
An Efficient Protocol for Oblivious
DFA Evaluation and Applications

Saeed Sadeghian

University of Calgary

Joint work with Payman Mohassel and Salman Niksefat

Deterministic Finite Automaton

• Other names

– Finite State Machines (FSM)

– Finite State Automaton (FSA)

• A simple model of computation

– Digital logic

– Computer programs

– Pattern matching

DFAs
[CMU, 453]

Formal DFA Representation

• 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹

• 𝑄 is the set of states (finite)‏

• Σ is the alphabet (finite)‏

• 𝛿: 𝑄 × Σ → 𝑄 is the transition function

• 𝑞0 ∈ 𝑄 is the start state

• 𝐹 ⊆ 𝑄 is the set of accept states

[CMU, 453]

Oblivious DFA Evaluation

a b e a h
M = X=

M(x)
IDS application

Oblivious DFA Evaluation

a b e a h M = X=

M(x)
Pattern matching

Security Requirement

• Secure two-party computation

– Hide the DFA

– Hide the input string

– Only reveal the output

• Malicious input holder

– Guarantee Idea/real world simulation

• Malicious DFA holder

– Guarantee input privacy

General-Purpose Solutions

• General two-party computation

– Garbled circuit approach

• Drawbacks

– Circuits get big quickly

– Circuit creation is sometimes cumbersome

– Not suitable for the client/server model

Special-Purpose Solutions

• A number of constructions

– For oblivious DFA evaluation

– Or oblivious branching program

• Drawbacks

– DFA holder’s public-key ops is large

• Proportional to DFA size

A Yao-like Approach to ODFA

• DFA holder

– DFA  DFA matrix

– DFA matrix  Garbled DFA matrix

• Permute and encrypt the matrix

• Oblivious transfer

– Receive garbled inputs

• Input holder

– Evaluate/ungarble a single transit path

(1) DFA  DFA Matrix

 𝑆1

 𝑆2

 𝑆3

 𝑆4

 𝑆5

0

1

0

1

Starting
State

Accepting
State Non-Accepting

State
𝑄 = 𝑆1

𝑄 = 𝑆2

𝑄 = 𝑆5

𝛿 𝑠1, 0 , 𝛿(𝑠1, 1)
(2,3)

(2,3)

𝛿 𝑠1, 0
?
∈

𝐹, 𝛿 𝑠1, 1
?
∈

𝐹

(2,3)

(0,0) n

n-1
.
.
.

1 (5,4)

(5,4)

(5,4)

(1,0)

DFA Matrix

• DFA matrix size

– n x |Q| matrix

– Each cell holds 2 index

– 2n|Q|log|Q| bits to represent

• DFA evaluation

– Traverse a single transit path on the matrix

Problems

• We should hide the state number

• We should make sure he has come from the
correct last state

• We have to make sure he is not able to
decrypt more than one cell in each row

(2) DFA Matrix  Permuted DFA Matrix

𝑄 = 2 𝑄 = 1 … 𝑄 = 3

𝛿 𝑠2, 0 , 𝛿(𝑠2, 1) 𝛿 𝑠1, 0 , 𝛿(𝑠1, 1) … 𝛿 𝑠3, 0 , 𝛿(𝑠3, 1)

𝑛 = 0: 𝑃𝑒𝑟 0 = {2,1,5,4,3}

𝑄 = 3 𝑄 = 2 … 𝑄 = 1

𝛿 𝑠3, 0 , 𝛿(𝑠3, 1) 𝛿 𝑠2, 0 , 𝛿(𝑠2, 1) … 𝛿 𝑠1, 0 , 𝛿(𝑠1, 1)

𝑛 = 1: 𝑃𝑒𝑟 1 = {3,2,4,5,1}

(2,3)

(2,1)

(1) Permute
each row

(2) Update the
pointers

Problems

• We should hide the state number

• We should make sure he has come from the
correct last state

• We have to make sure he is not able to
decrypt more than one cell in each row

(3) Encrypt with PAD Matrix

0 1

Next PAD 0 Next 0=q’ Next PAD 1 Next 1

State q

0 1

Next PAD 0 Next 0 Next PAD 1 Next 1

XOR with Expand(Next PAD 0)

State q’

Problem: He is
able to decrypt
both PADS and

Nexts!

Problems

• We should hide the state number

• We should make sure he has come from the
correct last state

• We have to make sure he is not able to
decrypt more than one cell in each row

(4) Encrypt with Keys

(k0
1 , k1

1)

(k0
2 , k1

2)

(k0
n , k1

n)
.
.
.

n

n-1
.
.
.

1

(4) Encrypt with Keys

0 1

Next PAD 0 Next 0=q’ Next PAD 1 Next 1

State q

0

State q’

1

Next PAD 0 Next 0 Next PAD 1 Next 1

XOR with Expand(Next PAD 0)

XOR with 𝑘1
𝑖

Row i-1

Row i

XOR with 𝑘0
𝑖

Protocol

𝑋 = (𝑥1, … , 𝑥𝑛) (𝑘0
𝑛, 𝑘1

𝑛)
…

(𝑘0
1, 𝑘1

1)
(𝑘0

0, 𝑘1
0)

𝑘𝑥𝑛
𝑛

…
𝑘𝑥1

1

𝑘𝑥0
0

Oblivious
Transfer

Garbled
Matrix
(GM)

GM

Complexity

• Public-Key ops
– O(n) for both parties
– Can be reduced to k using OT extension

• DFA holder’s symmetric-key ops
– n|Q| PRG evaluations

• Input holder’s symmetric-key ops
– n PRG evaluations

• Communication
– 2n|Q|(log|Q|+k) bits

• Round complexity
– 1 round

Secure Pattern Matching

• Does a pattern p exist in text T

• Locations of occurrences of p in T

• Number of occurrences of p in T

a b e a

a b d r g e a b e a t T =

p =

A Different Presentation of Protocol

• Pointed out by reviewers

• Can be viewed as a generalization of Yao’s
Garbled Circuit Protocol

• Each gate takes non-boolean inputs and
returns non-boolean outputs

G G

𝑥1 𝑥2

𝑞0 𝛿(𝑞0, 𝑥1)

Comparison

Implementation

• Complete C++ implementation

• Experiments on Intel Core i7, 4GB RAM

Future Work

• IDS DFAs are not too dense

– Can we do better?

• We will do many DFA evaluations

– Better batch evaluations?

– Better communication particularly

– (reusing part of the DFA matrix?)

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Session ID:

Session Classification:

SEUNG GEOL CHOI

UNIVERSITY OF MARYLAND

Secure Multi-Party Computation

of Boolean Circuits with Applications

to Privacy in On-Line Marketplaces

CRYP-403

Advanced

Joint work with
Jonathan Katz (University of Maryland)
Kyung-Wook Hwang, Tal Malkin, Dan Rubenstein (Columbia University)

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Motivation: Online Marketplace

1 car 2 cars 1 car

$8,000 $8,100 $9,100 $8,500

Wants with minimal price

Find best match

2

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Online Marketplace

 Participants

 Providers: have resources and associated metric

 Customer: has preference

 Desired result

 For each resource r, compute its score according to
the input of the customer and the providers

 Output the resource with best score

3

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Example: P2P Content Distribution

 Resources = Peers

 Providers: ISPs

 Know bandwidth info of peers

 Customer

 Knows which peer has the desired file

 Wants to find a suitable peer with highest bandwidth

 Result

 Score for a peer: if the peer has the file, output its
bandwidth; otherwise, output 0

 Output: the peer with the highest score

4

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Other Examples

 Cloud computing

 Find the best-quality cloud service within price limit

 Find the cheapest cloud service of desired quality

 Mobile social network

 Find the closet user within enough matching interests

 Find the user with most matching interests within a
certain distance.

5

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Privacy in Online Marketplaces

 Privacy

 The providers and the customer should learn nothing
about anyone’s inputs (beyond the output)

 Semi-honest security: corrupted parties follow the
protocol honestly, but try to infer secret information
from the protocol transcript.

 Protocol?

 One could attempt to construct a specific protocol…

 How well would a generic secure multi-party
computation (MPC) protocol work?

6

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Secure Multi-Party Computation

7

 Compute

f(x1, x2, x3, x4)

x1

x2

x3

x4

 E.g., f = x1 x2 + x3 + x4
 =2

 = 7

 = 1

 = 5

 = 20

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Generic Solutions?

 “Generic” = a protocol for any function, specified
as a boolean/arithmetic circuit

 Good news: generic solutions exist

 Bad news: relatively inefficient (?)

8

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


However, in the Past Few Years

 Growing interest in research community

 Optimizing efficiency of protocols

 Increased capability of modern computers

Several generic solutions have been implemented

9

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Two Types of Generic MPC Solutions

 Boolean circuits

 A circuit with boolean gates e.g., XOR and AND.

 Input of each party: represented as bits

 Arithmetic circuits

 A circuit with addition/multiplication gates in some
field, e.g., GF(p) or GF(2n)

 Input of each party: an element in the given field

10

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Boolean or Arithmetic?

Function Boolean (Bit) Arithmetic (Field)

Statistics
(e.g., average)

Large circuit Small circuit

Comparison
(e.g., less than)

Small circuit Large circuit

11

Boolean circuits better suited for addressing
the private marketplaces problem

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Previous Work on MPC Solutions

12

Ours Boolean C++ Yes < n

Circuit Language Circuit
Scalability

Corrupted
parties

FairplayMP
[BNP08]

Boolean Java No
(~4000 gates)

< n/2

VIFF
[DGKN09]

Arithmetic Python Yes < n/2

SEPIA
[BSMD10]

Arithmetic Java Yes < n/2

Not satisfactory for our purpose

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Our Contributions

 We provide the first scalable implementation of
multi-party computation for boolean circuits, with
optimal resilience

 We apply our implementation to the problem of
online marketplaces

 Performance better than what is obtained using
previous solutions (VIFF, SEPIA)

 Another indication that generic secure MPC can
be useful in solving practical problems

13

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Our Generic MPC
Solution

14

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Overview of the Protocol

 We implement the [GMW87] protocol

 The function is given as a boolean circuit

 With XOR and AND gates

 Evaluate the circuit in a gate-by-gate manner

 Invariant: the actual value of each wire is secret-
shared.

15

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Overview of the GMW Protocol

16

XOR

AND

y x 1 0

0

1

Evaluate the circuit gate-by-gate .
The value of each wire is secret-shared.

1 0 1 1

1 1

1 0

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


sender receiver

1-out-of-4 Oblivious Transfer (OT)

17

σ? Other xis?

OT

input σ

input (x0, x1, x2, x3)

output xσ

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


GMW – Evaluating AND gates

AND

a b

c

a1, b1 a2, b2

c1 = r c2 = xσ

Run oblivious transfer

OT

x0 = (a1+0)(b1+0)+ r
x1 = (a1+0)(b1+1)+ r

x2 = (a1+1)(b1+0)+ r

x3 = (a1+1)(b1+1)+ r

 σ = 2a2+ b2

xσ

18

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


GMW Protocol: Multi-Party Setting

 Input wires: XOR of all shares are the actual
value.

 XOR gate: same as before (i.e., ci =
 ai + bi)

 AND gate: use OT between all pairs of parties

 Details omitted

19

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Implementation of the GMW Protocol

 Critically depends on efficiency of OT protocol

 Basic OT [NP01]

 Multi-threading: two-threads for each pair-wise OT
 Number-theory package: NTL http://shoup.net (modified for MT)

 OT extension [IKNP03]

 Several (e.g., 80) basic OTs with long inputs  many bit OTs
 Small overhead: four hash functions per OT
 Use SHA-1 implementation from PolarSSL

 OT preprocessing [Bea95]

 Preprocess OTs on random input
 Use them for OTs on actual input: tiny overhead (a few bits)

20

http://shoup.net/

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Application to
Online Marketplaces

21

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Circuit: P2P Content Distribution

22

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Experiments in LAN: P2P Content Distribution

23

#nodes

 Running time linear in
nodes and (almost)
in # resources

 Marginal time per
AND gate:

 50 s (3 nodes)

 340 s (13 nodes)

 OS: Linux
CPU: Intel Xeon 2.80 GHz (dual-core)
RAM: 4GB

s
e

c
o

n
d

s

Running Time

4 6 8 10 12

10

30

50

70

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Running-Time Ratio: VIFF/Ours

24

Our implementation is 10-30x faster

#nodes
3 5 7 9

running-time

ratio

5

15

25

35

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Running-Time Ratio: SEPIA/ours

25

Our implementation is ~10x faster

#nodes
3 5 7 9

running-time

ratio

9

10

11

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Experiments in PlanetLab

 Similar results

 With somewhat bigger deviation

 Details are in the paper

26

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Summary

 Generic MPC implementation

 Boolean circuit representation, optimal corruption
thereshold

 Source code:
 http://www.ee.columbia.edu/~kwhwang/projects/gmw.html

 Application to privacy in online marketplaces

 Generic MPC can be practical

 Explore generic solutions before designing new protocols

27

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Thank you

28

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


OT Extension [IKNP03,LXX05]

 Several long string OTs  many bit OTs

….

Very efficient: four additional hashes per OT

29

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


OT Preprocessing [Bea95]

 bit OTs on random input  bit OTs on actual input

OT
2 (r0, r1, r2, r3)

r2

input 1 input (x0, x1, x2, x3)

3

(r3+x0, r2+x1, r1+x2, r0+x3)

30

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


Two-Party Computation? (Not in This Talk)

 Initial work

 Fairplay [MNPS04]

 Rather slow and not scalable

 Subsequent work

 Improves performance and scalability

 [LPS08,PSSW09,HEKM11, M11]

 With semi-honest security

 Corrupted parties follow the protocol honestly, but
try to infer secret information from the protocol transcript.

31

Insert presenter logo here
on slide master. See hidden

slide 4 for directions


GMW – Evaluating AND gates

OT

x0 = (a1+0)(b1+0)+ r
x1 = (a1+0)(b1+1)+ r

x2 = (a1+1)(b1+0)+ r

x3 = (a1+1)(b1+1)+ r

 σ = 2a2+ b2

xσ

a2 = 0, b2 = 0: σ = 0, x0 = (a1+a2)(b1+b2) + r

a2 = 0, b2 = 1: σ = 1, x1 = (a1+a2)(b1+b2) + r

a2 = 1, b2 = 0: σ = 2, x2 = (a1+a2)(b1+b2) + r

a2 = 1, b2 = 1: σ = 3, x3 = (a1+a2)(b1+b2) + r

Check xσ = (a1+a2)(b1+b2) + r

c1+ c2 = r + xσ = (a1+a2)(b1+b2) = ab = c

32

	CRYP-403_Saeed.pdf
	CRYP-403_Choi

