
Session ID:

Session Classification:

Alexandra Boldyreva & Virendra Kumar

Georgia Institute of Technology

A New Pseudorandom
Generator from Collision-
Resistant Hash Functions

CRYP-301

Advanced

What’s a Pseudorandom Generator (PRG)?

 A bit string is truly random if all the possible
values are equally likely.

 A bit string is pseudo random, if no polynomial-
time machine can tell it apart from truly random.

2

PRG
010011001

Short Random

 Seed

0100110011010001010…

Longer Pseudorandom

 Sequence

Why are PRGs Important?

 If you use cryptographic schemes, then most
likely you need to generate randomness

 Cryptographic keys need to be random

 Many schemes need random padding

 Schemes involving passwords need random salt

 And so on …

 Well, so what?

 Improperly generated randomness can have
devastating effects

 Insecurity of Netscape’s SSL Implementation, RSA
Modulus Generation, etc. [GW ’96, LHA+ ’12]

3

Uses of PRG

 Apply PRG on a small random seed, obtain
large amounts of pseudorandom bits, and use
them as keys, pads, salts, etc.

 PRGs can also be used to build more complex
cryptographic primitives

 Pseudorandom Functions [Goldreich et al. ’86]

 Bit Commitment [Naor ’91]

 And so on …

4

Our Objective

 To construct a PRG from a Hash Function (HF)
that is:

 Efficient

 Provably secure

 Relies on reasonable assumptions like Collision-
Resistance (CR)

 Instantiable from standard HFs like SHA-1

(HF is a function whose range is smaller than the
domain, also referred as compression function)

5

Outline of the Talk

 Known Constructions of PRG

 Blum-Micali-Yao PRG

 Our PRG

 Construction

 Assumptions and Efficiency Improvement

 Proof Idea

 Conclusion

6

Known Constructions of
PRG: Why none of them
meet our requirements?

7

Theoretical PRGs

 Introduced by Blum and Micali, later formalized
into its current form by Yao (BMY PRG) in 1982

 Most efficient among theoretical PRGs, but based on
One-Way Permutation (OWP)

 Hash function (HF) is clearly not a permutation, so
BMY PRG doesn’t meet our requirements

 Later constructions based on different types of
One-Way Function (OWF) are all inefficient.

8

Relaxing the Permutation Requirement

 Regular one-way function [GKL ’88, HHR ’06]

 Construction similar to BMY PRG, but additionally
uses re-randomizing functions in every iteration

 Larger seed length and computationally less efficient

 Any one-way function [HILL ’99, Holenstein ’06,
HHR ’06]

 Extremely inefficient both computationally and in
terms of seed length

(A function is regular, if the pre-image set of all the
elements in the range are of the same size.)

9

Theoretical PRGs (Seed Length Comparison)

Seed Length Assumptions

Hastad et al. ’99
(Holenstein ’06)

O(m8) Any OWF

Haitner et al. ’06 O(m7) Any OWF

Holenstein ’06 O(m5) Exponential OWF

Haitner et al. ’06 O(m2) Exponential OWF

Goldreich et al. ’88 O(m3) Regular OWF

Haitner et al. ’06 O(m log m) Regular OWF

Blum-Micali-Yao ’82 O(m) OWP

10

m is the input length of the underlying function.

Security vs. Seed Length

 Say, we only trust OWF with input size 128 bits
to be secure by current standards.

 Then, Hastad et al.’s PRG is secure only for
seed of size (ignoring constants) at least 256 bits!

11

Standardized PRGs Based on HFs [FIPS ’94]

 Very efficient

 Small seed length

 Security proof relies on strong assumptions that
are not very well studied

 Underlying function is assumed to be a Pseudo
Random Function (PRF)

 Unreasonable for HF-based PRGs, as HFs not only
don’t have secret keys, but are usually keyless

12

Blum-Micali-Yao (BMY)
PRG: Construction and
Proof Idea

13

One-Way Permutation (OWP)

 A Permutation is One-Way if it is hard to invert
the value of on a randomly selected input.

14

(x)

What’s x?

No idea!

random x

Hardcore Bit (HCB)

 A bit of a randomly selected input, say x[i], is
HCB w.r.t. a function , if it is hard to compute
w.p. better than a random guess, given the
function’s value on that input.

15

(x)

What’s x[i]?

Is it 0?

Wait, is it 1?

random x

Blum-Micali-Yao (BMY) PRG

One-Way Permutation , random seed x

x
…

y[0] y[1] y[2] y[i-1] y[i]

i+1 pseudorandom bits

(x)

2(x) i-1(x)

i(x)

HCB HCB HCB HCB HCB

16

Goldreich-Levin Hardcore Bit [GL ’89]

 For any OWF Φ and random (x, r), the inner
product of x and r, <x, r> is the HCB of (Φ(x), r).

 Using GL hardcore bit, BMY PRG is:

 <x,r>, <(x),r>, <2(x),r>, …, <i-1(x),r>,

 where needs to be one-way on iterates, and
(x,r) need to be random.

17

Proof Idea of BMY PRG

 If x is random and is a permutation, then (x)
is also random, and so is i(x) for any i.

 Hence, if is one-way, then it is also one-way
on iterates (OWI), i.e. given Πi(x) for a random x,
it’s hard to compute Πi-1(x).

 Therefore, given Πi(x) for a random x, (y[0], y[1],
…, y[i-1]) are HCBs and hence pseudorandom.

 Above proof was given by Goldreich et al. after
Levin observed that OWI is sufficient, i.e. don’t
need OWP.

18

Our PRG: Construction

19

Our PRG Construction

 Hash function, h: {0, 1}m {0, 1}n, seed (x, r)

x
…

y[0] y[1] y[2] y[i-1] y[i]

i+1 pseudorandom bits

h
h(x)

h
h2(x) hi-1(x)

h
hi(x)

<x, r> <h(x), r> <h2(x), r> <hi-1(x), r> <hi(x), r>

0m-n 0m-n 0m-n

20

Highlights of our Construction

 An efficient PRG from HFs (m bits n bits)

 Seed length = 2n, i.e. as efficient as BMY PRG

 Assumptions: Collision-resistance (CR) and regularity

 CR must be exponential

 Regularity can be relaxed to worst-case regularity, a
 new notion introduced in this work

 Improvement from Goldreich et al. and Haitner et al.:
 We don’t need re-randomizing functions, resulting in
 a much smaller seed

21

Our PRG: Assumptions and
Efficiency Improvement

22

Exponential Collision-Resistance (CR)

 A hash function family H is ε-CR, if any efficient
adversary given a random instance h of H, can
return a collision with probability at most ε.

 A collision for h is a pair (x, y) s.t. x ≠ y and h(x)
= h(y).

 We need ε < 2-n/2, where n is the output size of
h.

(Exponential collision-resistance is not a new
assumption, but only requires a more strict bound
on the probability of finding collisions.)

23

Worst-Case Regularity

 A function f: {0, 1}m {0, 1}n is regular if the pre-
image set of every element in the range is of
equal size 2m-n.

 For an 0 < α ≤ 1, f is α-worst-case regular, if the
pre-image set of every element in the range is of
size at least α2m-n.

24

Efficiency Improvement [GKL ’88]

 Instead of one hardcore bit, extract log n bits in
every iteration

 Pick r of size (n + log n), and denote

 r1 = r[1] || … || r[n],

 r2 = r[2] || … || r[n+1], and so on,

 rlog n = r[log n] || … || r[n + log n - 1]

 At every iteration i, output <, r1>, <, r2>, …, <, rlog n>

 With almost the same computation, we now have log
n times more pseudorandom bits

25

Our PRG: Proof Idea

26

Proof Idea

 We need to show that HF is OWI, remaining part
is similar to the proof of BMY PRG.

 CR alone is not sufficient

 To show that CR implies OWI, we need to show:
adversary breaking OWI adversary breaking CR

 Counterexample for above: a CRHF that becomes a
permutation after one application

 If h2(x) is a permutation over h1(x), then h-1(h2(x)) is
always unique, so the output of OWI adversary can’t
be used by CR adversary to find collisions in HF.

27

Proof Idea Contd.

 Instead of re-randomizing functions as used in
Goldreich et al. and Haitner et al., we rely on
exponential CR

 We use the exponential CR to lower bound the output
size of our hash function iterate

 HF is clearly not a permutation, so the output size of
its subset iterate can potentially become small and
thus be easily invertible, i.e. HF may not be OWI

 Proof requires regularity of HF, which we relax
with our new notion: worst case regularity.

28

Conclusion

29

How our PRG compares with prior PRGs?

 Theoretical ones

 As efficient as BMY PRG, the most efficient
theoretical PRG, furthermore does not need OWP

 Can be instantiated with hash functions like SHA-1

 Practical and Standardized ones

 Comparable seed length, but computationally not as
efficient, due to hardcore bit computation

 Active interest by practitioners in finding collisions
means collision-resistance is a more reasonable and
understood assumption on hash functions than PRF

30

Conclusion

 We proposed an efficient PRG based on hash
functions.

 Our PRG is accompanied with concrete security
proofs and relies on standard and reasonable
assumptions.

 Our PRG is a step toward making theoretical
PRGs practical, but still not as efficient as
standardized ones.

 We introduced a new notion relaxing regularity
of a function, called worst-case regularity.

31

Thanks!

32

1

PMAC with Parity:

Minimizing the Query-Length Influence

Kan Yasuda (NTT, Japan)

CT-RSA 2012

Feb. 27 – March 2

2

Outline

 Introduction to MACs

 Motivation: Query complexity

 Previous approaches

 New approach: PMAC with parity

 Open problems

3

(Deterministic) MAC

 MAC (Message Authentication Code)

 Symmetric-key primitive

 Input: a secret key and (possibly large) data

 Output: a fixed-length value (called tag)

 Used for integrity check of data

data (message)

secret key

Tag (64-bit, 128-bit, etc.)

4

4 ways to make a MAC

 1. Design from scratch (dedicated MAC)

 2. Use a cryptographic hash function (e.g.,

HMAC)

 3. Use a universal hash function

 4. Use a blockcipher (e.g., CMAC, PMAC)

5

4 ways to make a MAC

 1. Design from scratch (dedicated MAC)

 2. Use a cryptographic hash function (e.g.,

HMAC)

 3. Use a universal hash function

 4. Use a blockcipher (e.g., CMAC, PMAC)

We focus on

 blockcipher-based construction

 (how to iterate a blockcipher)

6

Outline

 Introduction to MACs

 Motivation: Query complexity

 Previous approaches

 New approach: PMAC with parity

 Open problems

7

Security of MACs

 “Secure” means secure against

adversaries having up to certain resources

 Adversarial resources measured in terms

of

 Time (and memory) complexity

 The running time of adversary

 Query complexity

 The amount of queries to the MAC oracle made

by adversary

8

Time vs. Query

 Time complexity

 Essentially determined by key length

 “Single-key” MAC construction: key length is

equal to that of blockcipher (80-bit, 128-bit,

192-bit, 256-bit, etc.)

 Query complexity

 Heavily depends on which MAC construction

one uses

 Also depends on block size (64-bit or 128-bit)

9

Time vs. Query

 Time complexity

 Essentially determined by key length

 “Single-key” MAC construction: key length is

equal to that of blockcipher (80-bit, 128-bit,

192-bit, 256-bit, etc.)

 Query complexity

 Heavily depends on which MAC construction

one uses

 Also depends on block size (64-bit or 128-bit)

Our focus

10

Query complexity

 Two factors of query complexity

 q: The # of times adversary can

make queries

 ℓ: The max length of each query

11

Birthday bound

 Majority of (blockcipher-based) MACs have

“birthday-bound” security

 Using n-bit blockcipher, birthday-bound

security offers n/2-bit security

 AES 128-bit blockcipher, 64-bit security

 DES 64-bit blockcipher, 32-bit security

11

n-bit blockcipher

n/2-bit security

32-bit security for 64-bit

blockciphers (in terms of q and ℓ)

 64-bit blockciphers still widely used, or newly

devleoped as “lightweight” algorithms

 Triple-DES, HIGHT, PRESENT, LED, . . .

 32-bit security comes from O(ℓ2q2/264) bound

 q = 232 corresponds to 136 years if executed every

second

 ℓ = 232 corresponds to 32GByte

32-bit security for 64-bit

blockciphers (in terms of q and ℓ)

 64-bit blockciphers still widely used, or newly

devleoped as “lightweight” algorithms

 Triple-DES, HIGHT, PRESENT, LED, . . .

 32-bit security comes from O(ℓ2q2/264) bound

 q = 232 corresponds to 136 years if executed every

second

 ℓ = 232 corresponds to 32GByte

Practical limit

We want to remove this
Our motivation:

14

Outline

 Introduction to MACs

 Motivation: Query complexity

 Previous approaches

 New approach: PMAC with parity

 Open problems

Previous work

 1) Some work improved proofs and bounds

over O(ℓ2q2/2n) for existing MAC schemes

 2) Some work provided new constructions

(including “beyond-birthday-bound” MACs)

15

1) Improving over O(ℓ2q2/2n)

 Better proofs yield better bounds

 Improves only ℓ–factor (there exit attacks

at q = 2n/2)

 Previous work:

 O(σ2/2n) is possible, where σ ≤ ℓq is the total

query complexity (length)

 O(ℓq2/2n) for CBC MAC [CRYPTO 2005] and for

PMAC [FSE 2006]

 O(σq/2n) for various MACs [FSE 2010]

16

2) Previous work (new constructions)

 Use randomization for improving ℓ–factor

[FSE 2007]

 “Beyond-birthday-bound” constructions

for improving q–factor, O(ℓ3q3/22n) [CT-

RSA 2010, CRYPTO 2011]

 Counter method (e.g., XOR MAC, PCS) for

improving ℓ–factor

17

Counter method

18

EK1

1

tag

finalization

M1 2 M2 3 M3

n/2 bits each

EK1 EK1

EK2

Counter method

19

EK1

1

tag

finalization

M1 2 M2 3 M3

 Offers O(q2/2n) security, no ℓ–factor

 Twice as slow as usual --- rate 1/2

 Data size up to 2n/2 blocks, cannot handle longer

messages

n/2 bits each

EK1 EK1

EK2

20

Outline

 Introduction to MACs

 Motivation: Query complexity

 Previous approaches

 New approach: PMAC with parity

 Open problems

New approach

 We want to do better than the counter

method

 We provide a new construction:

 Faster than rate 1/2 : rate 2/3 or better

 Can handle messages longer than 2n/2 blocks

 Provided with bound O(q2/2n+ℓσq/22n)

 Becomes O(q2/2n) if ℓ ≤ 2n/2

 Better than O(σq/2n)

 Even better than O(ℓ3q3/22n) for ℓ ≥ 2n/6

21

PMAC with parity

EK1

tag

finalization

M1 M2

EK3

EK4

mask

EK2 EK1 EK2

M3 M4

M1M2

EK3

M3M4

Secret mask values

Incremented for each block

PMAC with parity

EK1

tag

finalization

M1 M2

EK3

EK4

mask

EK2 EK1 EK2

M3 M4

M1M2

EK3

M3M4

Secret mask values

Incremented for each block

O(q2/2n+ℓσq/22n) proof technique:

 PMAC and Multilane HMAC [Indocrypt 2007]

Rate 3/4 version

EK1

tag

finalization

M1 M2

EK4

EK5

EK2 EK3

M3

M1M2M3

EK1

M4 M5

EK4

EK2 EK3

M6

M4M5M6

Rate 3/4 version

EK1

tag

finalization

M1 M2

EK4

EK5

EK2 EK3

M3

M1M2M3

EK1

M4 M5

EK4

EK2 EK3

M6

M4M5M6

Same O(q2/2n+ℓσq/22n) security (but more keys)

26

Outline

 Introduction to MACs

 Motivation: Query complexity

 Previous approaches

 New approach: PMAC with parity

 Open problems

27

A couple of open problems

 Single-key construction?

 PMAC with parity uses (at least) 4 different

blockcipher keys

 Running a blockcipher with different keys may

be costly

 Rate-1 construction?

 PMAC with parity is not rate-1 but rate 2/3, 3/4,

4/5, …

 Desirable to be rate-1, i.e., one blockciper call

per message block

28

Thank you

Boomerang Attacks
against ARX Hash Functions
Gaëtan Leurent & Arnab Roy

Gaëtan Leurent
University of Luxembourg

Session ID: CRYP-301
Session Classification: Advanced

Introduction to Hash Functions

An Ideal Hash Function: the Random Oracle

..

▶ Public Random Oracle
▶ The output can be used as a fingerprint of the document

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 2 / 24

An Ideal Hash Function: the Random Oracle

... 0x1d66ca77ab361c6f.

▶ Public Random Oracle
▶ The output can be used as a fingerprint of the document

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 2 / 24

A Concrete Hash Function

▶ A public function with no structural property.
▶ Should behave like a random function.
▶ Cryptographic strength without any key!

▶ F : {0,1}∗ → {0,1}n

... 0x1d66ca77ab361c6f. F

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 3 / 24

A Concrete Hash Function

▶ A public function with no structural property.
▶ Should behave like a random function.
▶ Cryptographic strength without any key!

▶ F : {0,1}∗ → {0,1}n

... 0x1d66ca77ab361c6f. F

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 3 / 24

Using Hash Functions

Hash functions are used in many different contexts:

▶ To generate unique identifiers
▶ Hash-and-sign signatures
▶ Commitment schemes

▶ As a one-way function
▶ One-Time-Passwords
▶ Forward security

▶ To break the structure of the input
▶ Entropy extractors
▶ Key derivation
▶ Pseudo-random number generator

▶ To build MACs
▶ HMAC
▶ Challenge/response authentication

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 4 / 24

The SHA-3 Competition
After Wang et al.’s attacks on the MD/SHA family,
we need new hash functions

The SHA-3 competition

▶ Organized by NIST
▶ Similar to the AES competition

▶ Submission deadline was October 2008: 64 candidiates
▶ 51 valid submissions

▶ 14 in the second round (July 2009)
▶ 5 finalists in December 2010:

▶ Blake, Grøstl, JH, Keccak, Skein

▶ Winner in 2012?

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 5 / 24

Hash Function Design

▶ Build a small compression function, and iterate.

▶ Cut the message in chunks M0, ...Mk
▶ Hi = f(Mi,H−1)
▶ F(M) = Hk

..

f
.

M0

. H0.

f
.

M1

. H1.

f
.

M2

. H2.

f
.

M3

. H3.IV

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 6 / 24

Boomerang Attacks

Boomerang Attacks

▶ Introduced by Wagner, many later improvements

▶ Combine two short differentials instead of using a long one.
▶ f = fb ◦ fa
▶ for fa, α → α′ with probability pa
▶ for fb, γ → γ′ with probability pb
▶ Interesting when we don’t know how to build iterative differentials.

▶ Uses an encryption oracle together with a decryption oracle
▶ Adaptive attack

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 7 / 24

Boomerang Attacks
...P(0) ..

P(1)

. α..

P(2)

..

P(3)

.

α

..

X(0)

..

X(1)

.

α′

....

X(2)

..

X(3)

.

γ

.

γ

.

α′

....

C(0)

..

C(1)

....

C(2)

..

C(3)

.

γ′

.

γ′

...

Pr [α → α′]
= pa

.

Pr [γ → γ′]
= pb

1 Start with P(0),P(1)

2 Compute C(0),C(1)

3 Build C(2),C(3)

4 Compute P(2),P(3)

C =
1
pa

1
p2b

1
pa

P(0) ⊕ P(1) = α
P(2) ⊕ P(3) = α
C(0) ⊕ C(1) = γ′

C(2) ⊕ C(3) = γ′

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 8 / 24

Boomerang Attacks
...P(0) ..

P(1)

. α..

P(2)

..

P(3)

.

α

..

X(0)

..

X(1)

.

α′

....

X(2)

..

X(3)

.

γ

.

γ

.

α′

....

C(0)

..

C(1)

....

C(2)

..

C(3)

.

γ′

.

γ′

...

Pr [α → α′]
= pa

.

Pr [γ → γ′]
= pb

1 Start with P(0),P(1)

2 Compute C(0),C(1)

3 Build C(2),C(3)

4 Compute P(2),P(3)

C =
1
pa

1
p2b

1
pa

P(0) ⊕ P(1) = α
P(2) ⊕ P(3) = α
C(0) ⊕ C(1) = γ′

C(2) ⊕ C(3) = γ′

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 8 / 24

Boomerang Attacks
...P(0) ..

P(1)

. α..

P(2)

..

P(3)

.

α

..

X(0)

..

X(1)

.

α′

....

X(2)

..

X(3)

.

γ

.

γ

.

α′

....

C(0)

..

C(1)

....

C(2)

..

C(3)

.

γ′

.

γ′

...

Pr [α → α′]
= pa

.

Pr [γ → γ′]
= pb

1 Start with P(0),P(1)

2 Compute C(0),C(1)

3 Build C(2),C(3)

4 Compute P(2),P(3)

C =
1
pa

1
p2b

1
pa

P(0) ⊕ P(1) = α
P(2) ⊕ P(3) = α
C(0) ⊕ C(1) = γ′

C(2) ⊕ C(3) = γ′

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 8 / 24

Boomerang Attacks
...P(0) ..

P(1)

. α..

P(2)

..

P(3)

.

α

..

X(0)

..

X(1)

.

α′

....

X(2)

..

X(3)

.

γ

.

γ

.

α′

....

C(0)

..

C(1)

....

C(2)

..

C(3)

.

γ′

.

γ′

...

Pr [α → α′]
= pa

.

Pr [γ → γ′]
= pb

1 Start with P(0),P(1)

2 Compute C(0),C(1)

3 Build C(2),C(3)

4 Compute P(2),P(3)

C =
1
pa

1
p2b

1
pa

P(0) ⊕ P(1) = α
P(2) ⊕ P(3) = α
C(0) ⊕ C(1) = γ′

C(2) ⊕ C(3) = γ′

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 8 / 24

Boomerang Attacks
...P(0) ..

P(1)

. α..

P(2)

..

P(3)

.

α

..

X(0)

..

X(1)

.

α′

....

X(2)

..

X(3)

.

γ

.

γ

.

α′

....

C(0)

..

C(1)

....

C(2)

..

C(3)

.

γ′

.

γ′

...

Pr [α → α′]
= pa

.

Pr [γ → γ′]
= pb

1 Start with P(0),P(1)

2 Compute C(0),C(1)

3 Build C(2),C(3)

4 Compute P(2),P(3)

C =
1
pa

1
p2b

1
pa

P(0) ⊕ P(1) = α
P(2) ⊕ P(3) = α
C(0) ⊕ C(1) = γ′

C(2) ⊕ C(3) = γ′

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 8 / 24

Boomerang Attacks
...P(0) ..

P(1)

. α..

P(2)

..

P(3)

.

α

..

X(0)

..

X(1)

.

α′

....

X(2)

..

X(3)

.

γ

.

γ

.

α′

....

C(0)

..

C(1)

....

C(2)

..

C(3)

.

γ′

.

γ′

...

Pr [α → α′]
= pa

.

Pr [γ → γ′]
= pb

1 Start with P(0),P(1)

2 Compute C(0),C(1)

3 Build C(2),C(3)

4 Compute P(2),P(3)

C =
1
pa

1
p2b

1
pa

P(0) ⊕ P(1) = α
P(2) ⊕ P(3) = α
C(0) ⊕ C(1) = γ′

C(2) ⊕ C(3) = γ′

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 8 / 24

Boomerang Attacks
...P(0) ..

P(1)

. α..

P(2)

..

P(3)

.

α

..

X(0)

..

X(1)

.

α′

....

X(2)

..

X(3)

.

γ

.

γ

.

α′

....

C(0)

..

C(1)

....

C(2)

..

C(3)

.

γ′

.

γ′

...

Pr [α → α′]
= pa

.

Pr [γ → γ′]
= pb

1 Start with P(0),P(1)

2 Compute C(0),C(1)

3 Build C(2),C(3)

4 Compute P(2),P(3)

C =
1
pa

1
p2b

1
pa

P(0) ⊕ P(1) = α
P(2) ⊕ P(3) = α
C(0) ⊕ C(1) = γ′

C(2) ⊕ C(3) = γ′

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 8 / 24

Improvements to the Boomerang Attack
.... α...

α

...

α′

.....

γ

.

γ

.

α′

.........

γ′

.

γ′

..

1 Amplified probabilities
▶ Do not specify α′ and γ
▶ p̂a =

√∑
α′ Pr [α → α′]

p̂b =
√∑

γ Pr [γ → γ′]

2 Related-key
▶ pa = Pr

[
α αk−→ α′

]
pb = Pr

[
γ γk−→ γ′

]

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 9 / 24

Improvements to the Boomerang Attack
.... α...

α

...

α′

..

K

..

K+ αk

...

γ

.

γ

.

α′

..

K+ γk

..

K+ αk + γk

....

K

..

K+ αk

...

γ′

.

γ′

..

K+ γk

..

K+ αk + γk

1 Amplified probabilities
▶ Do not specify α′ and γ
▶ p̂a =

√∑
α′ Pr [α → α′]

p̂b =
√∑

γ Pr [γ → γ′]

2 Related-key
▶ pa = Pr

[
α αk−→ α′

]
pb = Pr

[
γ γk−→ γ′

]

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 9 / 24

Boomerang Attacks on Hash Functions
▶ Most hash functions are based on a block cipher:

Davies-Meyer f(h,m) = Em(h)⊕ h
Matyas-Meyer-Oseas f(h,m) = Eh(m)⊕m

▶ A (related-key) boomerang attack gives a quartet:∑
P(i) = 0

∑
C(i) = 0

∑
K(i) = 0

▶ This is a zero-sum for the compression function:∑
h(i) = 0

∑
m(i) = 0

∑
f(h(i),m(i)) = 0

▶ In general this is hard:
▶
∑

f(h,m) = 0, best attack 2n/3, lower bound 2n/4
▶
∑

f(h,m) =
∑

h =
∑

m = 0, best attack 2n/2, lower bound 2n/3

▶ With a known key, one can start from the middle
▶ Message modification

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 10 / 24

New Technique:
Better Use of Degrees of Freedom

in a Hash Function Setting.

Using Auxiliary Paths
▶ Divide f in three sub-functions: f = fc ◦ fb ◦ fa

▶ for fa, α → α′ with probability pa
▶ for fb, βj → β′

j with probability pb
▶ for fc, γ → γ′ with probability pc

1 Start with a boomerang quartet for fb:

U(1) = U(0) + α′ U(3) = U(2) + α′

V(2) = V(0) + γ V(2) = V(1) + γ

2 For each auxiliary path, construct U(i)
∗ = U(i) + βj.

With probability p4b, V
(i)
∗ = V(i) + β′

j , and we have a new quartet:

U(1)
∗ = U(0)

∗ + α′ U(3)
∗ = U(2)

∗ + α′

V(2)
∗ = V(0)

∗ + γ V(2)
∗ = V(1)

∗ + γ

3 Check if the fa and fb paths are satisfied.

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 11 / 24

...

U(0)

..

U(1)

..

U(2)

..

U(3)

..

V(0)

..

V(1)

..

V(2)

..

V(3)

.....

α′

.

α′

.

γ

.

γ

..........

U(0)
∗

..

U(1)
∗

..

U(2)
∗

..

U(3)
∗

..

V(0)
∗

..

V(1)
∗

..

V(2)
∗

..

V(3)
∗

............. α.

α

.

γ′

.

γ′

.

α′

.

α′

.

γ

.

γ

.

βj

.

βj

.

βj

.

βj

.

β′
j

.

β′
j

.

β′
j

.

β′
j

.

fa

.

Pr [α → α′] = pa

.

fb

.

Pr
[
βj → β′

j

]
= pb

.

fc

.

Pr [γ → γ′] = pc

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 12 / 24

...

U(0)

..

U(1)

..

U(2)

..

U(3)

..

V(0)

..

V(1)

..

V(2)

..

V(3)

.....

α′

.

α′

.

γ

.

γ

..........

U(0)
∗

..

U(1)
∗

..

U(2)
∗

..

U(3)
∗

..

V(0)
∗

..

V(1)
∗

..

V(2)
∗

..

V(3)
∗

............. α.

α

.

γ′

.

γ′

.

α′

.

α′

.

γ

.

γ

.

βj

.

βj

.

βj

.

βj

.

β′
j

.

β′
j

.

β′
j

.

β′
j

.

fa

.

Pr [α → α′] = pa

.

fb

.

Pr
[
βj → β′

j

]
= pb

.

fc

.

Pr [γ → γ′] = pc

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 12 / 24

...

U(0)

..

U(1)

..

U(2)

..

U(3)

..

V(0)

..

V(1)

..

V(2)

..

V(3)

.....

α′

.

α′

.

γ

.

γ

..........

U(0)
∗

..

U(1)
∗

..

U(2)
∗

..

U(3)
∗

..

V(0)
∗

..

V(1)
∗

..

V(2)
∗

..

V(3)
∗

............. α.

α

.

γ′

.

γ′

.

α′

.

α′

.

γ

.

γ

.

βj

.

βj

.

βj

.

βj

.

β′
j

.

β′
j

.

β′
j

.

β′
j

.

fa

.

Pr [α → α′] = pa

.

fb

.

Pr
[
βj → β′

j

]
= pb

.

fc

.

Pr [γ → γ′] = pc

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 12 / 24

...

U(0)

..

U(1)

..

U(2)

..

U(3)

..

V(0)

..

V(1)

..

V(2)

..

V(3)

.....

α′

.

α′

.

γ

.

γ

..........

U(0)
∗

..

U(1)
∗

..

U(2)
∗

..

U(3)
∗

..

V(0)
∗

..

V(1)
∗

..

V(2)
∗

..

V(3)
∗

............. α.

α

.

γ′

.

γ′

.

α′

.

α′

.

γ

.

γ

.

βj

.

βj

.

βj

.

βj

.

β′
j

.

β′
j

.

β′
j

.

β′
j

.

fa

.

Pr [α → α′] = pa

.

fb

.

Pr
[
βj → β′

j

]
= pb

.

fc

.

Pr [γ → γ′] = pc

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 12 / 24

...

U(0)

..

U(1)

..

U(2)

..

U(3)

..

V(0)

..

V(1)

..

V(2)

..

V(3)

.....

α′

.

α′

.

γ

.

γ

..........

U(0)
∗

..

U(1)
∗

..

U(2)
∗

..

U(3)
∗

..

V(0)
∗

..

V(1)
∗

..

V(2)
∗

..

V(3)
∗

............. α.

α

.

γ′

.

γ′

.

α′

.

α′

.

γ

.

γ

.

βj

.

βj

.

βj

.

βj

.

β′
j

.

β′
j

.

β′
j

.

β′
j

.

fa

.

Pr [α → α′] = pa

.

fb

.

Pr
[
βj → β′

j

]
= pb

.

fc

.

Pr [γ → γ′] = pc

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 12 / 24

Using Auxiliary Paths

▶ Hash function setting allows to start from the middle
and to build related quartets (instead of related pairs)

▶ Complexity: 1
p2ap2c

(
C

b · p4b
+ 1

)
▶ Cost C to build an initial quartet
▶ b paths with probability pb for fb

▶ Also works with related-key paths
▶ New quartet with a different key

▶ Very efficient with a large family of probability 1 paths
▶ We can combine three paths instead of two

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 13 / 24

Application

Application to ARX Designs
▶ Several recent design are based on the ARX design

▶ Use only Addition, Rotation, Xor
▶ Skein, Blake are SHA-3 finalists

▶ Short RK paths
with high probability

.. Rounds

.

Complexity

▶ Hard to build
controlled characteristics

.........

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 14 / 24

Application to ARX Designs
▶ Several recent design are based on the ARX design

▶ Use only Addition, Rotation, Xor
▶ Skein, Blake are SHA-3 finalists

▶ Short RK paths
with high probability

.. Rounds

.

Complexity

▶ Using auxiliary paths
..

Rounds

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 14 / 24

Skein
....................

Threefish-256 round

....

hi−1

.

mi

.

hi

. MMO mode

▶ SHA-3 finalist

▶ ARX design
▶ 64-bit words
▶ MIXr(a,b) := ((a⊞ b), (b ≪ r)⊕ c)
▶ Word permutations
▶ Key addition every four rounds

▶ Threefish-256:
▶ 256-bit key: K0,K1,K2,K3
▶ 128-bit tweak: T0,T1
▶ 256-bit text

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 15 / 24

Skein: Differential Trails

Key schedule (Threefish-256):
▶ 256-bit key: K0,K1,K2,K3
▶ 128-bit tweak: T0,T1
▶ K4 := K0 ⊕ K1 ⊕ K2 ⊕ K3 ⊕ C
▶ T2 := T0 ⊕ T1

Round

0 K0 K1 + T0 K2 + T1 K3 + 0
4 K1 K2 + T1 K3 + T2 K4 + 1
8 K2 K3 + T2 K4 + T0 K0 + 2
12 K3 K4 + T0 K0 + T1 K1 + 3
16 K4 K0 + T1 K1 + T2 K2 + 4

▶ Use a difference in the tweak and in the key
so that they cancel out

▶ One key addition without any difference

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 16 / 24

Skein: Differential Trails

Key schedule (Threefish-256):
▶ 256-bit key: K0,K1,K2,K3
▶ 128-bit tweak: T0,T1
▶ K4 := K0 ⊕ K1 ⊕ K2 ⊕ K3 ⊕ C
▶ T2 := T0 ⊕ T1

Round

0 K0 K1 + T0 K2 + T1 K3 + 0
4 K1 K2 + T1 K3 + T2 K4 + 1
8 K2 K3 + T2 K4 + T0 K0 + 2
12 K3 K4 + T0 K0 + T1 K1 + 3
16 K4 K0 + T1 K1 + T2 K2 + 4

▶ Use a difference in the tweak and in the key
so that they cancel out

▶ One key addition without any difference

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 16 / 24

Skein: Differential Trails

▶ 16-round trail:

...

Δ4

....

Δ3

.....

0

.....

Δ1

.....

Δ0

....
Δ⊥ + Δ4

.

Δ⊥

.
Δ3

.
0

.
0

.
0

.
0

.
Δ1

.

Δ⊤

.
Δ⊤ + Δ0

.

Pr
[
Δ3 → Δ⊥

]
= 2−6

.

p = 1

.

p = 1

.

Pr
[
Δ⊤ ← Δ1

]
= 2−33

▶ Use a MSB difference for best probability

▶ Use any difference for auxiliary paths
▶ 264 8-round paths with probability 1

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 17 / 24

Skein: Description of the Attack

...

t(0)

..

t(1)

..

t(2)

..

t(3)

..

u(0)

..

u(1)

..

u(2)

..

u(3)

.....

Δ⊥ + Δ4

.

Δ⊥ + Δ4

.

Δ
1

.

Δ
1

.

Top path
(0–12).

Middle part
(12–20)

.

Bottom path
(20–32)

1 Build a quartet for
rounds 16—20.

cost: 218

2 Extend to rounds 12—20
using random keys.

cost: 218

3 Use auxiliary paths
to generate quartets.

amortized cost: 20

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 18 / 24

Skein: Description of the Attack

...s(0) .. s(1)..
s(2)

..
s(3)

......

k(0)4

..

k(1)4

..

k(2)4

..

k(3)4

......

u(0)

..

u(1)

..

u(2)

..

u(3)

.........

Δ⊥ + Δ4

.

Δ⊥ + Δ4

.

Δ⊥

.

Δ⊥

. Δ3.
Δ3

.

Δ
1

.

Δ
1

.

Top path
(0–12).

Middle part
(12–20)

.

Bottom path
(20–32)

1 Build a quartet for
rounds 16—20.

cost: 218

2 Extend to rounds 12—20
using random keys.

cost: 218

3 Use auxiliary paths
to generate quartets.

amortized cost: 20

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 18 / 24

Skein: Description of the Attack

..

Δ⊤

.

Δ⊤

.
0

. 0. Δ3.
Δ3

.

Δ
1

.

Δ
1

.

0

.

0

.

Δ ⊥

.

Δ ⊥

.

Top path
(0–12).

Middle part
(12–20)

.

Bottom path
(20–32)

1 Build a quartet for
rounds 16—20.

cost: 218

2 Extend to rounds 12—20
using random keys.

cost: 218

3 Use auxiliary paths
to generate quartets.

amortized cost: 20

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 18 / 24

Limitations of the Technique
Why not attack more rounds?

..

Rounds

.

Rounds

Paths are incompatible!

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 19 / 24

Limitations of the Technique
Why not attack more rounds?

..

Rounds

.

Rounds

Paths are incompatible!

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 19 / 24

Incompatible Characteristics

Incompatibilities in Boomerang Paths
▶ For a Boomerang attack, we usually assume

that the path are independent

▶ We are building a quartet X(0),X(1),X(2),X(3):

X(1) = X(0) + α′ X(3) = X(2) + α′

X(2) = X(0) + γ X(2) = X(1) + γ

We expect:

(X(0),X(1))
fa←− α (X(2),X(3))

fa←− α

(X(0),X(2))
fb−→ γ′ (X(1),X(3))

fb−→ γ′

▶ But these events are not independent! [Murphy 2011]

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 20 / 24

Boomerang Incompatibility

..

δa = -x-

.

δb = ---

...

Top path:

.

(a(0), b(0); a(2), b(2)) (a(1), b(1); a(3), b(3))

. Bottom path:. (a(0), b(0); a(1), b(1)) (a(2), b(2); a(3), b(3)).δa = -x-. δb = -x-..

δu = ---

.

u = a+ b

x(0) x(1) x(2) x(3)

a 0 1 1 0
b 1 0 0 1

▶ Wlog, assume a(0) = 0
▶ Compute a(i), deduce sign of b
▶ Contradiction for b!

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 21 / 24

Boomerang Incompatibility

..

δa = -x-

.

δb = ---

...

Top path:

.

(a(0), b(0); a(2), b(2)) (a(1), b(1); a(3), b(3))

. Bottom path:. (a(0), b(0); a(1), b(1)) (a(2), b(2); a(3), b(3)).δa = -x-. δb = -x-..

δu = ---

.

u = a+ b

x(0) x(1) x(2) x(3)

a 0 1 1 0
b 1 0 0 1

▶ Wlog, assume a(0) = 0
▶ Compute a(i), deduce sign of b
▶ Contradiction for b!

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 21 / 24

Boomerang Incompatibility

..

δa = -x-

.

δb = ---

...

Top path:

.

(a(0), b(0); a(2), b(2)) (a(1), b(1); a(3), b(3))

. Bottom path:. (a(0), b(0); a(1), b(1)) (a(2), b(2); a(3), b(3)).δa = -x-. δb = -x-..

δu = ---

.

u = a+ b

x(0) x(1) x(2) x(3)

a 0 1 1 0
b 1 0 0 1

▶ Wlog, assume a(0) = 0
▶ Compute a(i), deduce sign of b
▶ Contradiction for b!

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 21 / 24

Boomerang Incompatibility

..

δa = -x-

.

δb = ---

...

Top path:

.

(a(0), b(0); a(2), b(2)) (a(1), b(1); a(3), b(3))

. Bottom path:. (a(0), b(0); a(1), b(1)) (a(2), b(2); a(3), b(3)).δa = -x-. δb = -x-..

δu = ---

.

u = a+ b

x(0) x(1) x(2) x(3)

a 0 1 1 0
b 1 0 0 1

▶ Wlog, assume a(0) = 0
▶ Compute a(i), deduce sign of b
▶ Contradiction for b!

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 21 / 24

Boomerang Incompatibility

..

δa = -x-

.

δb = ---

...

Top path:

.

(a(0), b(0); a(2), b(2)) (a(1), b(1); a(3), b(3))

. Bottom path:. (a(0), b(0); a(1), b(1)) (a(2), b(2); a(3), b(3)).δa = -x-. δb = -x-..

δu = ---

.

u = a+ b

x(0) x(1) x(2) x(3)

a 0 1 1 0
b 1 0 0 1

▶ Wlog, assume a(0) = 0
▶ Compute a(i), deduce sign of b
▶ Contradiction for b!

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 21 / 24

Other Incompatible Paths
..δa = -x .δb = -x. δc = -x..

δu = -x

.

u = a+ b+ c

..δa = --xxxxx- . δb = ---xx---..

δu = -xxxx-x-

.

u = a+ b

Many “natural” characteristics are in fact incompatible.

▶ Previous boomerang attacks on Skein-512 do not work
▶ Works on Skein-256

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 22 / 24

Results on Skein
Attack CF/KP Rounds CF/KP calls Ref.

Unknown Key

Near collisions (Skein-256) CF 24 260 [CANS ’10]
Boomerang dist. (Threefish-512) KP 32 2189 [ISPEC ’10]
Key Recovery (Threefish-512) KP 34 2474.4 [ISPEC ’10]
Key Recovery (Threefish-512) KP 32 2312 [AC ’09]

Open key

Boomerang dist. (Threefish-512) KP 35 2478 [AC ’09]
Near collisions (Skein-256) CF 32 2105 [ePrint ’11]

Boomerang dist. (Skein-256) CF and KP 24 218

Boomerang dist. (Threefish-256) KP 28 221

Boomerang dist. (Skein-256) CF 28 224

Boomerang dist. (Threefish-256) KP 32 257

Boomerang dist. (Skein-256) CF 32 2114

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 23 / 24

Conclusion

1 Boomerang attack on hash functions
▶ Start from the middle
▶ Use auxiliary path to avoid middle rounds
▶ Significant improvement over previous results
▶ New result: also works on Blake .. see details

2 Analysis of differentials paths
▶ Problems found in several previous works

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 24 / 24

Appendix

Related work

▶ Similar to “Boomerang” of Joux and Peyrin (auxiliary paths)
▶ In the context of collision attacks

▶ Similar to message modifications for Boomerang attacks
▶ Blake [BNR ’11]
▶ SHA-2 [ML ’11]
▶ HAVAL [Sasaki ’11]
▶ Skein/Threefish [ACMPV ’09, Chen & Jia ’10]

▶ Auxiliary paths allow to skip more rounds

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 25 / 24

New Result: Application to Blake

▶ The same technique can be applied to Blake
▶ Another ARX SHA-3 finalist

▶ Significant improvement over previous results [FSE ’11]

▶ Compression function attack:
▶ 6.5 rounds: 2140 (vs. 2184)
▶ 7 rounds: 2183 (vs. 2232)

▶ Keyed-permutation attacks (Open-key vs. Unknown-key)
▶ 7 rounds: 232 (vs. 2122)
▶ 8 rounds: 21xx (vs. 2242)

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 26 / 24

Blake
..a .b .c .d.

a

.

b

.

c

.

d

.....

16

.....

12

....

8

.....

7

.
m0

.

m1

.

G function

▶ State is 4× 4 matrix:

..

..a0 ..a1 ..a2 ..a3

..b0 ..b1 ..b2 ..b3

..c0 ..c1 ..c2 ..c3

..d0 ..d1 ..d2 ..d3
▶ Column step:
G(a0,b0, c0,d0)
G(a1,b1, c1,d1)
G(a2,b2, c2,d2)
G(a3,b3, c3,d3)

▶ Diagonal step:
G(a0,b1, c2,d3)
G(a1,b2, c3,d0)
G(a2,b3, c0,d1)
G(a3,b0, c1,d2)

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 27 / 24

Blake
..a .b .c .d.

a

.

b

.

c

.

d

.....

16

.....

12

....

8

.....

7

.
m0

.

m1

.

G function

▶ State is 4× 4 matrix:

..

..a0 ..a1 ..a2 ..a3

..b0 ..b1 ..b2 ..b3

..c0 ..c1 ..c2 ..c3

..d0 ..d1 ..d2 ..d3
▶ Column step:
G(a0,b0, c0,d0)
G(a1,b1, c1,d1)
G(a2,b2, c2,d2)
G(a3,b3, c3,d3)

▶ Diagonal step:
G(a0,b1, c2,d3)
G(a1,b2, c3,d0)
G(a2,b3, c0,d1)
G(a3,b0, c1,d2)

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 27 / 24

Blake
..a .b .c .d.

a

.

b

.

c

.

d

.....

16

.....

12

....

8

.....

7

.
m0

.

m1

.

G function

▶ State is 4× 4 matrix:

..

..a0 ..a1 ..a2 ..a3

..b0 ..b1 ..b2 ..b3

..c0 ..c1 ..c2 ..c3

..d0 ..d1 ..d2 ..d3
▶ Column step:
G(a0,b0, c0,d0)
G(a1,b1, c1,d1)
G(a2,b2, c2,d2)
G(a3,b3, c3,d3)

▶ Diagonal step:
G(a0,b1, c2,d3)
G(a1,b2, c3,d0)
G(a2,b3, c0,d1)
G(a3,b0, c1,d2)

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 27 / 24

Blake: Differential Trails
▶ Key schedule: permutation based

..
..σ3 : ..7 ..3 ..13 ..11 ..9 ..1 ..12 ..14 ..2 ..5 ..4 ..15 ..6 ..10 ..0 ..8
..σ4 : ..9 ..5 ..2 ..10 ..0 ..7 ..4 ..15 ..14 ..11 ..6 ..3 ..1 ..12 ..8 ..13

▶ Choose a message word used
▶ at the beginning of a round
▶ at the end of the next round

▶ 4-round trail:

.............
0

.
Δ1

.
Δ3

.
Δ⊤

.
Δ⊥

.

m13

.

m13

.

m13

.

Pr
[
Δ3 → Δ⊥

]
= 2−24

.

p = 1/2

.

p = 1

.

Pr
[
Δ⊤ ← Δ1

]
= 2−6 · 2−42

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 28 / 24

Blake: Differential Trails
▶ Key schedule: permutation based

..
..σ3 : ..7 ..3 ..13 ..11 ..9 ..1 ..12 ..14 ..2 ..5 ..4 ..15 ..6 ..10 ..0 ..8
..σ4 : ..9 ..5 ..2 ..10 ..0 ..7 ..4 ..15 ..14 ..11 ..6 ..3 ..1 ..12 ..8 ..13

▶ Choose a message word used
▶ at the beginning of a round
▶ at the end of the next round

▶ 4-round trail:

.............
0

.
Δ1

.
Δ3

.
Δ⊤

.
Δ⊥

.

m13

.

m13

.

m13

.

Pr
[
Δ3 → Δ⊥

]
= 2−24

.

p = 1/2

.

p = 1

.

Pr
[
Δ⊤ ← Δ1

]
= 2−6 · 2−42

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 28 / 24

Blake: Differential Trails
▶ Key schedule: permutation based

..
..σ3 : ..7 ..3 ..13 ..11 ..9 ..1 ..12 ..14 ..2 ..5 ..4 ..15 ..6 ..10 ..0 ..8
..σ4 : ..9 ..5 ..2 ..10 ..0 ..7 ..4 ..15 ..14 ..11 ..6 ..3 ..1 ..12 ..8 ..13

▶ Choose a message word used
▶ at the beginning of a round
▶ at the end of the next round

▶ 4-round trail:

.............
0

.
Δ1

.
Δ3

.
Δ⊤

.
Δ⊥

.

m13

.

m13

.

m13

.

Pr
[
Δ3 → Δ⊥

]
= 2−24

.

p = 1/2

.

p = 1

.

Pr
[
Δ⊤ ← Δ1

]
= 2−6 · 2−42

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 28 / 24

Blake: Description of the Attack

The hard part is the middle round
▶ Column step is part of the top path
▶ Diagonal step is part of the bottom path

1 Find (state, message) candidates for each diagonal G function
▶ Start with middle quartets with all differences fixed

2 Look for combinations of candidates that follow
the first part of the diagonal step

▶ Use the message to randomize

3 Look for candidates that follow the full diagonal step
▶ Use the message to randomize

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 29 / 24

Blake-256: Results

Attack CF/KP Rounds CF/KP calls Ref.

Unknown Key

Boomerang dist. KP 7 2122 [FSE ’11]
Boomerang dist. KP 8 2242 [FSE ’11]

Open Key

Boomerang dist. CF w/ Init 7 2232 [FSE ’11]

Boomerang dist. CF w/ Init 7 2183

Boomerang dist. KP 7 232

Boomerang dist. KP 8 21xx

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 30 / 24

	CRYP-301_Kumar
	CRYP-301_Yasuda
	CRYP-301.pdf
	Introduction to Hash Functions
	Boomerang Attacks
	Application
	Incompatible Characteristics
	Appendix

