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Overview

I Motivation:

Quote
Decrypting ciphertexts on any computer which multiplies even one pair of numbers incorrectly can lead to full
leakage of the secret key, sometimes with a single well-chosen ciphertext.

– Biham et. al. [2, Page 1]

I Contribution:
1. an attack of this type on OpenSSL 0.9.8g, and
2. an investigation of methods to detect and prevent such attacks.
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Background: “bug attacks” (1)

Example: RSA bug attack

DA

(N, d)

C

M
M = LTOR(C, d,N) = Cd (mod N)

I Rules:
I The attacker A wants to recover the private exponent d housed in a target device D.
I D uses a (w × w)-bit integer multiplier whose operands are x and y .
I Although generalisations are possible, assume that if

1. x 6= α or y 6= β their product is computed correctly, but
2. x = α and y = β their product is computed incorrectly.
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Background: “bug attacks” (2)

Algorithm (LTOR)
Input: Integers x and y , and a modulus N.
Output: The result xy (mod N).

t ← 1
for i = |y| − 1 downto 1 step−1 do

1 t ← t2 (mod N)
2 if yi = 1 then
3 t ← t · x (mod N)

end
end
return t

Attack (Biham et. al. [2, Section 4.2])
At the j-th step, the attacker

I knows d′, some more-significant portion of the binary
expansion of d , and

I aims to recover the next less-significant unknown bit

so proceeds as follows:

1. Using d′, select a C st. during decryption using
LTOR, when i = j at line #2

I β occurs in the representation of x ,
I α occurs in the representation of t

meaning that if
I yi = 1 then t is then multiplied by x and the

bug is triggered,
I yi = 0 then t is then squared and the bug is not

triggered.

2. Have the device decrypt C using d ; if the result
I is incorrect then the bug was triggered and

hence dj = 1,
I is correct then the bug wasn’t triggered and

hence dj = 0.
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Feature #1: NIST-P-{256, 384} implementation (1)

Quote
The function BN_nist_mod_384 (in crypto/bn/bn_nist.c) gives wrong results for some inputs.

– Reimann [4], on the openssl-dev mailing list
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Feature #1: NIST-P-{256, 384} implementation (2)

Algorithm (NIST-P-256-REDUCE, per Solinas [5, Example 3, Page 20])

Input: For w = 32-bit words, a 16-word integer product z = x · y and the modulus p = 2256 − 2224 + 2192 + 296 − 1.

Output: The result z (mod p).

1. Form the nine, 8-word intermediate variables

S0 = 〈 z0, z1, z2, z3, z4, z5, z6, z7 〉
S1 = 〈 0, 0, 0, z11, z12, z13, z14, z15 〉
S2 = 〈 0, 0, 0, z12, z13, z14, z15, 0 〉
S3 = 〈 z8, z9, z10, 0, 0, 0, z14, z15 〉
S4 = 〈 z9, z10, z11, z13, z14, z15, z13, z8 〉
S5 = 〈 z11, z12, z13, 0, 0, 0, z8, z10 〉
S6 = 〈 z12, z13, z14, z15, 0, 0, z9, z11 〉
S7 = 〈 z13, z14, z15, z8, z9, z10, 0, z12 〉
S8 = 〈 z14, z15, 0, z9, z10, z11, 0, z13 〉

2. Compute
r = S0 + 2S1 + 2S2 + S3 + S4 − S5 − S6 − S7 − S8 (mod p).

3. Return 0 ≤ r < p.
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Feature #1: NIST-P-{256, 384} implementation (3)

Algorithm (NIST-P-256-REDUCE, per OpenSSL)

Input: For w = 32-bit words, a 16-word integer product z = x · y and the modulus p = 2256 − 2224 + 2192 + 296 − 1.

Output: The (potentially incorrect) result z (mod p).

1. Form the nine, 8-word intermediate variables

S0 = 〈 z0, z1, z2, z3, z4, z5, z6, z7 〉
S1 = 〈 0, 0, 0, z11, z12, z13, z14, z15 〉
S2 = 〈 0, 0, 0, z12, z13, z14, z15, 0 〉
S3 = 〈 z8, z9, z10, 0, 0, 0, z14, z15 〉
S4 = 〈 z9, z10, z11, z13, z14, z15, z13, z8 〉
S5 = 〈 z11, z12, z13, 0, 0, 0, z8, z10 〉
S6 = 〈 z12, z13, z14, z15, 0, 0, z9, z11 〉
S7 = 〈 z13, z14, z15, z8, z9, z10, 0, z12 〉
S8 = 〈 z14, z15, 0, z9, z10, z11, 0, z13 〉

2. Compute
S = S0 + 2S1 + 2S2 + S3 + S4 − S5 − S6 − S7 − S8

= t + c · 2256

3. Compute
r = t − c · p (mod 2256)

= t − sign(c) · T [|c|] (mod 2256)

for pre-computed T [i] = i · p.

4. If r ≥ p (resp. r < 0) then update r ← r − p (resp. r ← r + p), return r .
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Feature #1: NIST-P-{256, 384} implementation (4)

I Some (limited) analysis: incorrect result (i.e., ±2256 )
1. is triggered randomly with probability ∼ 10 · 2−29,
2. can be triggered deliberately with special-form operands, e.g.,

x = (232 − 1) · 2224 + 3 · 2128 + x0
y = (232 − 1) · 2224 + 1 · 296 + y0

for any random 0 ≤ x0, y0 < 232.
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Feature #2: ECDHE implementation (1)

Algorithm (ephemeral ECDH between A and D)

A D

k i
A

$← {1, 2, . . . , n − 1}

Qi
A ← [k i

A]G

k i
D

$← {1, 2, . . . , n − 1}

Qi
D ← [k i

D ]G

Ri
A ← [k i

A]Qi
D = [k i

A · k i
D ]G Ri

D ← [k i
D ]Qi

A = [k i
D · k i

A]G

Qi
A

Qi
D
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Feature #2: ECDHE implementation (1)

Algorithm (ephemeral-static ECDH between A and D)

A D

k i
A

$← {1, 2, . . . , n − 1}

Qi
A ← [k i

A]G

k

i

D
$← {1, 2, . . . , n − 1}

Q

i

D ← [k

i

D ]G

Ri
A ← [k i

A]Q

i

D = [k i
A · k

i

D ]G Ri
D ← [k

i

D ]Qi
A = [k

i

D · k i
A]G

Qi
A

Q

i

D
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Feature #2: ECDHE implementation (2)

I OpenSSL implements this as follows

ssl/s3_lib.c

if (!(s->options & SSL_OP_SINGLE_ECDH_USE ))
{
if (! EC_KEY_generate_key(ecdh))

{
EC_KEY_free(ecdh);
SSLerr(SSL_F_SSL3_CTRL ,ERR_R_ECDH_LIB );
return(ret);
}

}

meaning ECDHE
I uses a per-invocation (of the library) rather than a per-session key, unless
I one explicitly uses SSL_CTX_set_options to set SSL_OP_SINGLE_ECDH_USE.
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Attack (1)

Feature Biham et. al. [2, Section 4.2] Brumley et. al. [3, Section 3]

Target Fixed d
Fixed kD

(ECDH or ephemeral-static ECDHE)

Leakage
Re-encrypt M using e,

check against C Handshake success/failure

Input
Arbitrary poisoned

integer C ∈ Z∗N
Controlled distinguisher

point Q i
A = [k i

A]G ∈ E(Fp)

Computation
Left-to-right

binary exponentiation
Left-to-right (modified)

wNAF scalar multiplication
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Attack (2)

Attack (Brumley et. al. [3, Section 3])
At the j-th step, the attacker

I knows a, some more-significant portion of the wNAF expansion of kD , and
I aims to recover the next less-significant unknown non-zero digit b ∈ S for some digit set S

so proceeds as follows:

1. Select a distinguisher point
Da,b = [l]G

for known l , st. for (enough) random paddings d

[a ‖ b ‖ d ]Da,b 6∈ E(Fp)

for all b ∈ S, and
[a ‖ c ‖ d ]Da,b ∈ E(Fp)

for all c ∈ S \ {0, b}.
2. Use each distinguisher point as an input toD: if the handshake fails, that guess for b was correct.

3. Apply wNAF rules to cope with any subsequent zero digits.
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Attack (3)

I Cost: for a prototype D based on s_server ...

Queries to D by A
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Effort by A to find Da,b
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Steps (base 2 log)

less than 12 known digits
appx. 224 known digits

I ... when NIST-P-256 is used, A
I can recover the fixed kD using ∼ 633 queries to D, where
I each query implies a ∼ 227 step brute-force distinguisher point search (assuming no

pre-computation).
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Conclusions (1)

I Reactive countermeasures:
1. The bug in NIST-P-256-REDUCE is already patched in OpenSSL 0.9.8h and higher.
2. Restarting the library to refresh kD limits impact ...
3. ... but you may as well just opt-out of ephemeral-static ECDHE instead!
4. Point or scalar blinding, or a randomised scalar multiplication algorithm prevent

selection of suitable distinguisher points.
I Proactive countermeasures (or, “second half of paper”): given

1. testing doesn’t seem robust enough, and
2. there seems to be a connection between performance-enhancing optimisations and

security

how can we make formal verification (e.g., of OpenSSL) technically and
economically viable?
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Conclusions (2)

Questions?
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Extra – Invalid Curve Attack (1)

Example: ECC invalid curve attack

DA

k

P

Q
Q = [k ]P

Attack (Biehl et. al. [1, Section 4.1])
1. Given a curve E′ of order |E′| =

Q
ri , for each i :

1.1 Select a point Pi ∈ E′ with order ri .
1.2 Send Pi ∈ E′ toD and have it compute Qi = [k ]Pi ∈ E′.
1.3 Solve ECDLP in subgroup to get k (mod ri ).

2. Use CRT to recover k given all k (mod ri ).
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Extra – Invalid Curve Attack (2)

I Observation: if D uses OpenSSL, it will validate each input P = (xP , yP) by
comparing the LHS and RHS of

y2
P = x3

P + a4xP + a6

and hence prevent an invalid curve attack.
I Idea: select point P = (xP , yP) as follows,

1. Select xP such that during the computation of t = (x2
P + a4) · xP + a6 (mod p):

I The step t0 = x2
P (mod p) does not trigger the bug.

I The step t1 = (t0 + a4) · xP (mod p) does trigger the bug, i.e., the correct result would be
t1 ± 2256 (mod p).

I The incorrect result t is a quadratic residue modulo p.

2. Compute yP =
√

t (mod p).

meaning P now passes the OpenSSL point validation, but is actually on some
curve E ′ rather than E .
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Extra – Invalid Curve Attack (3)

I (Open) problem:
I The characteristics of the bug mean it produces results that are incorrect by ±2256.
I This limits the invalid curves to

E ′+256 : y2 = x3 + a4x + (a6 + 2256)

E ′−256 : y2 = x3 + a4x + (a6 − 2256)

|E ′+256| = FFFFFFFF00000000FFFFFFFFFFFFFFFF\
DA0A4439003A5730FA6F898036B17E90(16)

≈ 24 · 211 · 231 · 2209

|E ′−256| = FFFFFFFF000000010000000000000001\
304C2CB870EB2102DEB81758D8933A44(16)

≈ 22 · 211 · 214 · 216 · 257 · 2154

and hence also the Pi .
I Even so, the 128-bit security level of NIST-P-256 is reduced to that of E ′−256.
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Masking: principle

Aims at making power consumption random

The sensitive variable Z is randomly split into two shares:

(M1 ,M0 = Z θ M1 )

M0 is the masked variable and θ is an inversible operation

Boolean masking is based on exclusive-or (xor) operations:

M0 = Z ⊕ M1

The application of a transformation S on a variable Z split in
two shares leads the processing of two new shares M ′

0 and M ′

1

such that:
S(Z ) = M ′

0 ⊕ M ′

1

The critical point is to deduce M ′

0 from M0, M1 and M ′

1
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Linear Function

S(Z ) = S(M0 ⊕M1) = S(M0)⊕ S(M1)

M ′

0 = S(M0)⊕ S(M1)⊕M ′

1

Non-Linear Function (NL)

Achieving first-order security is much more difficult

Commonly, there are three strategies:

(a) Global Look-up Table: a precomputed ROM is associated to
the function S ′ : (X ,Y ,Y ′) 7→ S(X ⊕ Y ). M ′

0 is computed by
performing a single operation: S ′[Z ⊕M1,M1,M

′

1]
(b) The re-computation method : M1 and M ′

1 are generated and a
table representing the function S ′ : Y 7→ S(Y ⊕M1)⊕M ′

1 is
computed from S and stored in RAM

(c) The sbox secure calculation: the sbox outputs are computed
on-the-fly by using a mathematical representation of the sbox

The GLUT method seems to be the most appropriate method
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Generic Structure

The ROM lookup-table
represents a (3n, n)-function S ′

such that:
S ′(Z⊕M1,M1,M

′

1) = S(Z )⊕M ′

1

Security Evaluation

It manipulates the masked data
Z ⊕M1 and the mask M1 at the
same time (i.e. potentially
exploitable)

R

n

S

M

z ⊕m1 n m1

update
mask

ROM
S ′

(a)

ROM
(b)

m′

1
S(z)⊕m′

1
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Assumption: Only the updating of the registers leak information

The masked data register leakage is:
LR = A(Z ⊕M1,Z

′ ⊕M ′

1) + NR

The mask register leakage is: LM = A(M1,M
′

1) + NM

Property #1 : For any pair (X ,Y ), we have A(X ,Y ) = A(X ⊕ Y )

The power consumption L related to the simultaneous
updating of the registers equals LR + LM :
L = A(∆(Z )⊕∆(M)) +A(∆(M)) + NR + NM , where
∆(Z ) and ∆(M) respectively denote Z ⊕ Z ′ and M1 ⊕M ′

1

The distribution of L (and in particular its variance) depends
on the sensitive variable ∆(Z )

How to break the dependency between L and ∆(Z )?
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A simple solution is to choose a function α© such that:

Z α© M1 = Z ⊕ F (M1)

M1 and Z do no longer need to have the same dimension n,
so F is a (p, n)-function

The deterministic part of the leakage can be rewritten:

A(Z α©M1,Z
′ α©M ′

1) + A(M1,M
′

1)
.
= A(Z ⊕ Z ′ ⊕ F (M1)⊕ F (M ′

1)) +A(M1 ⊕M ′

1)

= A(∆(Z )⊕ F (M1)⊕ F (M ′

1)) +A(∆(M1))

Necessary Conditions to be Satisfied

L is independent of ∆(Z ) if:

1 [Constant Masks Difference]: M1 ⊕M ′

1 is constant and

2 [Difference Uniformity]: F (M1)⊕ F (M ′

1) is uniform
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One Simple Solution

Fix the condition M ′

1 = M1 ⊕ α for some nonzero constant α

Design F s.t. Y 7→ F (Y )⊕ F (Y ⊕ α) is uniform for this α

First Construction Proposal

Choose p = n + 1 and split Fn+1
2 into E ⊕ (E ⊕ α)

Choose a bijective function G from E into F
n
2

Define F such that for every Y ∈ F
n+1
2 , we have

F (Y ) = G (Y ) if Y ∈ E and F (Y ) = 0 otherwise

Example for n = 3: E = {0} × F
n
2 ⊂ F

n+1
2 and the constant α is

equal to 1000 in binary, and F (x3x2x1x0) = 0 if x3 = 1 or x2x1x0
otherwise.
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Second Construction Proposal

Choose p = n + n′ with n′ < n and select one injective
function G from F

n′

2 into F
n
2 − {0}

For every (X ,Y ) ∈ F2n
′ × F2n = F2p F (X ,Y ) = G (X ) · Y

The outputs of the (p, n)-function F are uniformly distributed
over Fn

2

The two constructions of F satisfy the difference uniformity

condition

The mask dimension p for the first construction is only slightly
greater than the dimension n of the data to be masked
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Hardware Implementation

R

n

α©

S

α©

α

m
′

1

ROM α

M

z ⊕ F (m1) p m1

F (m′

1
)

S(z)⊕
m′

1

The registers contain Z ⊕ F (M1) and M1

The mask update operation is constrained to be a ⊕ with α

Every computation is protected with the single pair of masks
(M1, M

′

1 = M1 ⊕ α)

S(Z )⊕ F (M ′

1) is got by accessing the ROM table
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Evaluation Methodology

The target implementation: the proposed countermeasure

The target secret: the sensitive variable ∆(Z )

The Adversary model : the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

The Leakage model : the Hamming distance model

Mutual Information Analysis

I[A(∆(Z )⊕ F (M1)⊕ F (M ′

1))+A(∆(M));∆(Z )] = 0
(perfect masking of register R =⇒ I[LR ; ∆(Z )] = 0)

∆(M) is constant and F (M1)⊕ F (M ′

1) is uniformly
distributed over Fn

2 and independent of ∆(Z )

Our proposal is leak-free and immune against first-order
attacks
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Evaluation Methodology

The target implementation: the proposed countermeasure

The target secret: the sensitive variable ∆(Z )

The Adversary model : the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

The Leakage model : the Hamming distance model

Mutual Information Analysis

I[A(∆(Z )⊕ F (M1)⊕ F (M ′

1))+A(∆(M));∆(Z )] = 0
(hiding of register M =⇒ I[LM ; ∆(Z )] = 0)

∆(M) is constant and F (M1)⊕ F (M ′

1) is uniformly
distributed over Fn

2 and independent of ∆(Z )

Our proposal is leak-free and immune against first-order
attacks
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Evaluation Methodology

The target implementation: the proposed countermeasure

The target secret: the sensitive variable ∆(Z )

The Adversary model : the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

The Leakage model : the Hamming distance model

Mutual Information Analysis

I[A(∆(Z )⊕ F (M1)⊕ F (M ′

1))+A(∆(M));∆(Z )] = 0
(first-order resistance =⇒ I[LR + LM ; ∆(Z )] = 0)

∆(M) is constant and F (M1)⊕ F (M ′

1) is uniformly
distributed over Fn

2 and independent of ∆(Z )

Our proposal is leak-free and immune against first-order
attacks
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Evaluation Methodology

The target implementation: the proposed countermeasure

The target secret: the sensitive variable ∆(Z )

The Adversary model : the non-adaptive known plaintext
model, the attacker is not able to perform HO-SCA

The Leakage model : the Hamming distance model

Mutual Information Analysis

I[A(∆(Z )⊕ F (M1)⊕ F (M ′

1)), A(∆(M));∆(Z )] = 0
(second-order resistance =⇒ I[LR , LM ; ∆(Z )] = 0)

∆(M) is constant and F (M1)⊕ F (M ′

1) is uniformly
distributed over Fn

2 and independent of ∆(Z )

Our proposal is leak-free and immune against first-order
attacks and certain second-order attacks!
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Context: Memory Access in Von-Neumann Architecture

mov dptr, #tab

mov acc, y

movc acc, @acc+dptr

dptr: the data memory pointer

#tab: the address of a table stored in data

y: the index of the value that must be read in table tab

The accumulator register acc contains the value tab[y]

Analogy

#tab and y refer respectively to the ROM and (Z α©M1,M
′

1)

The most significant bits of acc is associated to the register
R and its least significant bits to the register M

Taking advantage from our proposal, the memory access is
made completely secure
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In reality A(X ,Y ) is a polynomial P(X1, · · · ,Xn,Y1, . . . ,Yn)

We study I[LR + LM ;Z ⊕ Z ′] when P is of degree 6 d

Methodology

The leakage function is:
P(X1, · · · ,Xn,Y1, · · · ,Yn) =

∑
(u,v)∈F

n
2×F

n
2,

HW(u)+HW(v)≤d

a(u,v)X
u1
1 · · ·X

un
n Y

v1
1 · · ·Y

vn
n

The coefficients a(u,v) are drawn at random from this law:

a(u,v) ∼ aHD

(u,v) + U(
[

− deviation
2 ,+ deviation

2

]

)

a(u,v) = 0 if HW(u, v) > d .

The deviation is {0.1, 0.2, 0.5, 1.0}, i.e. 10%, 20%, 50% or
100%

The computed mutual information is I[L;Z ,Z ′], where
L = P(Z ⊕F (M),Z ′⊕F (M ⊕α))+NR +P(M,M ⊕α)+NM
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Simulation Results for high deviation
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Conclusions

A new masking scheme for hardware sbox implementations is
presented

The countermeasure proposed is a leak-free countermeasure
under some realistic assumptions about the device architecture

The solution has been evaluated within an
information-theoretic study, proving its security against
1O-SCA under the Hamming distance assumption

When the leakage function deviates slightly from this
assumption, our solution still achieves excellent results

Perspective

Adapt the countermeasure to reach 2nd-order security
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Thanks

For Your

Attention.

An up-to-date version of the paper (with some corrections in the
construction of the F functions (in §4.1)) is on the eprint: [1].
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