
Session ID:
Session Classification:

Charles Henderson
Trustwave SpiderLabs

SPO2-W25
Intermediate

APPLICATION SECURITY:
ONE SIZE DOESN’T FIT ALL

► One size rarely fits all
► Sizing up an application
► Testing choices
► More than just testing
► Conclusions
► Q & A

AGENDA

► EJB for simple web app
► Using vi to develop an enterprise

application
► Using a mainframe session for

surfing the Internet
► Single server to run twitter
► Cracking passwords on an 80386

ONE SIZE RARELY FITS ALL

► Point and click web scanners
► No ability to detect complex vulnerabilities
► Low accuracy rate

► Purely automated source code review
► Only support common languages
► Low accuracy rate

► Fixed manual hour projects
► Fails to account for complexity of application

INFLEXIBLE APP-SEC SOLUTIONS

SIZING UP AN APPLICATION

► Platform & framework
► Age of application
► Time since last test
► Level of maintenance
► Application criticality
► Skill of developers
► Goals of testing
► User base
► Internet accessibility

WAYS TO MEASURE

► Only applications using
specific web-based
technologies have extensive
automated scanning tools

► Some Rich Internet
Application (RIA)
technologies are not easily
scanned – Flash, Silverlight, etc.

► Legacy platforms and frameworks are more vulnerable to
skilled attackers

► Embedded applications typically require a physical testing

PLATFORM & FRAMEWORK

► Older code tends to be more vulnerable, especially for web-
based technology

► Older applications will often use vulnerable 3rd-party
libraries and frameworks, or vulnerable versions of currently
secure ones

► Older applications tend to have
architectural mistakes that have since
been recognized and fixed – passing
parameters to command-line tools,
building SQL with concatenated strings,
for instance.

AGE OF APPLICATION

► Frequently tested applications may not need a
comprehensive test if there are no major changes since last
test

► Only incremental testing may be required, along with basic
automated scanning

TIME SINCE LAST TEST

► Unmaintained code is typically at a high risk of compromise
► Original developers may no longer work for company
► Third-party components

(libraries, controls, etc.)
are unlikely to have
been patched

LEVEL OF MAINTENANCE

► Sensitivity of data handled
► Financial
► Medical
► PII
► Business

► Revenue generated by application
► Disruption to business processes if application fails
► Compliance or regulatory mandates

APPLICATION CRITICALITY

► Security staff usually have an idea about the skills of in-
house developers

► Software vendors or open source projects that are popular
may have a reputation about their security skills; niche
products are usually a mystery

► Outsourced developers are usually a mystery unless there is
a high degree of visibility into the provider. Provider training,
turnover rates, and skill are often difficult to assess.

SKILL OF DEVELOPERS

► Applications used by only 10 trusted administrators may not
need comprehensive testing beyond authentication
enforcement

► Self-provisioned users that are offered extensive interfaces
may pose a great threat

► Private applications may have a lower risk profile, especially
if source IP filtering is being used

USER BASE & INTERNET ACCESS

► Compliance mandate
► Internal policies
► Proactive security
► Post-breach security

GOALS OF TESTING

TESTING CHOICES

► Fully automated scanning
► Manual pen testing
► Code review
► “Deep static analysis”

TEST TYPES

TOP 10 WEB APP VULNERABILITIES

Source: 2013 Trustwave GSR

► Appropriate only when accompanied with manual review of
results

► Non-critical applications
► Relatively modern application & frameworks
► Only for web-based applications
► Impossible to discover complex vulnerabilities, including all

logic flaws
► Will miss most authorization and authentication flaws

FULLY AUTOMATED SCANNING

► Online theater seat reservation system
► Put seats into a cart, then checkout later
► Once seats are in a cart, they are held

so that seats are not overbooked
► Using multiple sessions

1. Put the seats you want into a cart
2. Put the remaining open seats into the

second cart
3. Complete the checkout of the first cart
4. Never complete the checkout of the second cart.

PRIVATE PERFORMANCES

► Traditional Salami Slicing has been well known since at least
the 1970’s

► Office Space, Superman III...
► Stealing small amounts of money repeatedly can add up

SALAMI SLICING VARIANT

► From June 2007 to May 2008,
Michael Largent obtained at least
$60,000 from E-trade, Schwab.com,
Google

► Brokerages will commonly deposit a
few cents to confirm new bank accounts

► Largent programmatically opened thousands of accounts
► The transfers were legal, the phony checking accounts were

not
► 11,385 Schwab accounts were opened as “Speed Apex” from

only five AT&T IP addresses

SALAMI SLICING VARIANT

► Quantity of manual testing important to establish
► Size of application

► Number of pages
► Number of inputs

► Complexity of functionality
► Workflows
► User groups / classifications
► Permission levels

► Does not have “internal”
visibility into application

MANUAL PENETRATION TESTING

► Allows for thorough internal analysis of application
► Requires extensive development and security skills
► Can only be performed when source code available
► Better when combined with manual penetration testing

CODE REVIEW

► Effective when source code is not available
► Allows for internal analysis of application internals
► Best when combined with manual penetration testing
► Enterprise-wide use of a single library or framework could be

a single point of failure

“DEEP STATIC ANALYSIS”

► Apache MyFaces
► Insecure use of client-side view state

► Sun Mojarra
► Insecure use of client-side view state

► Oracle Application Framework
► Profoundly flawed diagnostic mode

► Unnamed game engine
► Systemic buffer overflows

ACTUAL FRAMEWORK FLAWS

MORE THAN JUST TESTING

► Testing only defines the risk; does nothing to solve it
► Remediation options:

► For web applications, virtual patching is an option
► Risk reduction by restrictive firewall rules, bolt-on IPSec
► Third-party assistance
► Deferment

► Lessons learned
► Developer training is critical
► Examples from their own apps

are ideal for developers
► Learning how to “hack” an

application can get devs
excited about security

AFTER THE TEST

► Application security programs are more than single tests
strung together
► Inventory applications
► Prioritization of applications
► Clear SDLC mandates
► Application vendor review

► Commonly used frameworks and libraries must receive
extensive attention, regardless of their source

► May vary testing on application; one year pen test, next year
code review

TACTICS VS. STRATEGY

WRAPPING UP

► Unless you are only securing one application, AppSec
requires a diverse arsenal

► Multiple factors must be considered when determining what
approach is appropriate for a specific target

► Budgets are not unlimited and it is important to make
dollars spent count

► Understanding what you have is the first step to
understanding what you need to protect

CONCLUSIONS

QUESTIONS & ANSWERS

	APPLICATION SECURITY:�ONE SIZE DOESN’T FIT ALL
	Slide Number 2
	Slide Number 3
	Slide Number 4
	SIZING UP AN APPLICATION
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	TESTING CHOICES
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	MORE THAN JUST TESTING
	Slide Number 27
	Slide Number 28
	WRAPPING UP
	Slide Number 30
	Slide Number 31

