

Controlling Trust and Risk

Craig Marois

The Boeing Company

Larry Ponemon

The Ponemon Institute

Session ID: SPO1-R35

Session Classification: Intermediate

"All the world is made of faith, and trust, and pixie dust."

- J.M. Barrie

Public Key Infrastructure

- What do we use PKI for?
 - Encryption (PGP, S/MIME)
 - Authentication (Users, devices, documents, Smartcard logon, SSL client auth, XML signatures)
 - Bootstrapping secure communications (IKE, SSL)
 - Code Signing
- Establishing a trusted PKI provides a keystone to building a secure and trusted data communications framework

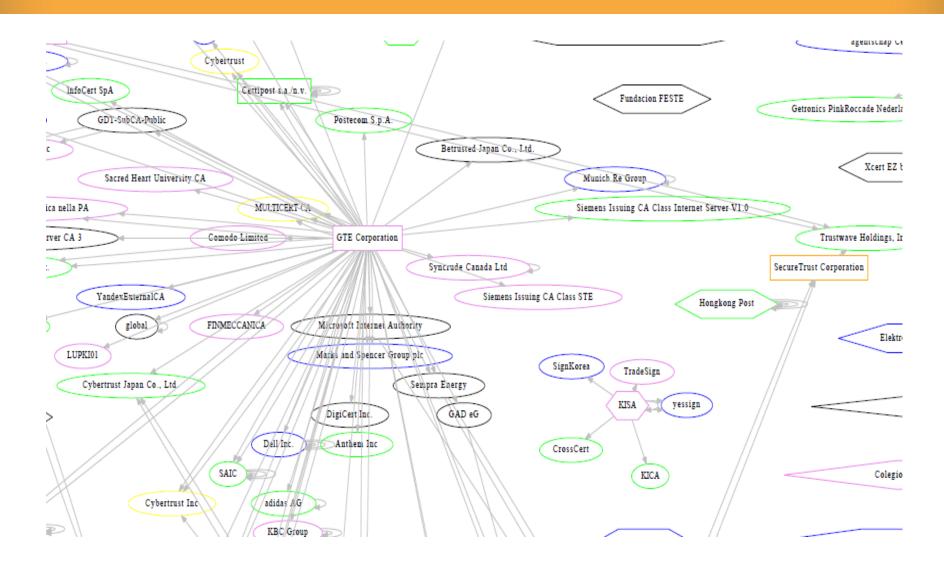
PKI and Trust

- PKI + Trust = Assurance
- PKI Trust = Overhead + Liability
 - Therefore **Trust** is the critical component of an effective and viable PKI
- So how do we establish trust?
 - Policy These are our assertions
 - Certificate Policy
 - Certification Practice Statement
 - Key Recovery Practice Statement
 - Auditing This is how we prove that we do what we say
 - Independent
 - Internal
 - Standards?

Policies

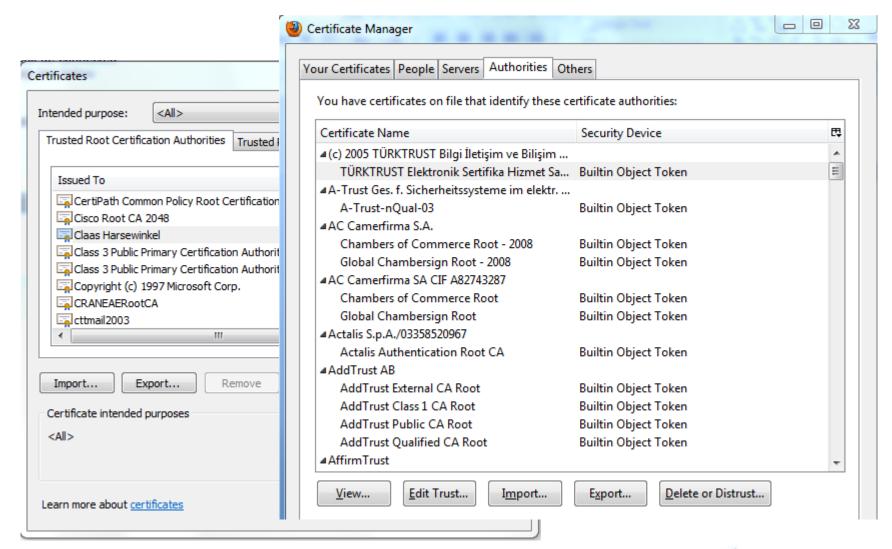
Two specific polices are critical:

- Certificate Policy (CP)
 - Describes the components and actors within the PKI and what each component's specific roles and responsibilities are
- Certificate Practice Statement (CPS)
 - Describes the practices related to issuance, renewal, revocation, publication, and archiving of certificates



So Who Do We Trust?

- Just about everyone....
- The Electronic Frontier Foundation's (EFF) SSL
 Observatory project
 - Investigates the use of SSL/TLS on the Internet
 - Mapped the 650 plus CA's that are trusted directly or indirectly by Internet Explorer and/or Firefox
 - Are all of these CA's secure?
 - ► How would we ever know?



Who Do We Trust?

Who Do We Trust?

PKI Attacks

One bad apple spoils the bunch!

- Browsers explicitly trust many "public" CA's by default, so if one of these CA's is compromised, everyone who uses a web browser is at risk
- Comodo
- DigiNotar
- TURKTRUST

DigiNotar Attack

- DigiNotar was a Dutch certificate authority
 - Trusted CA in many popular browsers
 - Issued certificates for the Dutch government
- In the summer of 2011, 531 fraudulent certificates were issued from DigiNotar's PKI
 - *.google.com certificate was subsequently used in a manin-the-middle attack in Iran
- Attacker operated without DigiNotar's knowledge for over a month.
- After the breach was recognized, DigiNotar did not immediately notify users of the breach

DigiNotar Attack

Timeline

- 1. First sign of the attack June 17th 2011
- 2. DigiNotar recognizes the attack July 19th 2011
- 3. Users notice fraudulent certificates August 29th 2011
- 4. DigiNotar files for bankruptcy September 20th 2011
- Reputation and trust are essential in the PKI business

DigiNotar Attack

How did this attack happen?

- Investigation by independent security consultant Fox IT showed the following:
 - Unpatched software
 - Lack of anti-virus protection
 - Weak passwords
 - Multiple CA's on a single domain
 - Poorly tuned IDS/IPS systems
 - CA network remotely accessible from a management VLAN

How do we protect ourselves from risk?

"The three golden rules to ensure computer security are:

- do not own a computer
- do not power it on
- and do not use it."

Robert Morris, NSA

Protecting PKI

- Fundamentals
 - Patching, including offline CA's
 - Antivirus
 - Auditing
 - Two-factor authentication Password-only logins are a liability
- Accounts with elevated privileges
 - Audit these accounts frequently
 - Multifactor authentication
- Offline Root CA's
- Hardware-based security
- Host-based intrusion detection systems
 - File integrity checking
 - Access auditing

"One of the most time-consuming things is to have an enemy"

- E.B. White

"Never underestimate the attention, risk, money, and time that an opponent will put into reading traffic."

Robert Morris, NSA

Takeaways

PKI is not perfect

- Browser vendors do not help
- No real viable alternatives (right now)
 - Potential Alternatives
 - Public Key Pinning Extension for HTTP
 - DNSSEC-TLS
 - Relies on implementation of DNSSEC
 - Convergence
 - Multiple notaries reach a consensus regarding authenticity

Public key infrastructures are being targeted

DigiNotar, Comodo, TURKTRUST, Others?

Takeaways

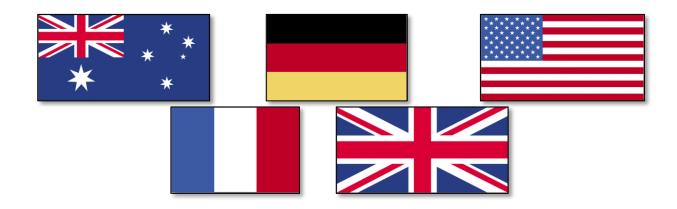
Need to take a defense-in-depth approach

- Strong perimeter
 - Lock down ports and services
 - Don't build your CA and then build your perimeter around it.
 Understand your data flows and harden the environment first
- Strong authentication controls
 - Two factor
 - SmartCards
 - Get rid of username/password logins
- Host-based intrusion detection systems
 - HIDS can be an effective tool to enforce PKI policies
 - File integrity checking
- Auditing

Takeaways

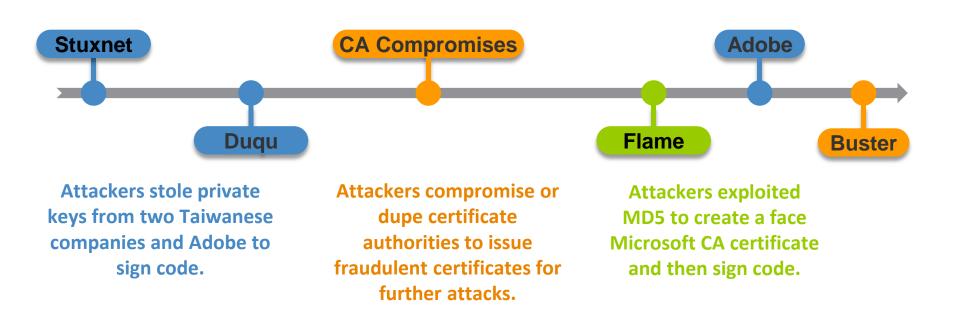
Plan for the unexpected

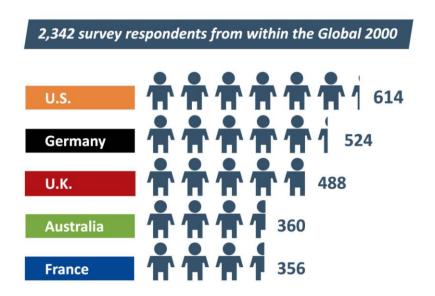
- What would happen if your CA or your vendor's CA was compromised?
 - Have a revocation and re-issue plan

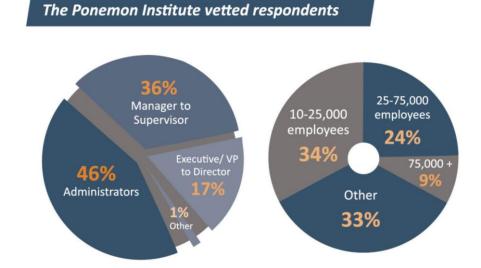

Manage certificates

- ► Implement lifecycle management tools to ensure that certificates do not expire unexpectedly
 - ▶ Don't allow certificate expirations to become a liability
- Understand what types of certificates are issued
 - ► MD5, SHA-1, etc.
 - Expect that at some point these algorithms will become vulnerable and have a plan to identify and replace them

2013 Cost of Failed Trust Report


- Threats & Attacks, first in a series
- Global research focused on Global 2000




Threats & Attacks

Alarming rise in trust exploits

Global Demographics

Enterprise Reliance on Keys & Certificates

17,807

Average number of server keys and certificates in a Global 2000 organization

Losing Control Over Trust

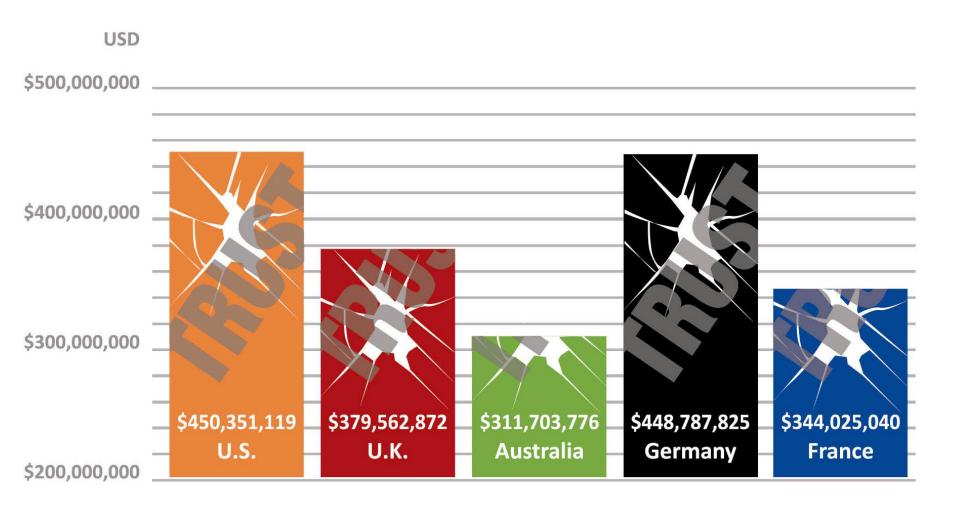
510/6

Don't know how many keys and certificates are in use by their organization

Losing Control Over Trust

45%

"Failing to manage keys and certificates means losing control over the trust my organization relies upon to operate."


Total Possible Impact of Attacks

\$3981

Losses facing every Global 2000 organization from attacks on trust

Total Possible Impact of Attacks

Impact Already Felt

1 or more

Trust exploits and attacks from key & certificate management failures in every organization over last 2 years

Solving the Problem

59%

Getting key and certificate management right *first*, solves security, operations, and compliance problems of using encryption

Solving the Problem

#1

Most Alarming Key & Certificate Management Threat

SSH

Conclusions

- Nearing tipping point where trust exploits are a daily occurrence
- Little awareness and preparedness
- Attacks likely to challenge trust in the cloud
- Expect more attention from auditors and regulators

download full research at www.venafi.com

Security in knowledge