
Insert'presenter'logo'here'on'
slide'master.'See'hidden'slide'4'

for'direc6ons

Session ID:
Session Classification:

Dino Dai Zovi
Trail of Bits

iOS Security Internals

MBS-402
Advanced

Charlie Miller
Accuvant Labs

About us
Charlie Dino

Hacked several Macs, usually
in 15 seconds or less

Banned from App Store

Bad cop

Apple Fanboi

Stayed up all night and hacked
a Mac once

Not banned from App Store

Good cop

Apple Fanboi

Upcoming book

Agenda

Mobile Malware vs. iOS

iOS Security Architecture and Internals

History of iOS Attacks

Malware Vectors

User is tricked into downloading and running malicious
software via various forms of social engineering

Malicious apps in App Store

Vulnerabilities in software leveraged during normal user
behavior (exploits)

Malicious e-mail or attachment (“spear phishing”)

Malicious web content (“drive by download”)

Malware

It is hard to design a security model which protects
against programs a user downloads and wants to run

It is typically not the job of the OS to prevent you from
running the programs you choose to run

Anti-Virus is designed to help decide which programs
are okay to run and which are not

Malware vs. iOS

Code Signing requires apps to be downloaded from
the App Store

Publishers’ real-world identities are verified by Apple

Apps are reviewed by Apple before they are available in
App Store

Apple acts as an Anti-Virus for iOS

Exploits

Exploits take advantage of some vulnerability to run code
without your permission or knowledge

Exploits can be stopped by either having no vulnerabilities
in the OS/applications or making exploitation impossible
even in the presence of vulnerabilities

Many exploits take advantage of memory corruption

Memory corruption might be a buffer overflow (stack or
heap), or a “wild write”, use after free, etc

Remote Exploit Attack Graph

Malicious
Data

Exploit Memory
Corruption

Vulnerability

Return-
oriented

Execution

Bypass Code
Signing

Enforcement

Sandboxed
Native Code
Execution

Escape
Sandbox

Unprivileged
Native Code
Execution

Exploit
Privilege Escalation

Vulnerability

Privileged Native
Code Execution

Exploit Kernel
Vulnerability

Kernel Mode
Code Execution

Jailbreak
running
kernel

Temporary
Jailbreak

Persistence Attack Graph

Privileged Native
Code Execution

Drop Executable
That Runs at Boot

Obtain
Apple's

Private Key

Boot-time
Binary

Execution
Exploit Incomplete Code

Signing Vulnerability

Return-
oriented

execution
...

Kernel
mode code
execution

Jailbreak
running
kernel

Overwrite
kernelcache

Untethered
Jailbreak

iPhone security architecture
Reduced attack surface

Stripped down OS

Privilege separation

Code Signing

Non-Executable Memory

Address Space Layout Randomization

Sandboxing

Reduced attack surface
Not as many application to attack

No Flash, Java

MobileSafari will not render all filetypes that Safari (via QT) will

.psd files

Even some .mov files won’t play

iPhone doesn’t handle all features of PDF’s.

Only 7% of PDF crashes I find reproduce on iPhone

Smaller attack surface -> fewer bugs to exploit

Stripped down OS

Missing lots of useful binaries

No /bin/sh

Means no “shell”code

Even if you had a shell, no ls, rm, ps, etc

If you get code execution, what do you do?

Privilege separation
Most processes run as user “mobile”

MobileSafari, MobileMail, Springboard, etc

Many resources require privilege of root (administrative)
user

Sometimes that isn’t even enough...

Entitlements
Specific applications or executables can be granted
special privileges (entitlements)

i.e. com.apple.coreaudio.allow-amr-decode

Entitlements list is protected by code signing and
signing certificate must be authorized to grant
particular entitlements

IOKit drivers and Mach RPC servers can verify that
callers possess a particular entitlement

Code Signing

All binaries and libraries must be signed by Apple

Or phone needs to be specially provisioned

This is why applications have to come from the
AppStore

And why people Jailbreak their phones

Attacker cannot upload a binary and run it

Code Signing
Mandatory Code Signing

Every executable binary or application must have a valid and trusted
signature

Enforced when an application or binary is executed

Code Signing Enforcement

Processes may only execute code that has been signed with a valid
and trusted signature

Enforced at runtime

Code Signing Verification
vnode_check_signature Is CDHash in static

trust cache?
Is CDHash in

dynamic trust cache?

Is CDHash in MRU
trust cache?

Move CDHash
entry to front of
MRU linked list

Add CDHash
entry to front of
MRU linked list

No

Yes

No

RPC call to amfid
verify_code_directory

Failure

Yes

Success

Is
amfi_get_out_of_my_

way true?

Is
amfi_allow_any_signature

true?

No

Deny

Allow

Yes

No

Yes

Yes
No

Non-Executable Memory
XN bit is ARM analogue of the NX/XD bits on Intel/AMD

Data pages (stack, heap) are marked non-executable

iOS enforces W^X page protection policy

No memory pages may be RWX

Pages that are writeable can not become executable

Injected machine code cannot be immediately executed

DEP

Code Signing Enforcement

Ensures that process stays dynamically valid

No introduction of new executable code

Existing executable code can’t be changed

Guarantees that the app code that was reviewed is
what runs on the device

Also just happens to prevent injecting shellcode

iOS 4.3 Adds JavaScript JIT

ldid -e /Applications/MobileSafari.app/MobileSafari
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
	 <key>com.apple.coreaudio.allow-amr-decode</key>
	 <true/>
	 <key>com.apple.coremedia.allow-protected-content-playback</key>
	 <true/>
	 <key>com.apple.managedconfiguration.profiled-access</key>
	 <true/>
	 <key>com.apple.springboard.opensensitiveurl</key>
	 <true/>
	 <key>dynamic-codesigning</key>
	 <true/>
	 <key>keychain-access-groups</key>
	 <array>
	 	 <string>com.apple.cfnetwork</string>
	 	 <string>com.apple.identities</string>
	 	 <string>com.apple.mobilesafari</string>
	 </array>
	 <key>platform-application</key>
	 <true/>
	 <key>seatbelt-profiles</key>
	 <array>
	 	 <string>MobileSafari</string>
	 </array>
</dict>
</plist>

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

MAC Hook API Description AMFI Usage

mpo_proc_check_map_anon

Determine whether the
subject identified by the
credential should be
allowed to obtain
anonymous memory with
the specified flags and
protections.

Allows the process to
allocate anonymous
memory if and only if the
process has the dynamic-
codesigning entitlement.

AMFI MAC Hook

Dynamic Code Signing

The dynamic-codesigning entitlement allows the
process to map anonymous memory with any specified
protections.

Only MobileSafari has this entitlement in iOS 4.3

Necessary for JavaScript native JIT (“Nitro”)

Previously MobileSafari did bytecode JIT

ASLR
iPhone randomizes....

Binary

Libraries

Dynamic loader

Heap

Stack

etc...

Executable Heap Stack Libraries Linker
0x2e88 0x15ea70 0x2fdff2c0 0x36adadd1 0x2fe00000

0x2e88 0x11cc60 0x2fdff2c0 0x36adadd1 0x2fe00000

0x2e88 0x14e190 0x2fdff2c0 0x36adadd1 0x2fe00000

0x2e88 0x145860 0x2fdff2c0 0x36adadd1 0x2fe00000

0x2e88 0x134440 0x2fdff2c0 0x36adadd1 0x2fe00000

RebootRebootRebootRebootReboot
0x2e88 0x174980 0x2fdff2c0 0x35e3edd1 0x2fe00000

0x2e88 0x13ca60 0x2fdff2c0 0x35e3edd1 0x2fe00000

0x2e88 0x163540 0x2fdff2c0 0x35e3edd1 0x2fe00000

0x2e88 0x136970 0x2fdff2c0 0x35e3edd1 0x2fe00000

0x2e88 0x177e30 0x2fdff2c0 0x35e3edd1 0x2fe00000

ASLR without PIE

Executable Heap Stack Libraries Linker
0xd2e48 0x1cd76660 0x2fecf2a8 0x35e3edd1 0x2fed0000

0xaae48 0x1ed68950 0x2fea72a8 0x35e3edd1 0x2fea8000

0xbbe48 0x1cd09370 0x2feb82a8 0x35e3edd1 0x2feb9000

0x46e48 0x1fd36b80 0x2fe432a8 0x35e3edd1 0x2fe44000

0xc1e48 0x1dd81970 0x2febe2a8 0x35e3edd1 0x2febf000

RebootRebootRebootRebootReboot
0x14e48 0x1dd26640 0x2fe112a8 0x36146dd1 0x2fe12000

0x62e48 0x1dd49240 0x2fe112a8 0x36146dd1 0x2fe60000

0x9ee48 0x1d577490 0x2fe9b2a8 0x36146dd1 0x2fe9c000

0xa0e48 0x1e506130 0x2fe9d2a8 0x36146dd1 0x2fe9e000

0xcde48 0x1fd1d130 0x2feca2a8 0x36146dd1 0x2fecb000

ASLR with PIE

Partial vs. Full ASLR

PIE Main
Executable Heap Stack Shared

Libraries Linker

No Fixed Randomized
per execution Fixed

Randomized
per device

boot
Fixed

Yes Randomized
per execution

Randomized
per execution
(more entropy)

Randomized
per execution

Randomized
per device

boot

Randomized
per execution

Identifying PIE support

otool -hv <executable>

$ otool -hv MobileSafari

MobileSafari:
Mach header
 magic cputype cpusubtype caps filetype ncmds sizeofcmds flags
 MH_MAGIC ARM V7 0x00 EXECUTE 40 4560 NOUNDEFS DYLDLINK TWOLEVEL PIE

hexdump

$ hexdump -C MobileSafari | head
00000000 ce fa ed fe 0c 00 00 00 09 00 00 00 02 00 00 00 |................|

00000010 28 00 00 00 d0 11 00 00 85 00 20 00 01 00 00 00 |(.........|

PIE in Real-World Apps?

PIE in Real-World Apps?

Top 10 Free Apps (July 2011)
App Version Post Date PIE

Songify 1.0.1 June 29, 2011 No
Happy Theme Park 1.0 June 29, 2011 No
Cave Bowling 1.10 June 21, 2011 No

Movie-Quiz Lite 1.3.2 May 31, 2011 No
Spotify 0.4.14 July 6, 2011 No

Make-Up Girls 1.0 July 5, 2011 No
Racing Penguin, Flying Free 1.2 July 6, 2011 No
ICEE Maker 1.01 June 28, 2011 No

Cracked Screen 1.0 June 24, 2011 No
Facebook 3.4.3 June 29, 2011 No

Sandboxing
Applications from the AppStore run in a sandbox

Sandbox limits what applications can do

Uses same mechanism as Mac OS X (Seatbelt kext)

Limits what files can be read/written

Limits what resources can be accessed

Apple applications
Many other applications also have a sandbox: MobieSafari,
MobileMail, MobileSMS

Less restrictive

Compiled into the kernel

Can:

Open SMS database

Can not:

Send SMS messages, fork()

Appstore apps

More restrictive sandbox

Cannot access most of filesystem

Further restrictions on API usage by Apple...

App Home Directory
Subdirectory Description

<AppName>.app/ The signed bundle containing the application code and static data

Documents/ App-specific user-created data files that may be shared with the user’s
desktop through iTunes’s “File Sharing” features

Library/ Application support files

Library/Preferences/ Application-specific preference files

Library/Caches/ App-specific data that should persist across successive launches of
the application but not needed to be backed up

tmp/ Temporary files that do not need to persist across successive
launches of the application

App Container Profile
See BH USA 2011 whitepaper for detailed description and tarball for fully
decompiled profile

Summary:

File access is generally restricted to app’s home directory

Can read user’s media: songs, photos, videos

Can read and write AddressBook

Some IOKit User Clients are allowed

All Mach bootstrap servers are allowed

Mach Bootstrap Servers

All Mach tasks have access to a bootstrap port to
lookup service ports for Mach RPC services

On iOS, this is handled by launchd

141 RPC servers accessible from apps

Risk of being exploited over RPC

May present risk of allowing apps to perform
unauthorized or undesirable actions

Example Servers

com.apple.UIKit.pasteboardd

com.apple.springboard

com.apple.MobileFileIntegrity

com.apple.fairplayd

com.apple.mobile.obliteration

com.apple.iTunesStore.daemon

iPhone security summary
Hard(er) to find bugs

No good binaries on system

No way to write files and execute them

Shellcode would have to be large and complicated

Shellcode won’t run anywhere

Payloads are restricted to compromised process,
running as mobile, in a sandbox...

Jailbreaking
Jailbreaking adds /bin/sh and friends

Disables code signing (obviously)

Disables many memory protections

Increases attack surface (SSHD, etc)

Many cydia apps run as root with no sandbox

Basically breaks security architecture of device

Attacks against iOS
Libtiff iPhone exploit (v1.0)

iPhone SMS exploit (<v3.1)

Ikee (jailbroken)

SpyPhone (all)

Storm 8 (all)

Pwn2Own 2010 (<v4.0)

Jailbreakme.com v2 (<v4.0.2)

Jailbreakme.com v3 (<v4.3.3)

Code signing (<5.0.1)

Libtiff exploit
Back in iPhone version 1.0

Everything ran as root

No ASLR/DEP

Shipped with known vulnerable version of libtiff

Buffer overflow found by Tavis Ormandy

Exploit provided by Chris Wade

Surf with MobileSafari to the wrong site, attacker gets unrestricted root access
to your device

Exploit used to jailbreak iPhones remotely (jailbreakme.com version 1)

Patched in 1.1.2

Libtiff today
A MobileSafari exploit today gets the attacker “Apple”-sandboxed
permission running as user mobile

Original exploit used heap spray + shellcode. Now would have to use ROP

Attacker can do things like read files, keyboard cache, sniff web traffic,
read stored SMS, etc.

Attacker can not tamper with system files, jailbreak, send SMS messages,
etc.

Attacker may try to escape the sandbox, raise privilege level

This may require 1 or 2 more vulnerabilities/exploits

Not impossible but harder

SMS fun
In 2009, myself and Collin Mulliner demonstrated a remote exploit over SMS

Vulnerability in the CommCenter process

Runs as root with no sandbox

Attacker gets full root privilege, doomsday

SMS is the perfect attack vector

No user interaction required

User cannot block or turn off SMS

Attack is queued by teleco while phone is off

Does not (have to) make any indication on the phone attack is occurring

By way of comparison, comparable Android bug was a Java exception

Today, CommCenter runs as _wireless

Ikee
Aka Dutch ransom, iPhone/Privacy.A, Duh/Ikee.B

Jailbroken phones with default SSHD passwords

Can’t trust users to not mess up the security of their phones

Gives full unsandboxed, root level access

Malware does things like

change wallpaper

Lock phone for ransom

Steal content

Change password and become a part of a botnet

SpyPhone
A proof of concept “AppStore” application by Seriot Nicolas

Completely legit use of API’s, lives in AppStore sandbox

Still can do the following

Get cell number

Read/write access to Address Book

Safari/YouTube searches

Email account information

Contacts, keyboard cache

Geotagged photos

GPS, WiFi AP names

Storm 8

In 2009, games developed by Storm 8 were collecting
cell numbers of devices

20 million downloads

Storm 8 says it was a mistake

Pwn2Own 2010

Vulnerability exploited from WebKit in Mobile Safari by
Vincenzo Iozzo and Ralf-Philipp Weinmann

Won $15,000 and an iPhone

Exploit used ROP payload to transmit SMS database
to remote server

Did not escape the sandbox

jailbreakme.com 2 (“Star”)
Two vulnerabilities

CVE-2010-1797: stack overflow in FreeType’s handling of CFF opcodes

CVE-2010-2973: Integer overflow in IOSurface property in IOkit

One to get control, one to get root/bypass sandbox

ROP Payload

Executes IOSurface bug

Disables code signing with memory writes

Downloads and loads dylib

Remote root

reminiscent of iPhone 1 days

Patched in less than 2 weeks

jailbreakme.com 3
(“Saffron”)

Bypassed all restrictions currently in place in iOS

Vulnerability in font parsing code allowed reading and
writing of memory past buffer

Bypass ASLR and corrupt memory

Second exploit gave full kernel compromise

Code signing bugs

Found a bug that allowed running (signed) applications
to run unsigned code

iOS 2 and again in iOS 5

This would allow “innocent” apps to download
unapproved code and run it

Submitted to App Store

App Store Review Process
Not very close inspection!

My app was pretty suspicious

Tries to download file, does a bunch of pointer manipulation,
calls function pointers, etc

Both apps had exactly the same code in it

Written by ME!

Suggests they don’t actually look at the code for this kind of thing

Maybe their review process is not as effective at stopping
malware as they contend

Questions?

Charlie: charlie.miller@accuvant.com

Dino: ddz@theta44.org

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:ddz@theta44.org
mailto:ddz@theta44.org

