software bug attack Slide 6

Feature #1: NIST-P-{256, 384} implementation (3)

Algorithm (NIST-P-256-REDUCE, per OpenSSL)

Input: For w = 32-bit words, a 16-word integer product z = x · y and the modulus p = 2256 − 2224 + 2192 + 296 − 1.

Output: The (potentially incorrect) result z (mod p).

1. Form the nine, 8-word intermediate variables

S0 = 〈 z0, z1, z2, z3, z4, z5, z6, z7 〉
S1 = 〈 0, 0, 0, z11, z12, z13, z14, z15 〉
S2 = 〈 0, 0, 0, z12, z13, z14, z15, 0 〉
S3 = 〈 z8, z9, z10, 0, 0, 0, z14, z15 〉
S4 = 〈 z9, z10, z11, z13, z14, z15, z13, z8 〉
S5 = 〈 z11, z12, z13, 0, 0, 0, z8, z10 〉
S6 = 〈 z12, z13, z14, z15, 0, 0, z9, z11 〉
S7 = 〈 z13, z14, z15, z8, z9, z10, 0, z12 〉
S8 = 〈 z14, z15, 0, z9, z10, z11, 0, z13 〉

2. Compute
S = S0 + 2S1 + 2S2 + S3 + S4 − S5 − S6 − S7 − S8

= t + c · 2256

3. Compute
r = t − c · p (mod 2256)

= t − sign(c) · T [|c|] (mod 2256)

for pre-computed T [i] = i · p.

4. If r ≥ p (resp. r < 0) then update r ← r − p (resp. r ← r + p), return r .

Practical realisation and elimination of an
ECC-related software bug attack Slide 7

Feature #1: NIST-P-{256, 384} implementation (4)

I Some (limited) analysis: incorrect result (i.e., ±2256)
1. is triggered randomly with probability ∼ 10 · 2−29,
2. can be triggered deliberately with special-form operands, e.g.,

x = (232 − 1) · 2224 + 3 · 2128 + x0
y = (232 − 1) · 2224 + 1 · 296 + y0

for any random 0 ≤ x0, y0 < 232.

Practical realisation and elimination of an
ECC-related software bug attack Slide 8

Feature #2: ECDHE implementation (1)

Algorithm (ephemeral ECDH between A and D)

A D

k i
A

$← {1, 2, . . . , n − 1}

Qi
A ← [k i

A]G

k i
D

$← {1, 2, . . . , n − 1}

Qi
D ← [k i

D]G

Ri
A ← [k i

A]Qi
D = [k i

A · k i
D]G Ri

D ← [k i
D]Qi

A = [k i
D · k i

A]G

Qi
A

Qi
D

Practical realisation and elimination of an
ECC-related software bug attack Slide 9

Feature #2: ECDHE implementation (1)

Algorithm (ephemeral-static ECDH between A and D)

A D

k i
A

$← {1, 2, . . . , n − 1}

Qi
A ← [k i

A]G

k

i

D
$← {1, 2, . . . , n − 1}

Q

i

D ← [k

i

D]G

Ri
A ← [k i

A]Q

i

D = [k i
A · k

i

D]G Ri
D ← [k

i

D]Qi
A = [k

i

D · k i
A]G

Qi
A

Q

i

D

Practical realisation and elimination of an
ECC-related software bug attack Slide 9

Feature #2: ECDHE implementation (2)

I OpenSSL implements this as follows

ssl/s3_lib.c

if (!(s->options & SSL_OP_SINGLE_ECDH_USE))
{
if (! EC_KEY_generate_key(ecdh))

{
EC_KEY_free(ecdh);
SSLerr(SSL_F_SSL3_CTRL ,ERR_R_ECDH_LIB);
return(ret);
}

}

meaning ECDHE
I uses a per-invocation (of the library) rather than a per-session key, unless
I one explicitly uses SSL_CTX_set_options to set SSL_OP_SINGLE_ECDH_USE.

Practical realisation and elimination of an
ECC-related software bug attack Slide 10

Attack (1)

Feature Biham et. al. [2, Section 4.2] Brumley et. al. [3, Section 3]

Target Fixed d
Fixed kD

(ECDH or ephemeral-static ECDHE)

Leakage
Re-encrypt M using e,

check against C Handshake success/failure

Input
Arbitrary poisoned

integer C ∈ Z∗N
Controlled distinguisher

point Q i
A = [k i

A]G ∈ E(Fp)

Computation
Left-to-right

binary exponentiation
Left-to-right (modified)

wNAF scalar multiplication

Practical realisation and elimination of an
ECC-related software bug attack Slide 11

Attack (2)

Attack (Brumley et. al. [3, Section 3])
At the j-th step, the attacker

I knows a, some more-significant portion of the wNAF expansion of kD , and
I aims to recover the next less-significant unknown non-zero digit b ∈ S for some digit set S

so proceeds as follows:

1. Select a distinguisher point
Da,b = [l]G

for known l , st. for (enough) random paddings d

[a ‖ b ‖ d]Da,b 6∈ E(Fp)

for all b ∈ S, and
[a ‖ c ‖ d]Da,b ∈ E(Fp)

for all c ∈ S \ {0, b}.
2. Use each distinguisher point as an input toD: if the handshake fails, that guess for b was correct.

3. Apply wNAF rules to cope with any subsequent zero digits.

Practical realisation and elimination of an
ECC-related software bug attack Slide 12

Attack (3)

I Cost: for a prototype D based on s_server ...

Queries to D by A

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 400 500 600 700 800 900

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

Queries

Effort by A to find Da,b

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 18 20 22 24 26 28 30

R
e

la
ti
v
e

 f
re

q
u

e
n

c
y

Steps (base 2 log)

less than 12 known digits
appx. 224 known digits

I ... when NIST-P-256 is used, A
I can recover the fixed kD using ∼ 633 queries to D, where
I each query implies a ∼ 227 step brute-force distinguisher point search (assuming no

pre-computation).

Practical realisation and elimination of an
ECC-related software bug attack Slide 13

Conclusions (1)

I Reactive countermeasures:
1. The bug in NIST-P-256-REDUCE is already patched in OpenSSL 0.9.8h and higher.
2. Restarting the library to refresh kD limits impact ...
3. ... but you may as well just opt-out of ephemeral-static ECDHE instead!
4. Point or scalar blinding, or a randomised scalar multiplication algorithm prevent

selection of suitable distinguisher points.
I Proactive countermeasures (or, “second half of paper”): given

1. testing doesn’t seem robust enough, and
2. there seems to be a connection between performance-enhancing optimisations and

security

how can we make formal verification (e.g., of OpenSSL) technically and
economically viable?

Practical realisation and elimination of an
ECC-related software bug attack Slide 14

Conclusions (2)

Questions?

Practical realisation and elimination of an
ECC-related software bug attack Slide 15

References and Further Reading

[1] I. Biehl, B. Meyer, and V. Müller.
Differential fault attacks on elliptic curve cryptosystems.
In Advances in Cryptology (CRYPTO), volume 1880 of LNCS, pages 131–146.
Springer-Verlag, 2000.

[2] E. Biham, Y. Carmeli, and A. Shamir.
Bug attacks.
In Advances in Cryptology (CRYPTO), volume 5157 of LNCS, pages 221–240.
Springer-Verlag, 2008.

[3] B. Brumley, M. Barbosa, D. Page, and F. Vercauteren.
Practical realisation and elimination of an ECC-related software bug attack.
In Topics in Cryptology (CT-RSA), 2012.

[4] H. Reimann.
BN_nist_mod_384 gives wrong answers.
openssl-dev mailing list #1593, 2007.
Available from http://marc.info/?t=119271238800004.

Practical realisation and elimination of an
ECC-related software bug attack Slide 16

http://marc.info/?t=119271238800004

References and Further Reading (cont.)

[5] J.A. Solinas.
Generalized mersenne numbers.
Technical Report CORR 99-39, Centre for Applied Cryptographic Research
(CACR), University of Waterloo, 1999.

Practical realisation and elimination of an
ECC-related software bug attack Slide 17

Extra – Invalid Curve Attack (1)

Example: ECC invalid curve attack

DA

k

P

Q
Q = [k]P

Attack (Biehl et. al. [1, Section 4.1])
1. Given a curve E′ of order |E′| =

Q
ri , for each i :

1.1 Select a point Pi ∈ E′ with order ri .
1.2 Send Pi ∈ E′ toD and have it compute Qi = [k]Pi ∈ E′.
1.3 Solve ECDLP in subgroup to get k (mod ri).

2. Use CRT to recover k given all k (mod ri).

Practical realisation and elimination of an
ECC-related software bug attack Slide 18

Extra – Invalid Curve Attack (2)

I Observation: if D uses OpenSSL, it will validate each input P = (xP , yP) by
comparing the LHS and RHS of

y2
P = x3

P + a4xP + a6

and hence prevent an invalid curve attack.
I Idea: select point P = (xP , yP) as follows,

1. Select xP such that during the computation of t = (x2
P + a4) · xP + a6 (mod p):

I The step t0 = x2
P (mod p) does not trigger the bug.

I The step t1 = (t0 + a4) · xP (mod p) does trigger the bug, i.e., the correct result would be
t1 ± 2256 (mod p).

I The incorrect result t is a quadratic residue modulo p.

2. Compute yP =
√

t (mod p).

meaning P now passes the OpenSSL point validation, but is actually on some
curve E ′ rather than E .

Practical realisation and elimination of an
ECC-related software bug attack Slide 19

Extra – Invalid Curve Attack (3)

I (Open) problem:
I The characteristics of the bug mean it produces results that are incorrect by ±2256.
I This limits the invalid curves to

E ′+256 : y2 = x3 + a4x + (a6 + 2256)

E ′−256 : y2 = x3 + a4x + (a6 − 2256)

|E ′+256| = FFFFFFFF00000000FFFFFFFFFFFFFFFF\
DA0A4439003A5730FA6F898036B17E90(16)

≈ 24 · 211 · 231 · 2209

|E ′−256| = FFFFFFFF000000010000000000000001\
304C2CB870EB2102DEB81758D8933A44(16)

≈ 22 · 211 · 214 · 216 · 257 · 2154

and hence also the Pi .
I Even so, the 128-bit security level of NIST-P-256 is reduced to that of E ′−256.

Practical realisation and elimination of an
ECC-related software bug attack Slide 20

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

A First-Order Leak-Free Masking Countermeasure

Houssem MAGHREBI, Emmanuel PROUFF,
Sylvain GUILLEY, Jean-Luc DANGER

< houssem.maghrebi@TELECOM-ParisTech.fr>

Institut TELECOM / TELECOM-ParisTech
CNRS – LTCI (UMR 5141)

RSA CONFERENCE’12, San Francisco
Session Track: Cryptography Session Code: CRYP-204
Scheduled Date: 02/29/2012 Session Title: Secure

Implementation Methods Session Classification: Advanced
H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 1

http://www.institut-telecom.fr/
http://www.telecom-paristech.fr/
http://www.cnrs.fr/
http://www.ltci.enst.fr/
http://www.institut-telecom.fr/
http://www.telecom-paristech.fr/
http://www.cnrs.fr/
http://www.oberthur.com/
http://www.secure-ic.com/
http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Overview
Detailed Description of GLUT Method
Leakage of the GLUT Method
Towards a New Masking Function

Presentation Outline

1 Masking Principles

2 Study in the Idealized Model

3 Study in the Imperfect Model

4 Conclusions and Perspective

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 2

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Overview
Detailed Description of GLUT Method
Leakage of the GLUT Method
Towards a New Masking Function

Masking: principle

Aims at making power consumption random

The sensitive variable Z is randomly split into two shares:

(M1 ,M0 = Z θ M1)

M0 is the masked variable and θ is an inversible operation

Boolean masking is based on exclusive-or (xor) operations:

M0 = Z ⊕ M1

The application of a transformation S on a variable Z split in
two shares leads the processing of two new shares M ′

0 and M ′

1

such that:
S(Z) = M ′

0 ⊕ M ′

1

The critical point is to deduce M ′

0 from M0, M1 and M ′

1

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 3

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Overview
Detailed Description of GLUT Method
Leakage of the GLUT Method
Towards a New Masking Function

Linear Function

S(Z) = S(M0 ⊕M1) = S(M0)⊕ S(M1)

M ′

0 = S(M0)⊕ S(M1)⊕M ′

1

Non-Linear Function (NL)

Achieving first-order security is much more difficult

Commonly, there are three strategies:

(a) Global Look-up Table: a precomputed ROM is associated to
the function S ′ : (X ,Y ,Y ′) 7→ S(X ⊕ Y). M ′

0 is computed by
performing a single operation: S ′[Z ⊕M1,M1,M

′

1]
(b) The re-computation method : M1 and M ′

1 are generated and a
table representing the function S ′ : Y 7→ S(Y ⊕M1)⊕M ′

1 is
computed from S and stored in RAM

(c) The sbox secure calculation: the sbox outputs are computed
on-the-fly by using a mathematical representation of the sbox

The GLUT method seems to be the most appropriate method

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 4

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Overview
Detailed Description of GLUT Method
Leakage of the GLUT Method
Towards a New Masking Function

Generic Structure

The ROM lookup-table
represents a (3n, n)-function S ′

such that:
S ′(Z⊕M1,M1,M

′

1) = S(Z)⊕M ′

1

Security Evaluation

It manipulates the masked data
Z ⊕M1 and the mask M1 at the
same time (i.e. potentially
exploitable)

R

n

S

M

z ⊕m1 n m1

update
mask

ROM
S ′

(a)

ROM
(b)

m′

1
S(z)⊕m′

1

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 5

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Overview
Detailed Description of GLUT Method
Leakage of the GLUT Method
Towards a New Masking Function

Assumption: Only the updating of the registers leak information

The masked data register leakage is:
LR = A(Z ⊕M1,Z

′ ⊕M ′

1) + NR

The mask register leakage is: LM = A(M1,M
′

1) + NM

Property #1 : For any pair (X ,Y), we have A(X ,Y) = A(X ⊕ Y)

The power consumption L related to the simultaneous
updating of the registers equals LR + LM :
L = A(∆(Z)⊕∆(M)) +A(∆(M)) + NR + NM , where
∆(Z) and ∆(M) respectively denote Z ⊕ Z ′ and M1 ⊕M ′

1

The distribution of L (and in particular its variance) depends
on the sensitive variable ∆(Z)

How to break the dependency between L and ∆(Z)?

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 6

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Overview
Detailed Description of GLUT Method
Leakage of the GLUT Method
Towards a New Masking Function

A simple solution is to choose a function α© such that:

Z α© M1 = Z ⊕ F (M1)

M1 and Z do no longer need to have the same dimension n,
so F is a (p, n)-function

The deterministic part of the leakage can be rewritten:

A(Z α©M1,Z
′ α©M ′

1) + A(M1,M
′

1)
.
= A(Z ⊕ Z ′ ⊕ F (M1)⊕ F (M ′

1)) +A(M1 ⊕M ′

1)

= A(∆(Z)⊕ F (M1)⊕ F (M ′

1)) +A(∆(M1))

Necessary Conditions to be Satisfied

L is independent of ∆(Z) if:

1 [Constant Masks Difference]: M1 ⊕M ′

1 is constant and

2 [Difference Uniformity]: F (M1)⊕ F (M ′

1) is uniform

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 7

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Our Proposal
Security Evaluation
Application to the Software Implementation Case

Presentation Outline

1 Masking Principles

2 Study in the Idealized Model

3 Study in the Imperfect Model

4 Conclusions and Perspective

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 8

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Our Proposal
Security Evaluation
Application to the Software Implementation Case

One Simple Solution

Fix the condition M ′

1 = M1 ⊕ α for some nonzero constant α

Design F s.t. Y 7→ F (Y)⊕ F (Y ⊕ α) is uniform for this α

First Construction Proposal

Choose p = n + 1 and split Fn+1
2 into E ⊕ (E ⊕ α)

Choose a bijective function G from E into F
n
2

Define F such that for every Y ∈ F
n+1
2 , we have

F (Y) = G (Y) if Y ∈ E and F (Y) = 0 otherwise

Example for n = 3: E = {0} × F
n
2 ⊂ F

n+1
2 and the constant α is

equal to 1000 in binary, and F (x3x2x1x0) = 0 if x3 = 1 or x2x1x0
otherwise.

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 9

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Our Proposal
Security Evaluation
Application to the Software Implementation Case

Second Construction Proposal

Choose p = n + n′ with n′ < n and select one injective
function G from F

n′

2 into F
n
2 − {0}

For every (X ,Y) ∈ F2n
′ × F2n = F2p F (X ,Y) = G (X) · Y

The outputs of the (p, n)-function F are uniformly distributed
over Fn

2

The two constructions of F satisfy the difference uniformity

condition

The mask dimension p for the first construction is only slightly
greater than the dimension n of the data to be masked

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 10

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Our Proposal
Security Evaluation
Application to the Software Implementation Case

Hardware Implementation

R

n

α©

S

α©

α

m
′

1

ROM α

M

z ⊕ F (m1) p m1

F (m′

1
)

S(z)⊕
m′

1

The registers contain Z ⊕ F (M1) and M1

The mask update operation is constrained to be a ⊕ with α

Every computation is protected with the single pair of masks
(M1, M

′

1 = M1 ⊕ α)

S(Z)⊕ F (M ′

1) is got by accessing the ROM table

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 11

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Our Proposal
Security Evaluation
Application to the Software Implementation Case

Evaluation Methodology

The target implementation: the proposed countermeasure

The target secret: the sensitive variable ∆(Z)

The Adversary model : the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

The Leakage model : the Hamming distance model

Mutual Information Analysis

I[A(∆(Z)⊕ F (M1)⊕ F (M ′

1))+A(∆(M));∆(Z)] = 0
(perfect masking of register R =⇒ I[LR ; ∆(Z)] = 0)

∆(M) is constant and F (M1)⊕ F (M ′

1) is uniformly
distributed over Fn

2 and independent of ∆(Z)

Our proposal is leak-free and immune against first-order
attacks

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 12

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Our Proposal
Security Evaluation
Application to the Software Implementation Case

Evaluation Methodology

The target implementation: the proposed countermeasure

The target secret: the sensitive variable ∆(Z)

The Adversary model : the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

The Leakage model : the Hamming distance model

Mutual Information Analysis

I[A(∆(Z)⊕ F (M1)⊕ F (M ′

1))+A(∆(M));∆(Z)] = 0
(hiding of register M =⇒ I[LM ; ∆(Z)] = 0)

∆(M) is constant and F (M1)⊕ F (M ′

1) is uniformly
distributed over Fn

2 and independent of ∆(Z)

Our proposal is leak-free and immune against first-order
attacks

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 13

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Our Proposal
Security Evaluation
Application to the Software Implementation Case

Evaluation Methodology

The target implementation: the proposed countermeasure

The target secret: the sensitive variable ∆(Z)

The Adversary model : the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

The Leakage model : the Hamming distance model

Mutual Information Analysis

I[A(∆(Z)⊕ F (M1)⊕ F (M ′

1))+A(∆(M));∆(Z)] = 0
(first-order resistance =⇒ I[LR + LM ; ∆(Z)] = 0)

∆(M) is constant and F (M1)⊕ F (M ′

1) is uniformly
distributed over Fn

2 and independent of ∆(Z)

Our proposal is leak-free and immune against first-order
attacks

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 14

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Our Proposal
Security Evaluation
Application to the Software Implementation Case

Evaluation Methodology

The target implementation: the proposed countermeasure

The target secret: the sensitive variable ∆(Z)

The Adversary model : the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

The Leakage model : the Hamming distance model

Mutual Information Analysis

I[A(∆(Z)⊕ F (M1)⊕ F (M ′

1)), A(∆(M));∆(Z)] = 0
(second-order resistance =⇒ I[LR , LM ; ∆(Z)] = 0)

∆(M) is constant and F (M1)⊕ F (M ′

1) is uniformly
distributed over Fn

2 and independent of ∆(Z)

Our proposal is leak-free and immune against first-order
attacks and certain second-order attacks!

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 15

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Our Proposal
Security Evaluation
Application to the Software Implementation Case

Context: Memory Access in Von-Neumann Architecture

mov dptr, #tab

mov acc, y

movc acc, @acc+dptr

dptr: the data memory pointer

#tab: the address of a table stored in data

y: the index of the value that must be read in table tab

The accumulator register acc contains the value tab[y]

Analogy

#tab and y refer respectively to the ROM and (Z α©M1,M
′

1)

The most significant bits of acc is associated to the register
R and its least significant bits to the register M

Taking advantage from our proposal, the memory access is
made completely secure

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 16

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Simulation Description
Simulation Results

Presentation Outline

1 Masking Principles

2 Study in the Idealized Model

3 Study in the Imperfect Model

4 Conclusions and Perspective

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 17

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Simulation Description
Simulation Results

In reality A(X ,Y) is a polynomial P(X1, · · · ,Xn,Y1, . . . ,Yn)

We study I[LR + LM ;Z ⊕ Z ′] when P is of degree 6 d

Methodology

The leakage function is:
P(X1, · · · ,Xn,Y1, · · · ,Yn) =

∑
(u,v)∈F

n
2×F

n
2,

HW(u)+HW(v)≤d

a(u,v)X
u1
1 · · ·X

un
n Y

v1
1 · · ·Y

vn
n

The coefficients a(u,v) are drawn at random from this law:

a(u,v) ∼ aHD

(u,v) + U(
[

− deviation
2 ,+ deviation

2

]

)

a(u,v) = 0 if HW(u, v) > d .

The deviation is {0.1, 0.2, 0.5, 1.0}, i.e. 10%, 20%, 50% or
100%

The computed mutual information is I[L;Z ,Z ′], where
L = P(Z ⊕F (M),Z ′⊕F (M ⊕α))+NR +P(M,M ⊕α)+NM

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 18

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Simulation Description
Simulation Results

Simulation Results for low deviation

-15

-10

-5

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n=3, model deviation=0.1 of order d≤2

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-15

-10

-5

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n=3, model deviation=0.1 of order d≤3

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n=3, model deviation=0.2 of order d≤2

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-16

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n=3, model deviation=0.2 of order d≤3

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 19

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Simulation Description
Simulation Results

Simulation Results for high deviation

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n=3, model deviation=0.5 of order d≤2

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n=3, model deviation=0.5 of order d≤3

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n=3, model deviation=1.0 of order d≤2

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

n=3, model deviation=1.0 of order d≤3

No CM (unnoised HD)
1st-order CM (unnoised HD)

1st-order CM (noised HD)
Our CM, Eqn. (5) (noised HD)

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 20

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Presentation Outline

1 Masking Principles

2 Study in the Idealized Model

3 Study in the Imperfect Model

4 Conclusions and Perspective

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 21

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Conclusions

A new masking scheme for hardware sbox implementations is
presented

The countermeasure proposed is a leak-free countermeasure
under some realistic assumptions about the device architecture

The solution has been evaluated within an
information-theoretic study, proving its security against
1O-SCA under the Hamming distance assumption

When the leakage function deviates slightly from this
assumption, our solution still achieves excellent results

Perspective

Adapt the countermeasure to reach 2nd-order security

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 22

http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

Thanks

For Your

Attention.

An up-to-date version of the paper (with some corrections in the
construction of the F functions (in §4.1)) is on the eprint: [1].

References
[1] Houssem Maghrebi, Emmanuel Prouff, Sylvain Guilley, and Jean-Luc Danger.

A First-Order Leak-Free Masking Countermeasure.
Cryptology ePrint Archive, Report 2012/028, 2012.
http://eprint.iacr.org/2012/028.

H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 23

http://eprint.iacr.org/2012/028
http://www.rsaconference.com/events/2012/usa/mightier.htm

Masking Principles
Study in the Idealized Model
Study in the Imperfect Model
Conclusions and Perspective

A First-Order Leak-Free Masking Countermeasure

Houssem MAGHREBI, Emmanuel PROUFF,
Sylvain GUILLEY, Jean-Luc DANGER

< houssem.maghrebi@TELECOM-ParisTech.fr>

Institut TELECOM / TELECOM-ParisTech
CNRS – LTCI (UMR 5141)

RSA CONFERENCE’12, San Francisco
Session Track: Cryptography Session Code: CRYP-204
Scheduled Date: 02/29/2012 Session Title: Secure

Implementation Methods Session Classification: Advanced
H. Maghrebi + E. Prouff + S. Guilley + J.-L. Danger 1st-order leak-free countermeasure 24

http://www.institut-telecom.fr/
http://www.telecom-paristech.fr/
http://www.cnrs.fr/
http://www.ltci.enst.fr/
http://www.institut-telecom.fr/
http://www.telecom-paristech.fr/
http://www.cnrs.fr/
http://www.oberthur.com/
http://www.secure-ic.com/
http://www.rsaconference.com/events/2012/usa/mightier.htm

	CRYP-204_Page.pdf
	CRYP-204_Maghrebi final

