
An Efficient Protocol for Oblivious 
DFA Evaluation and Applications 

Saeed Sadeghian 

University of Calgary 

 
Joint work with Payman Mohassel and Salman Niksefat  



Deterministic Finite Automaton 

• Other names 

– Finite State Machines (FSM) 

– Finite State Automaton (FSA) 

 

• A simple model of computation 

– Digital logic 

– Computer programs 

– Pattern matching 

 

 

 

 

 



DFAs 
[CMU, 453] 



Formal DFA Representation 

• 𝑀 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹  

• 𝑄 is the set of states (finite) 

• Σ is the alphabet (finite) 

• 𝛿: 𝑄 × Σ → 𝑄 is the transition function 

• 𝑞0 ∈ 𝑄 is the start state 

• 𝐹 ⊆ 𝑄 is the set of accept states 

 

 

 

 

[CMU, 453] 



Oblivious DFA Evaluation 

a b e a h 
M = X= 

M(x) 
IDS application 



Oblivious DFA Evaluation 

a b e a h M = X= 

M(x) 
Pattern matching 



Security Requirement 

• Secure two-party computation 

– Hide the DFA 

– Hide the input string 

– Only reveal the output 

• Malicious input holder 

– Guarantee Idea/real world simulation 

• Malicious DFA holder 

– Guarantee input privacy 

 

 



General-Purpose Solutions 

• General two-party computation 

– Garbled circuit approach 

• Drawbacks 

– Circuits get big quickly 

– Circuit creation is sometimes cumbersome 

– Not suitable for the client/server model  

 



Special-Purpose Solutions 

• A number of constructions  

– For oblivious DFA evaluation 

– Or oblivious branching program 

 

• Drawbacks 

– DFA holder’s public-key ops is large 

• Proportional to DFA size 

 

 



A Yao-like Approach to ODFA 

• DFA holder 

– DFA  DFA matrix 

– DFA matrix  Garbled DFA matrix 

• Permute and encrypt the matrix 

• Oblivious transfer 

– Receive garbled inputs 

• Input holder 

– Evaluate/ungarble a single transit path 

 

 



(1) DFA  DFA Matrix 

 𝑆1 

 𝑆2 

 𝑆3 

 𝑆4 

 𝑆5 

0 

1 

0 

1 

Starting 
State 

Accepting 
State Non-Accepting 

State 
𝑄 = 𝑆1 

𝑄 = 𝑆2 

𝑄 = 𝑆5 

𝛿 𝑠1, 0 , 𝛿(𝑠1, 1) 
(2,3) 

(2,3) 

𝛿 𝑠1, 0
?
∈

𝐹, 𝛿 𝑠1, 1
?
∈

𝐹 

(2,3) 

(0,0) n 

n-1 
. 
. 
. 

1 (5,4) 

(5,4) 

(5,4) 

(1,0) 



DFA Matrix 

• DFA matrix size 

– n x |Q| matrix 

– Each cell holds 2 index 

– 2n|Q|log|Q| bits to represent 

 

• DFA evaluation 

– Traverse a single transit path on the matrix 



Problems 

• We should hide the state number 

• We should make sure he has come from the 
correct last state 

• We have to make sure he is not able to 
decrypt more than one cell in each row 



(2) DFA Matrix  Permuted DFA Matrix 

𝑄 = 2 𝑄 = 1 …  𝑄 = 3 

𝛿 𝑠2, 0 , 𝛿(𝑠2, 1) 𝛿 𝑠1, 0 , 𝛿(𝑠1, 1) … 𝛿 𝑠3, 0 , 𝛿(𝑠3, 1) 

𝑛 = 0: 𝑃𝑒𝑟 0 = {2,1,5,4,3} 

𝑄 = 3 𝑄 = 2 …  𝑄 = 1 

𝛿 𝑠3, 0 , 𝛿(𝑠3, 1) 𝛿 𝑠2, 0 , 𝛿(𝑠2, 1) … 𝛿 𝑠1, 0 , 𝛿(𝑠1, 1) 

𝑛 = 1: 𝑃𝑒𝑟 1 = {3,2,4,5,1} 

(2,3) 

(2,1) 

(1) Permute 
each row 

(2) Update the 
pointers 



Problems 

• We should hide the state number 

• We should make sure he has come from the 
correct last state 

• We have to make sure he is not able to 
decrypt more than one cell in each row 



(3) Encrypt with PAD Matrix 

0 1 

Next PAD 0 Next 0=q’ Next PAD 1 Next 1 

State q 

0 1 

Next PAD 0 Next 0 Next PAD 1 Next 1 

XOR with Expand(Next PAD 0) 

State q’ 

Problem: He is 
able to decrypt 
both PADS and 

Nexts! 



Problems 

• We should hide the state number 

• We should make sure he has come from the 
correct last state 

• We have to make sure he is not able to 
decrypt more than one cell in each row 



(4) Encrypt with Keys 

(k0
1 , k1

1 ) 

(k0
2 , k1

2 ) 

(k0
n , k1

n ) 
. 
. 
. 

n 

n-1 
. 
. 
. 

1 



(4) Encrypt with Keys 

0 1 

Next PAD 0 Next 0=q’ Next PAD 1 Next 1 

State q 

0 

State q’ 

1 

Next PAD 0 Next 0 Next PAD 1 Next 1 

XOR with Expand(Next PAD 0) 

XOR with 𝑘1
𝑖  

Row i-1 

Row i 

XOR with 𝑘0
𝑖  



Protocol 

𝑋 = (𝑥1, … , 𝑥𝑛) (𝑘0
𝑛, 𝑘1

𝑛) 
… 

(𝑘0
1, 𝑘1

1) 
(𝑘0

0, 𝑘1
0) 

𝑘𝑥𝑛
𝑛  

… 
𝑘𝑥1

1  

𝑘𝑥0
0  

Oblivious 
Transfer 

Garbled 
Matrix 
(GM) 

GM 



Complexity 

• Public-Key ops 
– O(n) for both parties 
– Can be reduced to k using OT extension 

• DFA holder’s symmetric-key ops 
– n|Q| PRG evaluations 

• Input holder’s symmetric-key ops 
– n  PRG evaluations  

• Communication 
–  2n|Q|(log|Q|+k) bits 

• Round complexity 
– 1 round 

 



Secure Pattern Matching 

• Does a pattern p exist in text T 

• Locations of occurrences of p in T 

• Number of occurrences of p in T 

a b e a 

a b d r g e a b e a t T = 

p = 



A Different Presentation of Protocol 

• Pointed out by reviewers 

• Can be viewed as a generalization of Yao’s 
Garbled Circuit Protocol 

• Each gate takes non-boolean inputs and 
returns non-boolean outputs 

 

G G 

𝑥1 𝑥2 

𝑞0 𝛿(𝑞0, 𝑥1) 



Comparison 

 



Implementation 

• Complete C++ implementation 

• Experiments on Intel Core i7, 4GB RAM 

 

 



Future Work 

• IDS DFAs are not too dense 

– Can we do better? 

• We will do many DFA evaluations 

– Better batch evaluations? 

– Better communication particularly 

– (reusing part of the DFA matrix?) 

 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Session ID: 

Session Classification: 

SEUNG GEOL CHOI 

UNIVERSITY OF MARYLAND 

Secure Multi-Party Computation 

of Boolean Circuits with Applications 

to Privacy in On-Line Marketplaces 

CRYP-403 

Advanced 

Joint work with  
Jonathan Katz (University of Maryland) 
Kyung-Wook Hwang, Tal Malkin, Dan Rubenstein (Columbia University) 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Motivation: Online Marketplace 

 

1 car 2 cars 1 car 

$8,000 $8,100 $9,100 $8,500 

Wants with minimal price 

Find best match 

2 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Online Marketplace 

 Participants 

 Providers: have resources and associated metric 

 Customer: has preference 

 

 Desired result 

 For each resource r, compute its score according to 
the input of the customer and the providers  

 Output the resource with best score   

 
3 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Example: P2P Content Distribution 

 Resources = Peers 

 Providers: ISPs 

 Know bandwidth info of peers 

 Customer 

 Knows which peer has the desired file 

 Wants to find a suitable peer with highest bandwidth  

 Result 

 Score for a peer: if the peer has the file, output its 
bandwidth; otherwise, output 0 

 Output:  the peer with the highest score 

 

 
4 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Other Examples 

 Cloud computing 

 Find the best-quality cloud service within price limit 

 Find the cheapest cloud service of desired quality 

 

 Mobile social network 

 Find the closet user within enough matching interests 

 Find the user with most matching interests within a 
certain distance.   

 

 
5 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Privacy in Online Marketplaces 

 Privacy 

 The providers and the customer should learn nothing 
about anyone’s inputs (beyond the output) 

 Semi-honest security: corrupted parties follow the 
protocol honestly, but try to infer secret information 
from the protocol transcript.   

 

 Protocol? 

 One could attempt to construct a specific protocol… 

 How well would a generic secure multi-party 
computation (MPC) protocol work? 

 

 

 

 

 
6 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Secure Multi-Party Computation 

 
7 

  Compute  

f(x1, x2, x3, x4) 

x1 

x2 

x3 

x4 

   E.g., f = x1 x2 + x3 + x4 
   =2  

   = 7 

   = 1 

   = 5 

   = 20  



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Generic Solutions? 

 “Generic” = a protocol for any function, specified 
as a boolean/arithmetic circuit 

 

 Good news: generic solutions exist 

 

 Bad news: relatively inefficient (?) 

 
8 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

However, in the Past Few Years 

 Growing interest in research community 

 Optimizing efficiency of protocols   

 

 Increased capability of modern computers 

 

 

 

Several generic solutions have been implemented  
 

9 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Two Types of Generic MPC Solutions 

 Boolean circuits  

 A circuit with boolean gates e.g., XOR and AND. 

 Input of each party: represented as bits 

 

 Arithmetic circuits 

 A circuit with addition/multiplication gates in some 
field, e.g., GF(p) or GF(2n) 

  Input of each party: an element in the given field 

 

 
10 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Boolean or Arithmetic? 

Function Boolean (Bit) Arithmetic  (Field) 

Statistics  
(e.g., average) 

Large circuit Small circuit 

Comparison 
(e.g., less than) 

Small circuit Large circuit 

 
11 

Boolean circuits better suited for addressing 
the private marketplaces problem 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Previous Work on MPC Solutions 

 
12 

Ours Boolean C++ Yes <  n  

Circuit Language Circuit  
Scalability 

# Corrupted 
parties 

FairplayMP 
[BNP08] 

Boolean Java No 
(~4000 gates) 

<  n/2   

VIFF 
[DGKN09] 

Arithmetic Python Yes <  n/2  

SEPIA 
[BSMD10] 

Arithmetic Java Yes <  n/2 

Not satisfactory for our purpose 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Our Contributions 

 We provide the first scalable implementation of 
multi-party computation for boolean circuits, with 
optimal resilience 

 

 We apply our implementation to the problem of 
online marketplaces 

 Performance better than what is obtained using 
previous solutions (VIFF, SEPIA) 

 

 Another indication that generic secure MPC can 
be useful in solving practical problems  

13 
 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Our Generic MPC 
Solution  

14 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Overview of the Protocol 

 We implement the [GMW87]  protocol 

 

 The function is given as a boolean circuit 

 With XOR and AND gates 

 

 Evaluate the circuit in a gate-by-gate manner 

 Invariant: the actual value of each wire is secret-
shared. 

 
15 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Overview of the GMW Protocol 

 
16 

XOR 

AND 

y x 1 0 

0 

1 

Evaluate the circuit gate-by-gate .  
The value of each wire is secret-shared. 

1 0 1 1 

1 1 

1 0 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

sender receiver 

1-out-of-4 Oblivious Transfer (OT)  

 
17 

σ?  Other xis?  

OT 

input   σ 

 

input  (x0,  x1, x2, x3) 

output  xσ 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

GMW – Evaluating AND gates  

 

AND 

a b 

c 

a1, b1 a2, b2 

c1 = r c2 = xσ 

Run oblivious transfer  

OT 

x0 = (a1+0)(b1+0)+ r 
x1 = (a1+0)(b1+1)+ r 

x2 = (a1+1)(b1+0)+ r 

x3 = (a1+1)(b1+1)+ r 

 σ  = 2a2+ b2 

xσ 

18 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

GMW Protocol: Multi-Party Setting 

 Input wires: XOR of all shares are the actual 
value. 

 XOR gate: same as before (i.e., ci =
 ai + bi)  

 AND gate: use OT between all pairs of parties 

 Details omitted   

 
19 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Implementation of the GMW Protocol 

 Critically depends on efficiency of OT protocol 

 

 Basic OT [NP01] 

 Multi-threading: two-threads for each pair-wise OT 
 Number-theory package: NTL http://shoup.net  (modified for MT) 

 

 OT extension [IKNP03]  

 Several (e.g., 80) basic OTs with long inputs  many bit OTs 
 Small overhead: four hash functions per OT 
 Use SHA-1 implementation from PolarSSL 

 

 OT preprocessing [Bea95] 

 Preprocess OTs on random input  
 Use them for OTs on actual input: tiny overhead (a few bits) 

 

 
20 

http://shoup.net/


Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Application to  
Online Marketplaces 

21 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Circuit: P2P Content Distribution 

 
22 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Experiments in LAN: P2P Content Distribution  

23 

#nodes 

 Running time linear in  
# nodes and (almost) 
in # resources 

 

 Marginal time per 
AND gate: 

 50 s (3 nodes) 

 340 s (13 nodes) 

 

 OS: Linux 
CPU: Intel Xeon 2.80 GHz (dual-core) 
RAM: 4GB 

s
e

c
o

n
d

s
 

Running Time 

4 6 8 10 12 

10 

30 

50 

70 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Running-Time Ratio: VIFF/Ours  

 
24 

Our implementation is 10-30x faster 

#nodes 
3 5 7 9 

running-time  

ratio 

5 

15 

25 

35 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Running-Time Ratio: SEPIA/ours 

 
25 

Our implementation is ~10x faster 

#nodes 
3 5 7 9 

running-time  

ratio 

9 

10 

11 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Experiments in PlanetLab 

 Similar results 

 With somewhat bigger deviation 

 

 Details are in the paper 

 
26 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Summary 

 Generic MPC implementation 

 Boolean circuit representation, optimal corruption 
thereshold 

 Source code:   
 http://www.ee.columbia.edu/~kwhwang/projects/gmw.html 

 

 Application to privacy in online marketplaces 

 

 Generic MPC can be practical 

 Explore generic solutions before designing new protocols  

 
27 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Thank you 

28 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

OT Extension [IKNP03,LXX05] 

 Several long string OTs  many bit OTs 

 

…. 

Very efficient: four additional hashes per OT 

29 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

OT Preprocessing [Bea95] 

 bit OTs on random input  bit OTs on actual input  

 

 

OT 
2 (r0,  r1, r2, r3) 

r2 

input 1 input (x0,  x1, x2, x3) 

3 

(r3+x0,  r2+x1, r1+x2, r0+x3) 

30 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

Two-Party Computation? (Not in This Talk) 

 Initial work 

 Fairplay [MNPS04] 

 Rather slow and not scalable 

 

 Subsequent work  

 Improves performance and scalability 

 [LPS08,PSSW09,HEKM11, M11] 

 

 With semi-honest security 

 Corrupted parties follow the protocol honestly, but 
try to infer secret information from the protocol transcript. 

 
31 



Insert presenter logo here 
on slide master. See hidden 

slide 4 for directions 
   

GMW – Evaluating AND gates  

 

OT 

x0 = (a1+0)(b1+0)+ r 
x1 = (a1+0)(b1+1)+ r 

x2 = (a1+1)(b1+0)+ r 

x3 = (a1+1)(b1+1)+ r 

 σ  = 2a2+ b2 

xσ 

a2 = 0, b2 = 0:    σ = 0,     x0 =  (a1+a2)(b1+b2) + r 

a2 = 0, b2 = 1:    σ = 1,     x1 =  (a1+a2)(b1+b2) + r 

a2 = 1, b2 = 0:    σ = 2,     x2 =  (a1+a2)(b1+b2) + r 

a2 = 1, b2 = 1:    σ = 3,     x3 =  (a1+a2)(b1+b2) + r 

Check  xσ = (a1+a2)(b1+b2) + r  

c1+ c2 = r + xσ = (a1+a2)(b1+b2) = ab = c  

32 


	CRYP-403_Saeed.pdf
	CRYP-403_Choi

