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What’s a Pseudorandom Generator (PRG)? 

 

 

 

 

 A bit string is truly random if all the possible 
values are equally likely. 

 A bit string is pseudo random, if no polynomial-
time machine can tell it apart from truly random. 
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PRG 
010011001 

Short Random 

 Seed 

0100110011010001010… 

Longer Pseudorandom 

 Sequence 



Why are PRGs Important? 

 If you use cryptographic schemes, then most 
likely you need to generate randomness 

 Cryptographic keys need to be random 

 Many schemes need random padding 

 Schemes involving passwords need random salt 

 And so on … 

 Well, so what? 

 Improperly generated randomness can have 
devastating effects 

 Insecurity of Netscape’s SSL Implementation, RSA 
Modulus Generation, etc.  [GW ’96, LHA+ ’12] 
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Uses of PRG 

 Apply PRG on a small random seed, obtain 
large amounts of pseudorandom bits, and use 
them as keys, pads, salts, etc.  

 PRGs can also be used to build more complex 
cryptographic primitives 

 Pseudorandom Functions [Goldreich et al. ’86] 

 Bit Commitment [Naor ’91] 

 And so on … 
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Our Objective 

 To construct a PRG from a Hash Function (HF) 
that is: 

 Efficient 

 Provably secure 

 Relies on reasonable assumptions like Collision-
Resistance (CR) 

 Instantiable from standard HFs like SHA-1 

 

(HF is a function whose range is smaller than the 
domain, also referred as compression function) 
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Outline of the Talk 

 Known Constructions of PRG 

 Blum-Micali-Yao PRG  

 Our PRG 

 Construction 

 Assumptions and Efficiency Improvement  

 Proof Idea  

 Conclusion 

6 



Known Constructions of 
PRG: Why none of them 
meet our requirements? 

7 



Theoretical PRGs 

 Introduced by Blum and Micali, later formalized 
into its current form by Yao (BMY PRG) in 1982 

 Most efficient among theoretical PRGs, but based on 
One-Way Permutation (OWP) 

 Hash function (HF) is clearly not a permutation, so 
BMY PRG doesn’t meet our requirements 

 Later constructions based on different types of  
One-Way Function (OWF) are all inefficient. 
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Relaxing the Permutation Requirement 

 Regular one-way function [GKL ’88, HHR ’06] 

 Construction similar to BMY PRG, but additionally 
uses re-randomizing functions in every iteration  

 Larger seed length and computationally less efficient 

 Any one-way function [HILL ’99, Holenstein ’06, 
HHR ’06] 

 Extremely inefficient both computationally and in 
terms of seed length 

 

(A function is regular, if the pre-image set of all the 
elements in the range are of the same size.) 
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Theoretical PRGs (Seed Length Comparison) 

Seed Length Assumptions 

Hastad et al. ’99 
(Holenstein ’06) 

O(m8) Any OWF 

Haitner et al. ’06 O(m7) Any OWF 

Holenstein ’06 O(m5) Exponential OWF 

Haitner et al. ’06 O(m2) Exponential OWF 

Goldreich et al. ’88 O(m3) Regular OWF 

Haitner et al. ’06 O(m log m) Regular OWF 

Blum-Micali-Yao ’82 O(m) OWP 
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m is the input length of the underlying function. 



Security vs. Seed Length 

 Say, we only trust OWF with input size 128 bits 
to be secure by current standards. 

 Then, Hastad et al.’s PRG is secure only for 
seed of size (ignoring constants) at least 256 bits! 
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Standardized PRGs Based on HFs [FIPS ’94] 

 Very efficient 

 Small seed length 

 Security proof relies on strong assumptions that 
are not very well studied 

 Underlying function is assumed to be a Pseudo 
Random Function (PRF) 

 Unreasonable for HF-based PRGs, as HFs not only 
don’t have secret keys, but are usually keyless 
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Blum-Micali-Yao (BMY) 
PRG: Construction and 
Proof Idea  
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One-Way Permutation (OWP) 

 A Permutation  is One-Way if it is hard to invert 
the value of  on a randomly selected input. 
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(x) 

What’s x? 

No idea! 

random x 



Hardcore Bit (HCB) 

 A bit of a randomly selected input, say x[i], is 
HCB w.r.t. a function , if it is hard to compute 
w.p. better than a random guess, given the 
function’s value on that input. 
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(x) 

What’s x[i]? 

Is it 0? 

Wait, is it 1? 

random x 



Blum-Micali-Yao (BMY) PRG 

One-Way Permutation , random seed x 

x 
… 

y[0] y[1] y[2] y[i-1] y[i] 

i+1 pseudorandom bits 

 
(x) 

 
2(x) i-1(x) 

 
i(x) 

HCB HCB HCB HCB HCB 
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Goldreich-Levin Hardcore Bit [GL ’89] 

 For any OWF Φ and random (x, r), the inner 
product of x and r, <x, r> is the HCB of (Φ(x), r). 

 Using GL hardcore bit, BMY PRG is:  

 <x,r>, <(x),r>, <2(x),r>, …, <i-1(x),r>, 

 where  needs to be one-way on iterates, and 
(x,r) need to be random. 
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Proof Idea of BMY PRG 

 If x is random and  is a permutation, then (x) 
is also random, and so is i(x) for any i. 

 Hence, if  is one-way, then it is also one-way 
on iterates (OWI), i.e. given Πi(x) for a random x, 
it’s hard to compute Πi-1(x). 

 Therefore, given Πi(x) for a random x, (y[0], y[1], 
…, y[i-1]) are HCBs and hence pseudorandom.  

 Above proof was given by Goldreich et al. after 
Levin observed that OWI is sufficient, i.e. don’t 
need OWP. 

18 



Our PRG: Construction 
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Our PRG Construction 

 Hash function, h: {0, 1}m  {0, 1}n, seed (x, r) 

x 
… 

y[0] y[1] y[2] y[i-1] y[i] 

i+1 pseudorandom bits 

h 
h(x) 

h 
h2(x) hi-1(x) 

h 
hi(x) 

<x, r> <h(x), r> <h2(x), r> <hi-1(x), r> <hi(x), r> 

0m-n 0m-n 0m-n 
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Highlights of our Construction 

 An efficient PRG from HFs (m bits  n bits) 

 Seed length = 2n, i.e. as efficient as BMY PRG 

 Assumptions: Collision-resistance (CR) and regularity 

  CR must be exponential 

  Regularity can be relaxed to worst-case regularity, a 
 new notion introduced in this work 

 Improvement from Goldreich et al. and Haitner et al.:
 We don’t need re-randomizing functions, resulting in 
 a much smaller seed 
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Our PRG: Assumptions and 
Efficiency Improvement 
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Exponential Collision-Resistance (CR) 

 A hash function family H is ε-CR, if any efficient 
adversary given a random instance h of H, can 
return a collision with probability at most ε. 

 A collision for h is a pair (x, y) s.t. x ≠ y and h(x) 
= h(y). 

 We need ε < 2-n/2, where n is the output size of 
h. 

 

(Exponential collision-resistance is not a new 
assumption, but only requires a more strict bound 
on the probability of finding collisions.) 
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Worst-Case Regularity 

 A function f: {0, 1}m  {0, 1}n is regular if the pre-
image set of every element in the range is of 
equal size 2m-n. 

 For an 0 < α ≤ 1, f is α-worst-case regular, if the 
pre-image set of every element in the range is of 
size at least α2m-n.  
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Efficiency Improvement [GKL ’88] 

 Instead of one hardcore bit, extract log n bits in 
every iteration 

 Pick r of size (n + log n), and denote 

 r1 = r[1] || … || r[n],  

 r2 = r[2] || … || r[n+1], and so on, 

 rlog n = r[log n] || … || r[n + log n - 1] 

 At every iteration i, output <, r1>, <, r2>, …, <, rlog n> 

 With almost the same computation, we now have log 
n times more pseudorandom bits 

25 



Our PRG: Proof Idea 

26 



Proof Idea 

 We need to show that HF is OWI, remaining part 
is similar to the proof of BMY PRG. 

 CR alone is not sufficient 

 To show that CR implies OWI, we need to show:  
adversary breaking OWI   adversary breaking CR  

 Counterexample for above: a CRHF that becomes a 
permutation after one application 

 If h2(x) is a permutation over h1(x), then h-1(h2(x)) is 
always unique, so the output of OWI adversary can’t 
be used by CR adversary to find collisions in HF. 
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Proof Idea Contd. 

 Instead of re-randomizing functions as used in 
Goldreich et al. and Haitner et al., we rely on 
exponential CR  

 We use the exponential CR to lower bound the output 
size of our hash function iterate 

 HF is clearly not a permutation, so the output size of 
its subset iterate can potentially become small and 
thus be easily invertible, i.e. HF may not be OWI 

 Proof requires regularity of HF, which we relax 
with our new notion: worst case regularity. 

28 



Conclusion 
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How our PRG compares with prior PRGs? 

 Theoretical ones 

 As efficient as BMY PRG, the most efficient 
theoretical PRG, furthermore does not need OWP 

 Can be instantiated with hash functions like SHA-1 

 Practical and Standardized ones 

 Comparable seed length, but computationally not as 
efficient, due to hardcore bit computation 

 Active interest by practitioners in finding collisions 
means collision-resistance is a more reasonable and 
understood assumption on hash functions than PRF 
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Conclusion 

 We proposed an efficient PRG based on hash 
functions. 

 Our PRG is accompanied with concrete security 
proofs and relies on standard and reasonable 
assumptions. 

 Our PRG is a step toward making theoretical 
PRGs practical, but still not as efficient as 
standardized ones. 

 We introduced a new notion relaxing regularity 
of a function, called worst-case regularity. 
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Thanks! 
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Outline 

 Introduction to MACs 

 Motivation: Query complexity 

 Previous approaches 

 New approach: PMAC with parity 

 Open problems 
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(Deterministic) MAC 

 MAC (Message Authentication Code) 

 Symmetric-key primitive 

 Input: a secret key and (possibly large) data 

 Output: a fixed-length value (called tag) 

 Used for integrity check of data 

data (message) 

secret key 

Tag (64-bit, 128-bit, etc.) 
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4 ways to make a MAC 

 1. Design from scratch (dedicated MAC) 

 2. Use a cryptographic hash function (e.g., 

HMAC) 

 3. Use a universal hash function 

 4. Use a blockcipher (e.g., CMAC, PMAC) 
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4 ways to make a MAC 

 1. Design from scratch (dedicated MAC) 

 2. Use a cryptographic hash function (e.g., 

HMAC) 

 3. Use a universal hash function 

 4. Use a blockcipher (e.g., CMAC, PMAC) 

We focus on 

  blockcipher-based construction 

      (how to iterate a blockcipher) 
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Outline 

 Introduction to MACs 

 Motivation: Query complexity 

 Previous approaches 

 New approach: PMAC with parity 

 Open problems 
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Security of MACs 

 “Secure” means secure against 

adversaries having up to certain resources 

 Adversarial resources measured in terms 

of 

 Time (and memory) complexity 

 The running time of adversary 

 Query complexity 

 The amount of queries to the MAC oracle made 

by adversary 
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Time vs. Query 

 Time complexity 

 Essentially determined by key length 

 “Single-key” MAC construction: key length is 

equal to that of blockcipher (80-bit, 128-bit, 

192-bit, 256-bit, etc.) 

 Query complexity 

 Heavily depends on which MAC construction 

one uses 

 Also depends on block size (64-bit or 128-bit) 
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Time vs. Query 

 Time complexity 

 Essentially determined by key length 

 “Single-key” MAC construction: key length is 

equal to that of blockcipher (80-bit, 128-bit, 

192-bit, 256-bit, etc.) 

 Query complexity 

 Heavily depends on which MAC construction 

one uses 

 Also depends on block size (64-bit or 128-bit) 

Our focus 



10 

Query complexity 

 Two factors of query complexity 

 

 q: The # of times adversary can 

make queries 

 ℓ: The max length of each query 
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Birthday bound 

 Majority of (blockcipher-based) MACs have 

“birthday-bound” security 

 Using n-bit blockcipher,  birthday-bound 

security offers n/2-bit security 

 AES 128-bit blockcipher, 64-bit security 

 DES 64-bit blockcipher, 32-bit security 
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n-bit blockcipher 

n/2-bit security 



32-bit security for 64-bit 

blockciphers (in terms of q and ℓ) 

 64-bit blockciphers still widely used, or newly 

devleoped as “lightweight” algorithms 

 Triple-DES, HIGHT, PRESENT, LED, . . . 

 

 32-bit security comes from O(ℓ2q2/264) bound 

 q = 232 corresponds to 136 years if executed every 

second 

 ℓ = 232 corresponds to 32GByte 

 

 



32-bit security for 64-bit 

blockciphers (in terms of q and ℓ) 

 64-bit blockciphers still widely used, or newly 

devleoped as “lightweight” algorithms 

 Triple-DES, HIGHT, PRESENT, LED, . . . 

 

 32-bit security comes from O(ℓ2q2/264) bound 

 q = 232 corresponds to 136 years if executed every 

second 

 ℓ = 232 corresponds to 32GByte 

 

 
Practical limit 

We want to remove this 
Our motivation: 
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Outline 

 Introduction to MACs 

 Motivation: Query complexity 

 Previous approaches 

 New approach: PMAC with parity 

 Open problems 



Previous work 

 1) Some work improved proofs and bounds 

over O(ℓ2q2/2n) for existing MAC schemes 

 

 

 2) Some work provided new constructions 

(including “beyond-birthday-bound” MACs) 
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1) Improving over O(ℓ2q2/2n) 

 Better proofs yield better bounds 

 Improves only ℓ–factor (there exit attacks 

at q = 2n/2) 

 Previous work: 

 O(σ2/2n) is possible, where σ ≤ ℓq is the total 

query complexity (length) 

 O(ℓq2/2n) for CBC MAC [CRYPTO 2005] and for 

PMAC [FSE 2006] 

 O(σq/2n) for various MACs [FSE 2010] 
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2) Previous work (new constructions) 

 Use randomization for improving ℓ–factor 

[FSE 2007] 

 

 “Beyond-birthday-bound” constructions 

for improving q–factor, O(ℓ3q3/22n) [CT-

RSA 2010, CRYPTO 2011] 

 

 Counter method (e.g., XOR MAC, PCS) for 

improving ℓ–factor 
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Counter method 

18 

EK1 

1 

tag 

finalization 

M1 2 M2 3 M3 

n/2 bits each 

EK1 EK1 

EK2 



Counter method 
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EK1 

1 

tag 

finalization 

M1 2 M2 3 M3 

 Offers O(q2/2n) security, no ℓ–factor 

 Twice as slow as usual --- rate 1/2 

 Data size up to 2n/2 blocks, cannot handle longer 

messages 

n/2 bits each 

EK1 EK1 

EK2 
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Outline 

 Introduction to MACs 

 Motivation: Query complexity 

 Previous approaches 

 New approach: PMAC with parity 

 Open problems 



New approach 

 We want to do better than the counter 

method 

 We provide a new construction: 

 Faster than rate 1/2 : rate 2/3 or better 

 Can handle messages longer than 2n/2 blocks 

 Provided with bound O(q2/2n+ℓσq/22n) 

 Becomes O(q2/2n) if ℓ ≤ 2n/2 

 Better than O(σq/2n) 

 Even better than O(ℓ3q3/22n) for ℓ ≥ 2n/6 
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PMAC with parity 

EK1 

tag 

finalization 

M1 M2 

EK3 

EK4 

mask 

EK2 EK1 EK2 

M3 M4 

M1M2 

EK3 

M3M4 

Secret mask values 

Incremented for each block 



PMAC with parity 

EK1 

tag 

finalization 

M1 M2 

EK3 

EK4 

mask 

EK2 EK1 EK2 

M3 M4 

M1M2 

EK3 

M3M4 

Secret mask values 

Incremented for each block 

O(q2/2n+ℓσq/22n) proof technique: 

 PMAC and Multilane HMAC [Indocrypt 2007] 



Rate 3/4 version 

EK1 

tag 

finalization 

M1 M2 

EK4 

EK5 

EK2 EK3 

M3 

M1M2M3 

EK1 

M4 M5 

EK4 

EK2 EK3 

M6 

M4M5M6 



Rate 3/4 version 

EK1 

tag 

finalization 

M1 M2 

EK4 

EK5 

EK2 EK3 

M3 

M1M2M3 

EK1 

M4 M5 

EK4 

EK2 EK3 

M6 

M4M5M6 

Same O(q2/2n+ℓσq/22n) security (but more keys) 
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Outline 

 Introduction to MACs 

 Motivation: Query complexity 

 Previous approaches 

 New approach: PMAC with parity 

 Open problems 



27 

A couple of open problems 

 Single-key construction? 

 PMAC with parity uses (at least) 4 different 

blockcipher keys 

 Running a blockcipher with different keys may 

be costly 

 Rate-1 construction? 

 PMAC with parity is not rate-1 but rate 2/3, 3/4, 

4/5, … 

 Desirable to be rate-1, i.e., one blockciper call 

per message block 
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Thank you 
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An Ideal Hash Function: the Random Oracle

..

▶ Public Random Oracle
▶ The output can be used as a fingerprint of the document
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An Ideal Hash Function: the Random Oracle

... 0x1d66ca77ab361c6f.

▶ Public Random Oracle
▶ The output can be used as a fingerprint of the document
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A Concrete Hash Function

▶ A public function with no structural property.
▶ Should behave like a random function.
▶ Cryptographic strength without any key!

▶ F : {0,1}∗ → {0,1}n

... 0x1d66ca77ab361c6f. F
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Using Hash Functions

Hash functions are used in many different contexts:

▶ To generate unique identifiers
▶ Hash-and-sign signatures
▶ Commitment schemes

▶ As a one-way function
▶ One-Time-Passwords
▶ Forward security

▶ To break the structure of the input
▶ Entropy extractors
▶ Key derivation
▶ Pseudo-random number generator

▶ To build MACs
▶ HMAC
▶ Challenge/response authentication

G. Leurent (uni.lu),
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The SHA-3 Competition
After Wang et al.’s attacks on the MD/SHA family,
we need new hash functions

The SHA-3 competition

▶ Organized by NIST
▶ Similar to the AES competition

▶ Submission deadline was October 2008: 64 candidiates
▶ 51 valid submissions

▶ 14 in the second round (July 2009)
▶ 5 finalists in December 2010:

▶ Blake, Grøstl, JH, Keccak, Skein

▶ Winner in 2012?

G. Leurent (uni.lu),
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Hash Function Design

▶ Build a small compression function, and iterate.

▶ Cut the message in chunks M0, ...Mk
▶ Hi = f(Mi,H−1)
▶ F(M) = Hk

..

f
.

M0

. H0.

f
.

M1

. H1.

f
.

M2

. H2.

f
.

M3

. H3.IV
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Boomerang Attacks



Boomerang Attacks

▶ Introduced by Wagner, many later improvements

▶ Combine two short differentials instead of using a long one.
▶ f = fb ◦ fa
▶ for fa, α → α′ with probability pa
▶ for fb, γ → γ′ with probability pb
▶ Interesting when we don’t know how to build iterative differentials.

▶ Uses an encryption oracle together with a decryption oracle
▶ Adaptive attack

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 7 / 24



Boomerang Attacks
...P(0) ..

P(1)

. α..

P(2)

..

P(3)

.

α

..

X(0)

..

X(1)

.

α′

....

X(2)

..

X(3)

.

γ

.

γ

.

α′

....

C(0)

..

C(1)

....

C(2)

..

C(3)

.

γ′

.

γ′

...

Pr [α → α′]
= pa

.

Pr [γ → γ′]
= pb

1 Start with P(0),P(1)

2 Compute C(0),C(1)

3 Build C(2),C(3)

4 Compute P(2),P(3)

C =
1
pa

1
p2b

1
pa

P(0) ⊕ P(1) = α
P(2) ⊕ P(3) = α
C(0) ⊕ C(1) = γ′

C(2) ⊕ C(3) = γ′
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Improvements to the Boomerang Attack
.... α...

α

...

α′

.....

γ

.

γ

.

α′

.........

γ′

.

γ′

..

1 Amplified probabilities
▶ Do not specify α′ and γ
▶ p̂a =

√∑
α′ Pr [α → α′]

p̂b =
√∑

γ Pr [γ → γ′]

2 Related-key
▶ pa = Pr

[
α αk−→ α′

]
pb = Pr

[
γ γk−→ γ′

]
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Boomerang Attacks on Hash Functions
▶ Most hash functions are based on a block cipher:

Davies-Meyer f(h,m) = Em(h)⊕ h
Matyas-Meyer-Oseas f(h,m) = Eh(m)⊕m

▶ A (related-key) boomerang attack gives a quartet:∑
P(i) = 0

∑
C(i) = 0

∑
K(i) = 0

▶ This is a zero-sum for the compression function:∑
h(i) = 0

∑
m(i) = 0

∑
f(h(i),m(i)) = 0

▶ In general this is hard:
▶
∑

f(h,m) = 0, best attack 2n/3, lower bound 2n/4
▶
∑

f(h,m) =
∑

h =
∑

m = 0, best attack 2n/2, lower bound 2n/3

▶ With a known key, one can start from the middle
▶ Message modification
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New Technique:
Better Use of Degrees of Freedom

in a Hash Function Setting.



Using Auxiliary Paths
▶ Divide f in three sub-functions: f = fc ◦ fb ◦ fa

▶ for fa, α → α′ with probability pa
▶ for fb, βj → β′

j with probability pb
▶ for fc, γ → γ′ with probability pc

1 Start with a boomerang quartet for fb:

U(1) = U(0) + α′ U(3) = U(2) + α′

V(2) = V(0) + γ V(2) = V(1) + γ

2 For each auxiliary path, construct U(i)
∗ = U(i) + βj.

With probability p4b, V
(i)
∗ = V(i) + β′

j , and we have a new quartet:

U(1)
∗ = U(0)

∗ + α′ U(3)
∗ = U(2)

∗ + α′

V(2)
∗ = V(0)

∗ + γ V(2)
∗ = V(1)

∗ + γ

3 Check if the fa and fb paths are satisfied.
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j
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Using Auxiliary Paths

▶ Hash function setting allows to start from the middle
and to build related quartets (instead of related pairs)

▶ Complexity: 1
p2ap2c

(
C

b · p4b
+ 1

)
▶ Cost C to build an initial quartet
▶ b paths with probability pb for fb

▶ Also works with related-key paths
▶ New quartet with a different key

▶ Very efficient with a large family of probability 1 paths
▶ We can combine three paths instead of two

G. Leurent (uni.lu),
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Application



Application to ARX Designs
▶ Several recent design are based on the ARX design

▶ Use only Addition, Rotation, Xor
▶ Skein, Blake are SHA-3 finalists

▶ Short RK paths
with high probability

.. Rounds

.

Complexity

▶ Hard to build
controlled characteristics

.........
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Skein
....................

Threefish-256 round

....

hi−1

.

mi

.

hi

. MMO mode

▶ SHA-3 finalist

▶ ARX design
▶ 64-bit words
▶ MIXr(a,b) := ((a⊞ b), (b ≪ r)⊕ c)
▶ Word permutations
▶ Key addition every four rounds

▶ Threefish-256:
▶ 256-bit key: K0,K1,K2,K3
▶ 128-bit tweak: T0,T1
▶ 256-bit text

G. Leurent (uni.lu),
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Skein: Differential Trails

Key schedule (Threefish-256):
▶ 256-bit key: K0,K1,K2,K3
▶ 128-bit tweak: T0,T1
▶ K4 := K0 ⊕ K1 ⊕ K2 ⊕ K3 ⊕ C
▶ T2 := T0 ⊕ T1

Round

0 K0 K1 + T0 K2 + T1 K3 + 0
4 K1 K2 + T1 K3 + T2 K4 + 1
8 K2 K3 + T2 K4 + T0 K0 + 2
12 K3 K4 + T0 K0 + T1 K1 + 3
16 K4 K0 + T1 K1 + T2 K2 + 4

▶ Use a difference in the tweak and in the key
so that they cancel out

▶ One key addition without any difference
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Skein: Differential Trails

▶ 16-round trail:

...

Δ4

....

Δ3

.....

0

.....

Δ1

.....

Δ0

....
Δ⊥ + Δ4

.

Δ⊥

.
Δ3

.
0

.
0

.
0

.
0

.
Δ1

.

Δ⊤

.
Δ⊤ + Δ0

.

Pr
[
Δ3 → Δ⊥

]
= 2−6

.

p = 1

.

p = 1

.

Pr
[
Δ⊤ ← Δ1

]
= 2−33

▶ Use a MSB difference for best probability

▶ Use any difference for auxiliary paths
▶ 264 8-round paths with probability 1
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Skein: Description of the Attack

...

t(0)

..

t(1)

..

t(2)

..

t(3)

..

u(0)

..

u(1)

..

u(2)

..

u(3)

.....

Δ⊥ + Δ4

.

Δ⊥ + Δ4

.

Δ
1

.

Δ
1

.

Top path
(0–12).

Middle part
(12–20)

.

Bottom path
(20–32)

1 Build a quartet for
rounds 16—20.

cost: 218

2 Extend to rounds 12—20
using random keys.

cost: 218

3 Use auxiliary paths
to generate quartets.

amortized cost: 20
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Limitations of the Technique
Why not attack more rounds?

..

Rounds

.

Rounds

Paths are incompatible!
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Incompatible Characteristics



Incompatibilities in Boomerang Paths
▶ For a Boomerang attack, we usually assume

that the path are independent

▶ We are building a quartet X(0),X(1),X(2),X(3):

X(1) = X(0) + α′ X(3) = X(2) + α′

X(2) = X(0) + γ X(2) = X(1) + γ

We expect:

(X(0),X(1))
fa←− α (X(2),X(3))

fa←− α

(X(0),X(2))
fb−→ γ′ (X(1),X(3))

fb−→ γ′

▶ But these events are not independent! [Murphy 2011]
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Boomerang Incompatibility

..

δa = -x-

.

δb = ---

...

Top path:

.

(a(0), b(0); a(2), b(2)) (a(1), b(1); a(3), b(3))

. Bottom path:. (a(0), b(0); a(1), b(1)) (a(2), b(2); a(3), b(3)).δa = -x-. δb = -x-..

δu = ---

.

u = a+ b

x(0) x(1) x(2) x(3)

a 0 1 1 0
b 1 0 0 1

▶ Wlog, assume a(0) = 0
▶ Compute a(i), deduce sign of b
▶ Contradiction for b!
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▶ Contradiction for b!
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Other Incompatible Paths
..δa = -x .δb = -x. δc = -x..

δu = -x

.

u = a+ b+ c

..δa = --xxxxx- . δb = ---xx---..

δu = -xxxx-x-

.

u = a+ b

Many “natural” characteristics are in fact incompatible.

▶ Previous boomerang attacks on Skein-512 do not work
▶ Works on Skein-256
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Results on Skein
Attack CF/KP Rounds CF/KP calls Ref.

Unknown Key

Near collisions (Skein-256) CF 24 260 [CANS ’10]
Boomerang dist. (Threefish-512) KP 32 2189 [ISPEC ’10]
Key Recovery (Threefish-512) KP 34 2474.4 [ISPEC ’10]
Key Recovery (Threefish-512) KP 32 2312 [AC ’09]

Open key

Boomerang dist. (Threefish-512) KP 35 2478 [AC ’09]
Near collisions (Skein-256) CF 32 2105 [ePrint ’11]

Boomerang dist. (Skein-256) CF and KP 24 218

Boomerang dist. (Threefish-256) KP 28 221

Boomerang dist. (Skein-256) CF 28 224

Boomerang dist. (Threefish-256) KP 32 257

Boomerang dist. (Skein-256) CF 32 2114
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Conclusion

1 Boomerang attack on hash functions
▶ Start from the middle
▶ Use auxiliary path to avoid middle rounds
▶ Significant improvement over previous results
▶ New result: also works on Blake .. see details

2 Analysis of differentials paths
▶ Problems found in several previous works
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Appendix



Related work

▶ Similar to “Boomerang” of Joux and Peyrin (auxiliary paths)
▶ In the context of collision attacks

▶ Similar to message modifications for Boomerang attacks
▶ Blake [BNR ’11]
▶ SHA-2 [ML ’11]
▶ HAVAL [Sasaki ’11]
▶ Skein/Threefish [ACMPV ’09, Chen & Jia ’10]

▶ Auxiliary paths allow to skip more rounds
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New Result: Application to Blake

▶ The same technique can be applied to Blake
▶ Another ARX SHA-3 finalist

▶ Significant improvement over previous results [FSE ’11]

▶ Compression function attack:
▶ 6.5 rounds: 2140 (vs. 2184)
▶ 7 rounds: 2183 (vs. 2232)

▶ Keyed-permutation attacks (Open-key vs. Unknown-key)
▶ 7 rounds: 232 (vs. 2122)
▶ 8 rounds: 21xx (vs. 2242)
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Blake
..a .b .c .d.

a

.

b

.

c

.

d

.....

16

.....

12

....

8

.....

7

.
m0

.

m1

.

G function

▶ State is 4× 4 matrix:

..

..a0 ..a1 ..a2 ..a3

..b0 ..b1 ..b2 ..b3

..c0 ..c1 ..c2 ..c3

..d0 ..d1 ..d2 ..d3
▶ Column step:
G(a0,b0, c0,d0)
G(a1,b1, c1,d1)
G(a2,b2, c2,d2)
G(a3,b3, c3,d3)

▶ Diagonal step:
G(a0,b1, c2,d3)
G(a1,b2, c3,d0)
G(a2,b3, c0,d1)
G(a3,b0, c1,d2)
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Blake: Differential Trails
▶ Key schedule: permutation based

..
..σ3 : ..7 ..3 ..13 ..11 ..9 ..1 ..12 ..14 ..2 ..5 ..4 ..15 ..6 ..10 ..0 ..8
..σ4 : ..9 ..5 ..2 ..10 ..0 ..7 ..4 ..15 ..14 ..11 ..6 ..3 ..1 ..12 ..8 ..13

▶ Choose a message word used
▶ at the beginning of a round
▶ at the end of the next round

▶ 4-round trail:

.............
0

.
Δ1

.
Δ3

.
Δ⊤

.
Δ⊥

.

m13

.

m13

.

m13

.

Pr
[
Δ3 → Δ⊥

]
= 2−24

.

p = 1/2

.

p = 1

.

Pr
[
Δ⊤ ← Δ1

]
= 2−6 · 2−42
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Blake: Description of the Attack

The hard part is the middle round
▶ Column step is part of the top path
▶ Diagonal step is part of the bottom path

1 Find (state, message) candidates for each diagonal G function
▶ Start with middle quartets with all differences fixed

2 Look for combinations of candidates that follow
the first part of the diagonal step

▶ Use the message to randomize

3 Look for candidates that follow the full diagonal step
▶ Use the message to randomize
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Blake-256: Results

Attack CF/KP Rounds CF/KP calls Ref.

Unknown Key

Boomerang dist. KP 7 2122 [FSE ’11]
Boomerang dist. KP 8 2242 [FSE ’11]

Open Key

Boomerang dist. CF w/ Init 7 2232 [FSE ’11]

Boomerang dist. CF w/ Init 7 2183

Boomerang dist. KP 7 232

Boomerang dist. KP 8 21xx

G. Leurent (uni.lu),
Boomerang Attacks against ARX Hash Functions 30 / 24


	CRYP-301_Kumar
	CRYP-301_Yasuda
	CRYP-301.pdf
	Introduction to Hash Functions
	Boomerang Attacks
	Application
	Incompatible Characteristics
	Appendix


