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APPLICATION SECURITY: 
ONE SIZE DOESN’T FIT ALL 



► One size rarely fits all 
► Sizing up an application 
► Testing choices 
► More than just testing 
► Conclusions 
► Q & A 

AGENDA 



► EJB for simple web app 
► Using vi to develop an enterprise 

application 
► Using a mainframe session for 

surfing the Internet 
► Single server to run twitter 
► Cracking passwords on an  80386 

 
 

ONE SIZE RARELY FITS ALL 



► Point and click web scanners 
► No ability to detect complex vulnerabilities 
► Low accuracy rate 

► Purely automated source code review 
► Only support common languages 
► Low accuracy rate 

► Fixed manual hour projects 
► Fails to account for complexity of application 

INFLEXIBLE APP-SEC SOLUTIONS 



SIZING UP AN APPLICATION 



► Platform & framework 
► Age of application 
► Time since last test 
► Level of maintenance 
► Application criticality 
► Skill of developers  
► Goals of testing 
► User base 
► Internet accessibility 

WAYS TO MEASURE 



► Only applications using  
specific web-based  
technologies have extensive  
automated scanning tools 

► Some Rich Internet  
Application (RIA)  
technologies are not easily  
scanned – Flash, Silverlight, etc. 

► Legacy platforms and frameworks are more vulnerable to 
skilled attackers 

► Embedded applications typically require a physical testing 
 

PLATFORM & FRAMEWORK 



► Older code tends to be more vulnerable, especially for web-
based technology 

► Older applications will often use vulnerable 3rd-party 
libraries and frameworks, or vulnerable versions of currently 
secure ones 

► Older applications tend to have  
architectural mistakes that have since  
been recognized and fixed – passing  
parameters to command-line tools,  
building SQL with concatenated strings,  
for instance. 

 

AGE OF APPLICATION 



► Frequently tested applications may not need a 
comprehensive test if there are no major changes since last 
test 

► Only incremental testing may be required, along with basic 
automated scanning 

TIME SINCE LAST TEST 



► Unmaintained code is typically at a high risk of compromise 
► Original developers may no longer work for company 
► Third-party components  

(libraries, controls, etc.)  
are unlikely to have  
been patched 

LEVEL OF MAINTENANCE 



► Sensitivity of data handled 
► Financial 
► Medical 
► PII 
► Business 

► Revenue generated by application 
► Disruption to business processes if application fails 
► Compliance or regulatory mandates 

APPLICATION CRITICALITY 



► Security staff usually have an idea about the skills of in-
house developers  

► Software vendors or open source projects that are popular 
may have a reputation about their security skills; niche 
products are usually a mystery 

► Outsourced developers are usually a mystery unless there is 
a high degree of visibility into the provider. Provider training, 
turnover rates, and skill are often difficult to assess.  
 

SKILL OF DEVELOPERS 



► Applications used by only 10 trusted administrators may not 
need comprehensive testing beyond authentication 
enforcement 

► Self-provisioned users that are offered extensive interfaces 
may pose a great threat 

► Private applications may have a lower risk profile, especially 
if source IP filtering is being used 

USER BASE & INTERNET ACCESS 



► Compliance mandate 
► Internal policies 
► Proactive security 
► Post-breach security 

GOALS OF TESTING 



TESTING CHOICES 



► Fully automated scanning 
► Manual pen testing 
► Code review 
► “Deep static analysis” 

 

TEST TYPES 



TOP 10 WEB APP VULNERABILITIES 

Source: 2013 Trustwave GSR 



► Appropriate only when accompanied with manual review of 
results 

► Non-critical applications 
► Relatively modern application & frameworks 
► Only for web-based applications 
► Impossible to discover complex vulnerabilities, including all 

logic flaws 
► Will miss most authorization and authentication flaws 

FULLY AUTOMATED SCANNING 



► Online theater seat reservation system 
► Put seats into a cart, then checkout later 
► Once seats are in a cart, they are held  

so that seats are not overbooked 
► Using multiple sessions 

1. Put the seats you want into a cart  
2. Put the remaining open seats into the  

second cart 
3. Complete the checkout of the first cart 
4. Never complete the checkout of the second cart. 

 

PRIVATE PERFORMANCES 



► Traditional Salami Slicing has been well known since at least 
the 1970’s 

► Office Space, Superman III... 
► Stealing small amounts of money repeatedly can add up 

SALAMI SLICING VARIANT 



► From June 2007 to May 2008,  
Michael Largent obtained at least  
$60,000 from E-trade, Schwab.com,  
Google 

► Brokerages will commonly deposit a  
few cents to confirm new bank accounts 

► Largent programmatically opened thousands of accounts 
► The transfers were legal, the phony checking accounts were 

not 
► 11,385 Schwab accounts were opened as “Speed Apex” from 

only five AT&T IP addresses 

SALAMI SLICING VARIANT 



► Quantity of manual testing important to establish 
► Size of application 

► Number of pages 
► Number of inputs 

► Complexity of functionality 
► Workflows 
► User groups / classifications 
► Permission levels 

► Does not have “internal”  
visibility into application 

MANUAL PENETRATION TESTING 



► Allows for thorough internal analysis of application 
► Requires extensive development and security skills 
► Can only be performed when source code available 
► Better when combined with manual penetration testing 

CODE REVIEW 



► Effective when source code is not available 
► Allows for internal analysis of application internals 
► Best when combined with manual penetration testing 
► Enterprise-wide use of a single library or framework could be 

a single point of failure 
 

“DEEP STATIC ANALYSIS” 



► Apache MyFaces 
► Insecure use of client-side view state 

► Sun Mojarra 
► Insecure use of client-side view state 

► Oracle Application Framework 
► Profoundly flawed diagnostic mode 

► Unnamed game engine 
► Systemic buffer overflows 

ACTUAL FRAMEWORK FLAWS 



MORE THAN JUST TESTING 



► Testing only defines the risk; does nothing to solve it 
► Remediation options: 

► For web applications, virtual patching is an option 
► Risk reduction by restrictive firewall rules, bolt-on IPSec  
► Third-party assistance 
► Deferment 

► Lessons learned 
► Developer training is critical 
► Examples from their own apps  

are ideal for developers 
► Learning how to “hack” an  

application can get devs  
excited about security 

 

AFTER THE TEST 



► Application security programs are more than single tests 
strung together 
► Inventory applications 
► Prioritization of applications 
► Clear SDLC mandates 
► Application vendor review 

► Commonly used frameworks and libraries must receive 
extensive attention, regardless of their source 

► May vary testing on application; one year pen test, next year 
code review 
 

TACTICS VS. STRATEGY 



WRAPPING UP 



► Unless you are only securing one application, AppSec 
requires a diverse arsenal 

► Multiple factors must be considered when determining what 
approach is appropriate for a specific target 

► Budgets are not unlimited and it is important to make 
dollars spent count 

► Understanding what you have is the first step to 
understanding what you need to protect 

 
 

CONCLUSIONS 



 

QUESTIONS & ANSWERS 
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