
Simple, Efficient and Strongly KI-Secure
Hierarchical Key Assignment Schemes

Eduarda S. V. Freire and Bertram Poettering and Kenny G. Paterson

Information Security Group
Royal Holloway, University of London

bertram.poettering@rhul.ac.uk

CT-RSA, February 27, 2013



Hierarchical Key Assignment Scheme (KAS)

u Su , ku

v Sv , kv

Setting and terminology

topology: poset (V ,≤) (reflexive, antisymmetric, transitive)

representation by transitive reduction, called access graph

nodes u ∈ V called (security) class

individual private information Su

individual (encryption) key ku

functionality: given Su, compute kv for any v ≤ u

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Hierarchical Key Assignment Scheme (KAS)

u Su , ku

v Sv , kv

Setting and terminology

topology: poset (V ,≤) (reflexive, antisymmetric, transitive)

representation by transitive reduction, called access graph

nodes u ∈ V called (security) class

individual private information Su

individual (encryption) key ku

functionality: given Su, compute kv for any v ≤ u

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Hierarchical Key Assignment Scheme (KAS)

u Su , ku

v Sv , kv

Setting and terminology

topology: poset (V ,≤) (reflexive, antisymmetric, transitive)

representation by transitive reduction, called access graph

nodes u ∈ V called (security) class

individual private information Su

individual (encryption) key ku

functionality: given Su, compute kv for any v ≤ u

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Hierarchical Key Assignment Scheme (KAS)

u Su , ku

v Sv , kv

Setting and terminology

topology: poset (V ,≤) (reflexive, antisymmetric, transitive)

representation by transitive reduction, called access graph

nodes u ∈ V called (security) class

individual private information Su

individual (encryption) key ku

functionality: given Su, compute kv for any v ≤ u

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Syntax and Functionality of KAS

u

v

Su , ku

Sv , kv

Syntax of KAS (simplified)

class of access graphs G

Gen(1λ,G ) (randomized)

input: access graph G = (V ,E ) ∈ G
output: for all u ∈ V

private information Su

(encryption) key ku ∈ {0, 1}λ

Derive(Su, v) (deterministic)

input: private information Su and class v ≤ u
output: key k ∈ {0, 1}λ

Correctness requirement
we require Derive(Su, v) = kv for all u and v ≤ u.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Syntax and Functionality of KAS

u

v

Su , ku

Sv , kv

Syntax of KAS (simplified)

class of access graphs G
Gen(1λ,G ) (randomized)

input: access graph G = (V ,E ) ∈ G
output: for all u ∈ V

private information Su

(encryption) key ku ∈ {0, 1}λ

Derive(Su, v) (deterministic)

input: private information Su and class v ≤ u
output: key k ∈ {0, 1}λ

Correctness requirement
we require Derive(Su, v) = kv for all u and v ≤ u.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Syntax and Functionality of KAS

u

v

Su , ku

Sv , kv

Syntax of KAS (simplified)

class of access graphs G
Gen(1λ,G ) (randomized)

input: access graph G = (V ,E ) ∈ G
output: for all u ∈ V

private information Su

(encryption) key ku ∈ {0, 1}λ

Derive(Su, v) (deterministic)

input: private information Su and class v ≤ u
output: key k ∈ {0, 1}λ

Correctness requirement
we require Derive(Su, v) = kv for all u and v ≤ u.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Syntax and Functionality of KAS

u

v

Su , ku

Sv , kv

Syntax of KAS (simplified)

class of access graphs G
Gen(1λ,G ) (randomized)

input: access graph G = (V ,E ) ∈ G
output: for all u ∈ V

private information Su

(encryption) key ku ∈ {0, 1}λ

Derive(Su, v) (deterministic)

input: private information Su and class v ≤ u
output: key k ∈ {0, 1}λ

Correctness requirement
we require Derive(Su, v) = kv for all u and v ≤ u.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Applications of Key Assignment Schemes

Applications of KAS
access control

example: patient records in hospital
limited access for nurses
access rights of doctors in dependence of seniority

example: sensors in building management
employees can access local light and temperature sensors
managers can access all sensors installed on given floor
facility manager can access smoke sensors and intrusion detection
on all floors
firefighters can access smoke sensors on all floors

database security

content distribution and digital broadcasting

military/government communication

Variants of KAS

time-dependent constraints

dynamic addition or removal of classes

revocation handling

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Applications of Key Assignment Schemes

Applications of KAS
access control

example: patient records in hospital
limited access for nurses
access rights of doctors in dependence of seniority

example: sensors in building management
employees can access local light and temperature sensors
managers can access all sensors installed on given floor
facility manager can access smoke sensors and intrusion detection
on all floors
firefighters can access smoke sensors on all floors

database security

content distribution and digital broadcasting

military/government communication

Variants of KAS

time-dependent constraints

dynamic addition or removal of classes

revocation handling

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



History of Key Assignment Schemes

Important achievements in key assignment (heavily biased excerpt)

[AklTay83]

idea to implement access control through key assignment
RSA-based construction (w/o proof)

[AtaBlaFazFri05]

first formal security model (KR+KI)
PRF-based construction

[CraMarWil06]

overview paper, classifying 27 schemes into 5 design categories

[D’ArSanFerMas10]

formal analysis of Akl-Taylor scheme
RSA vs. strong RSA?

[CraDauMar10]

idea of chain partition method (w/o proof)

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Contributions of this work

Our contributions

new security model

we claim: security definitions published so far are unrealistic
we introduce new formal security model, fixing all problems
we give counterexample to separate new from old models

security analysis of chain-based construction

we prove generic security of the chain partition method

new constructions of KAS

we construct highly efficient KAS, based on PRFs, PRGs, . . .
we establish formal security via reductionist proofs

assessment of practicality
we propose parameters for concrete instantiations of our KAS

based on HMAC, AES, BBS, others

we compare our schemes with other published KAS
we discuss possible efficiency tradeoffs

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: previous models

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Previous security definitions (unified)

ExpKI-ST,b
A,G (1λ)

u ← A(G )

(~S , ~k)← Gen(1λ,G )

if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ

d ← A(~Su�v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

A can compute ~ku�v = {kv : u � v}

return d

Variants

key indistinguishability vs. key recoverability

static vs. dynamic adversaries

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: previous models

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Previous security definitions (unified)

ExpKI-ST,b
A,G (1λ)

u ← A(G )

(~S , ~k)← Gen(1λ,G )

if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ

d ← A(~Su�v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

A can compute ~ku�v = {kv : u � v}

return d

Variants

key indistinguishability vs. key recoverability

static vs. dynamic adversaries

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: previous models

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Previous security definitions (unified)

ExpKI-ST,b
A,G (1λ)

u ← A(G )

(~S , ~k)← Gen(1λ,G )

if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ

d ← A(~Su�v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

A can compute ~ku�v = {kv : u � v}

return d

Variants

key indistinguishability vs. key recoverability

static vs. dynamic adversaries

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: previous models

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Previous security definitions (unified)

ExpKI-ST,b
A,G (1λ)

u ← A(G )

(~S , ~k)← Gen(1λ,G )

if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ

d ← A(~Su�v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

A can compute ~ku�v = {kv : u � v}

return d

Variants

key indistinguishability vs. key recoverability

static vs. dynamic adversaries

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: previous models

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Previous security definitions (unified)

ExpKI-ST,b
A,G (1λ)

u ← A(G )

(~S , ~k)← Gen(1λ,G )

if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ

d ← A(~Su�v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

A can compute ~ku�v = {kv : u � v}

return d

Variants

key indistinguishability vs. key recoverability

static vs. dynamic adversaries

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: previous models

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Previous security definitions (unified)

ExpKI-ST,b
A,G (1λ)

u ← A(G )

(~S , ~k)← Gen(1λ,G )

if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ

d ← A(~Su�v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

A can compute ~ku�v = {kv : u � v}

return d

Variants

key indistinguishability vs. key recoverability

static vs. dynamic adversaries

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: previous models

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Previous security definitions (unified)

ExpKI-ST,b
A,G (1λ)

u ← A(G )

(~S , ~k)← Gen(1λ,G )

if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ

d ← A(~Su�v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

A can compute ~ku�v = {kv : u � v}

return d

Variants

key indistinguishability vs. key recoverability

static vs. dynamic adversaries

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: previous models

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Previous security definitions (unified)

ExpKI-ST,b
A,G (1λ)

u ← A(G )

(~S , ~k)← Gen(1λ,G )

if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ

d ← A(~Su�v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

A can compute ~ku�v = {kv : u � v}

return d

Variants

key indistinguishability vs. key recoverability

static vs. dynamic adversaries

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: revised model

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Updated security model

ExpS-KI-ST,b
A,G (1λ)

u ← A(G )
(~S , ~k)← Gen(1λ,G )
if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ
d ← A(~Su�v , ~ku<v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

~ku<v = {kv : u < v} keys ‘superior’ to u

A can compute ~ku 6=v = {kv : u 6= v}
return d

Comparing the models

Claim: all previous security models useless in practice
we give counterexample to formally separate the models

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: revised model

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Updated security model

ExpS-KI-ST,b
A,G (1λ)

u ← A(G )
(~S , ~k)← Gen(1λ,G )
if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ

d ← A(~Su�v , ~ku<v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

~ku<v = {kv : u < v} keys ‘superior’ to u

A can compute ~ku 6=v = {kv : u 6= v}
return d

Comparing the models

Claim: all previous security models useless in practice
we give counterexample to formally separate the models

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: revised model

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Updated security model

ExpS-KI-ST,b
A,G (1λ)

u ← A(G )
(~S , ~k)← Gen(1λ,G )
if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ
d ← A(~Su�v , ~ku<v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

~ku<v = {kv : u < v} keys ‘superior’ to u

A can compute ~ku 6=v = {kv : u 6= v}
return d

Comparing the models

Claim: all previous security models useless in practice
we give counterexample to formally separate the models

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: revised model

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Updated security model

ExpS-KI-ST,b
A,G (1λ)

u ← A(G )
(~S , ~k)← Gen(1λ,G )
if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ
d ← A(~Su�v , ~ku<v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

~ku<v = {kv : u < v} keys ‘superior’ to u

A can compute ~ku 6=v = {kv : u 6= v}

return d

Comparing the models

Claim: all previous security models useless in practice
we give counterexample to formally separate the models

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: revised model

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Updated security model

ExpS-KI-ST,b
A,G (1λ)

u ← A(G )
(~S , ~k)← Gen(1λ,G )
if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ
d ← A(~Su�v , ~ku<v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

~ku<v = {kv : u < v} keys ‘superior’ to u

A can compute ~ku 6=v = {kv : u 6= v}
return d

Comparing the models

Claim: all previous security models useless in practice
we give counterexample to formally separate the models

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Security notions of KAS: revised model

u

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗ ∗

Su, ku

S∗, k∗

Updated security model

ExpS-KI-ST,b
A,G (1λ)

u ← A(G )
(~S , ~k)← Gen(1λ,G )
if b = 1 then T ← ku
if b = 0 then T ←R {0, 1}λ
d ← A(~Su�v , ~ku<v ,T )

~Su�v = {Sv : u � v} secret information not ‘superior’ to u

~ku<v = {kv : u < v} keys ‘superior’ to u

A can compute ~ku 6=v = {kv : u 6= v}
return d

Comparing the models

Claim: all previous security models useless in practice
we give counterexample to formally separate the models

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Constructing key assignment: from chains to posets

Challenge

KAS constructions seem feasible for

chains (linear access structures)
trees (strict hierarchies)

but constructions for general posets?

Chain partition method ([CraDauMar10], w/o proof)

cover poset with disjoint key assignment chains

for each class u, intersection of chains with {v : v ≤ u} is suffix

each class stores (at most) one entry per chain

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Constructing key assignment: from chains to posets

Challenge

KAS constructions seem feasible for

chains (linear access structures)
trees (strict hierarchies)

but constructions for general posets?

Chain partition method ([CraDauMar10], w/o proof)

cover poset with disjoint key assignment chains

for each class u, intersection of chains with {v : v ≤ u} is suffix

each class stores (at most) one entry per chain

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Constructing key assignment: from chains to posets

Challenge

KAS constructions seem feasible for

chains (linear access structures)
trees (strict hierarchies)

but constructions for general posets?

Chain partition method ([CraDauMar10], w/o proof)

cover poset with disjoint key assignment chains

for each class u, intersection of chains with {v : v ≤ u} is suffix

each class stores (at most) one entry per chain

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Constructing key assignment: from chains to posets

Challenge

KAS constructions seem feasible for

chains (linear access structures)
trees (strict hierarchies)

but constructions for general posets?

Chain partition method ([CraDauMar10], w/o proof)

cover poset with disjoint key assignment chains

for each class u, intersection of chains with {v : v ≤ u} is suffix

each class stores (at most) one entry per chain

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Constructing key assignment: from chains to posets

Dilworth’s theorem (1950)

In finite posets, the minimum number of chains in any partition
into chains equals the maximum cardinality of any antichain. We
call this number the width of the poset.

Theorem

The chain partition method provides S-KI-ST security, assuming
all KAS chains are S-KI-ST secure.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Constructing key assignment: from chains to posets

Dilworth’s theorem (1950)

In finite posets, the minimum number of chains in any partition
into chains equals the maximum cardinality of any antichain. We
call this number the width of the poset.

Theorem

The chain partition method provides S-KI-ST security, assuming
all KAS chains are S-KI-ST secure.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



PRF-based KAS construction for chains

Remaining challenge: KAS for chains
[AtaBlaFazFri05]

PRF-based, possibly insecure
[CraDauMar10]

factoring-based construction (w/o proof)
[FrePat11]

factoring-based construction (w/ proof)

Construction based on pseudorandom functions

for totally ordered access graphs
PRFk : D → R

K = R = {0, 1}λ and ‘k’, ‘S’ ∈ D
instantiations: HMAC, BBS+GGM

Theorem

Our PRF-based scheme offers S-KI-ST security,
assuming security of PRF.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



PRF-based KAS construction for chains

Remaining challenge: KAS for chains
[AtaBlaFazFri05]

PRF-based, possibly insecure
[CraDauMar10]

factoring-based construction (w/o proof)
[FrePat11]

factoring-based construction (w/ proof)

Construction based on pseudorandom functions

for totally ordered access graphs
PRFk : D → R

K = R = {0, 1}λ and ‘k’, ‘S’ ∈ D
instantiations: HMAC, BBS+GGM

Theorem

Our PRF-based scheme offers S-KI-ST security,
assuming security of PRF.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



PRF-based KAS construction for chains

S0 ←R {0, 1}λ
Remaining challenge: KAS for chains

[AtaBlaFazFri05]
PRF-based, possibly insecure

[CraDauMar10]
factoring-based construction (w/o proof)

[FrePat11]
factoring-based construction (w/ proof)

Construction based on pseudorandom functions

for totally ordered access graphs
PRFk : D → R

K = R = {0, 1}λ and ‘k’, ‘S’ ∈ D
instantiations: HMAC, BBS+GGM

Theorem

Our PRF-based scheme offers S-KI-ST security,
assuming security of PRF.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



PRF-based KAS construction for chains

S0 ←R {0, 1}λ

k0 ← PRFS0(‘k’)
Remaining challenge: KAS for chains

[AtaBlaFazFri05]
PRF-based, possibly insecure

[CraDauMar10]
factoring-based construction (w/o proof)

[FrePat11]
factoring-based construction (w/ proof)

Construction based on pseudorandom functions

for totally ordered access graphs
PRFk : D → R

K = R = {0, 1}λ and ‘k’, ‘S’ ∈ D
instantiations: HMAC, BBS+GGM

Theorem

Our PRF-based scheme offers S-KI-ST security,
assuming security of PRF.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



PRF-based KAS construction for chains

S0 ←R {0, 1}λ

k0 ← PRFS0(‘k’)

S1 ← PRFS0(‘S’)

Remaining challenge: KAS for chains
[AtaBlaFazFri05]

PRF-based, possibly insecure
[CraDauMar10]

factoring-based construction (w/o proof)
[FrePat11]

factoring-based construction (w/ proof)

Construction based on pseudorandom functions

for totally ordered access graphs
PRFk : D → R

K = R = {0, 1}λ and ‘k’, ‘S’ ∈ D
instantiations: HMAC, BBS+GGM

Theorem

Our PRF-based scheme offers S-KI-ST security,
assuming security of PRF.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



PRF-based KAS construction for chains

S0 ←R {0, 1}λ

k0 ← PRFS0(‘k’)

S1 ← PRFS0(‘S’)

k1 ← PRFS1(‘k’)

Remaining challenge: KAS for chains
[AtaBlaFazFri05]

PRF-based, possibly insecure
[CraDauMar10]

factoring-based construction (w/o proof)
[FrePat11]

factoring-based construction (w/ proof)

Construction based on pseudorandom functions

for totally ordered access graphs
PRFk : D → R

K = R = {0, 1}λ and ‘k’, ‘S’ ∈ D
instantiations: HMAC, BBS+GGM

Theorem

Our PRF-based scheme offers S-KI-ST security,
assuming security of PRF.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



PRF-based KAS construction for chains

S0 ←R {0, 1}λ

k0 ← PRFS0(‘k’)

S1 ← PRFS0(‘S’)

k1 ← PRFS1(‘k’)

S2 ← PRFS1(‘S’)

k2 ← PRFS2(‘k’)

S3 ← PRFS2(‘S’)

k3 ← PRFS3(‘k’)

Remaining challenge: KAS for chains
[AtaBlaFazFri05]

PRF-based, possibly insecure
[CraDauMar10]

factoring-based construction (w/o proof)
[FrePat11]

factoring-based construction (w/ proof)

Construction based on pseudorandom functions

for totally ordered access graphs
PRFk : D → R

K = R = {0, 1}λ and ‘k’, ‘S’ ∈ D
instantiations: HMAC, BBS+GGM

Theorem

Our PRF-based scheme offers S-KI-ST security,
assuming security of PRF.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



PRF-based KAS construction for chains

S0 ←R {0, 1}λ

k0 ← PRFS0(‘k’)

S1 ← PRFS0(‘S’)

k1 ← PRFS1(‘k’)

S2 ← PRFS1(‘S’)

k2 ← PRFS2(‘k’)

S3 ← PRFS2(‘S’)

k3 ← PRFS3(‘k’)

Remaining challenge: KAS for chains
[AtaBlaFazFri05]

PRF-based, possibly insecure
[CraDauMar10]

factoring-based construction (w/o proof)
[FrePat11]

factoring-based construction (w/ proof)

Construction based on pseudorandom functions

for totally ordered access graphs
PRFk : D → R

K = R = {0, 1}λ and ‘k’, ‘S’ ∈ D
instantiations: HMAC, BBS+GGM

Theorem

Our PRF-based scheme offers S-KI-ST security,
assuming security of PRF.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



FSPRG-based KAS construction for chains

Construction based on FSPRGs

forward-secure stateful PRGs [BelYee03]
constructions based on HMAC, AES, BBS, . . .
generalizes [FrePat11]

Functionality of FSPRGs
Gen(1λ) (randomized)

output: initial state St0

Next(Sti ) (deterministic)
output: string Outi ∈ {0, 1}λ, state Sti+1

(Out0,Out1, . . .) pseudorandom sequence
forward security

Theorem

Our FSPRG-based scheme offers S-KI-ST
security, assuming security of FSPRG.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



FSPRG-based KAS construction for chains

Construction based on FSPRGs

forward-secure stateful PRGs [BelYee03]
constructions based on HMAC, AES, BBS, . . .
generalizes [FrePat11]

Functionality of FSPRGs
Gen(1λ) (randomized)

output: initial state St0

Next(Sti ) (deterministic)
output: string Outi ∈ {0, 1}λ, state Sti+1

(Out0,Out1, . . .) pseudorandom sequence
forward security

Theorem

Our FSPRG-based scheme offers S-KI-ST
security, assuming security of FSPRG.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



FSPRG-based KAS construction for chains

Construction based on FSPRGs

forward-secure stateful PRGs [BelYee03]
constructions based on HMAC, AES, BBS, . . .
generalizes [FrePat11]

Functionality of FSPRGs
Gen(1λ) (randomized)

output: initial state St0

Next(Sti ) (deterministic)
output: string Outi ∈ {0, 1}λ, state Sti+1

(Out0,Out1, . . .) pseudorandom sequence
forward security

Theorem

Our FSPRG-based scheme offers S-KI-ST
security, assuming security of FSPRG.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



FSPRG-based KAS construction for chains

S0 ← Gen(1λ)
Construction based on FSPRGs

forward-secure stateful PRGs [BelYee03]
constructions based on HMAC, AES, BBS, . . .
generalizes [FrePat11]

Functionality of FSPRGs
Gen(1λ) (randomized)

output: initial state St0

Next(Sti ) (deterministic)
output: string Outi ∈ {0, 1}λ, state Sti+1

(Out0,Out1, . . .) pseudorandom sequence
forward security

Theorem

Our FSPRG-based scheme offers S-KI-ST
security, assuming security of FSPRG.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



FSPRG-based KAS construction for chains

S0 ← Gen(1λ)

(k0,S1)←
Next(S0)

Construction based on FSPRGs

forward-secure stateful PRGs [BelYee03]
constructions based on HMAC, AES, BBS, . . .
generalizes [FrePat11]

Functionality of FSPRGs
Gen(1λ) (randomized)

output: initial state St0

Next(Sti ) (deterministic)
output: string Outi ∈ {0, 1}λ, state Sti+1

(Out0,Out1, . . .) pseudorandom sequence
forward security

Theorem

Our FSPRG-based scheme offers S-KI-ST
security, assuming security of FSPRG.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



FSPRG-based KAS construction for chains

S0 ← Gen(1λ)

(k0,S1)←
Next(S0)

(k1,S2)←
Next(S1)

Construction based on FSPRGs

forward-secure stateful PRGs [BelYee03]
constructions based on HMAC, AES, BBS, . . .
generalizes [FrePat11]

Functionality of FSPRGs
Gen(1λ) (randomized)

output: initial state St0

Next(Sti ) (deterministic)
output: string Outi ∈ {0, 1}λ, state Sti+1

(Out0,Out1, . . .) pseudorandom sequence
forward security

Theorem

Our FSPRG-based scheme offers S-KI-ST
security, assuming security of FSPRG.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



FSPRG-based KAS construction for chains

S0 ← Gen(1λ)

(k0,S1)←
Next(S0)

(k1,S2)←
Next(S1)

(k2,S3)←
Next(S2)

(k3,S4)←
Next(S3)

Construction based on FSPRGs

forward-secure stateful PRGs [BelYee03]
constructions based on HMAC, AES, BBS, . . .
generalizes [FrePat11]

Functionality of FSPRGs
Gen(1λ) (randomized)

output: initial state St0

Next(Sti ) (deterministic)
output: string Outi ∈ {0, 1}λ, state Sti+1

(Out0,Out1, . . .) pseudorandom sequence
forward security

Theorem

Our FSPRG-based scheme offers S-KI-ST
security, assuming security of FSPRG.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



FSPRG-based KAS construction for chains

S0 ← Gen(1λ)

(k0,S1)←
Next(S0)

(k1,S2)←
Next(S1)

(k2,S3)←
Next(S2)

(k3,S4)←
Next(S3)

Construction based on FSPRGs

forward-secure stateful PRGs [BelYee03]
constructions based on HMAC, AES, BBS, . . .
generalizes [FrePat11]

Functionality of FSPRGs
Gen(1λ) (randomized)

output: initial state St0

Next(Sti ) (deterministic)
output: string Outi ∈ {0, 1}λ, state Sti+1

(Out0,Out1, . . .) pseudorandom sequence
forward security

Theorem

Our FSPRG-based scheme offers S-KI-ST
security, assuming security of FSPRG.

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Conclusion

Our contributions

new security model

we introduced new security definition, fixing problems of previous ones

security analysis of chain-based construction

we proved generic security of the chain partition method

new constructions of KAS

we constructed highly efficient KAS, based on PRFs, (FS)PRGs, . . .
we formally established their security

Future work

are established schemes secure in our stronger model?

‘tree partition’ vs. chain partition

investigate reduction of [D’ArSanFerMas10]

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Conclusion

Our contributions

new security model

we introduced new security definition, fixing problems of previous ones

security analysis of chain-based construction

we proved generic security of the chain partition method

new constructions of KAS

we constructed highly efficient KAS, based on PRFs, (FS)PRGs, . . .
we formally established their security

Future work

are established schemes secure in our stronger model?

‘tree partition’ vs. chain partition

investigate reduction of [D’ArSanFerMas10]

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Bibliography

[AklTay83] Cryptographic solution to a problem of access control in a
hierarchy, Akl, Taylor, ACM Trans. Comput. Syst.

[AtaBlaFazFri05] Dynamic and efficient key management for access
hierarchies, Atallah, Blanton, Fazio, Frikken, CCS & ACM Trans. Inf.
Syst. Secur.

[D’ArSanFerMas10] Variations on a theme by Akl and Taylor:
Security and tradeoffs, D’Arco, De Santis, Ferrara, Masucci, Theor.
Comput. Sci.

[CraMarWil06] On Key Assignment for Hierarchical Access Control,
Crampton, Martin, Wild, CSFW

[CraDauMar10] Constructing Key Assignment Schemes from Chain
Partitions, Crampton, Daud, Martin, DBSec

[FrePat11] Provably Secure Key Assignment Schemes from Factoring,
Freire, Paterson, ACISP

[BelYee03] Forward-Security in Private-Key Cryptography, Bellare,
Yee, CT-RSA

Simple, Efficient and Strongly KI-Secure Key Assignment Schemes E. S. V. Freire and B. Poettering and K. G. Paterson



Randomized Partial Checking Revisited

Shahram Khazaei∗

Douglas Wikström∗∗

∗Sharif University, Teheran, Iran (work done at KTH)
∗∗KTH Royal Institute of Technology, Stockholm, Sweden

February 27, 2013

1



Voting systems vs mix-nets

1. Servers/trustees run distributed key generation protocol to
generate a public key pk for which the secret key is verifiably
secret shared.

2



Voting systems vs mix-nets

1. Servers/trustees run distributed key generation protocol to
generate a public key pk for which the secret key is verifiably
secret shared.

2. Voters form encryptions of their votes using the public key pk

and a verifiable submission scheme.

2



Voting systems vs mix-nets

1. Servers/trustees run distributed key generation protocol to
generate a public key pk for which the secret key is verifiably
secret shared.

2. Voters form encryptions of their votes using the public key pk

and a verifiable submission scheme.

3. Servers/trustees execute a mix-net to simultaneously permute
and decrypt the ciphertexts.

2



Mix-net [Chaum]

Mix-Net

3



Mix-net [Chaum]

Mix-Net

pk

3



Mix-net [Chaum]

Mix-Net

pk

c1

c2
...

cN

3



Mix-net [Chaum]

Mix-Net

pk

c1

c2
...

cN

mπ(1)

mπ(2)
...

mπ(N)

Simultanously decrypt and randomly permute ciphertexts.

3



Re-encryption Mix-Nets

4



Homomorphic cryptosystem

Epk(m0)× Epk(m1) = Epk(m0m1)

5



Homomorphic cryptosystem

Epk(m0, r0)× Epk(m1, r1) = Epk(m0m1, r0 + r1)

5



Homomorphic cryptosystem

Epk(m0, r0)× Epk(m1, r1) = Epk(m0m1, r0 + r1)

This property can be used to re-encrypt ciphertexts

Epk(m0, r0)× Epk(1, r1) = Epk(m0, r0 + r1)

5



Re-encryption mix-net

Mix-servers M1, . . . ,Mk .

Execution of mix-net:

1. Run distributed key generation protocol to generate joint El
Gamal public key pk .

2. Simultaneously re-encrypt and permute all ciphertexts.

3. Run distributed decryption protocol on the re-encrypted and
permuted ciphertexts.

6



Re-encryption mix-net

M1 M2
. . . Mk

7



Re-encryption mix-net

M1 M2
. . . Mk

L0 = list of input ciphertexts

7



Re-encryption mix-net

M1 M2
. . . Mk

L0 = list of input ciphertexts

L0

7



Re-encryption mix-net

M1 M2
. . . Mk

L0 = list of input ciphertexts

L0 L1

7



Re-encryption mix-net

M1 M2
. . . Mk

L0 = list of input ciphertexts

L0 L1 L2

7



Re-encryption mix-net

M1 M2
. . . Mk

L0 = list of input ciphertexts

L0 L1 L2 Lk−1

7



Re-encryption mix-net

M1 M2
. . . Mk

L0 = list of input ciphertexts

L0 L1 L2 Lk−1 Lk

7



Re-encryption mix-net

M1 M2
. . . Mk

L0 = list of input ciphertexts

L0 L1 L2 Lk−1 Lk

distributed decryption

Lk

plaintexts

7



Re-encryption mix-net

M1 M2
. . . Mk

L0 = list of input ciphertexts

L0 L1 L2 Lk−1 Lk

distributed decryption

Lk

plaintexts

7



Re-encryption mix-net

Lj−1 = (cj−1,1, . . . , cj−1,N)

Mj
Lj−1 Lj

8



Re-encryption mix-net

Lj−1 = (cj−1,1, . . . , cj−1,N)

Mj
Lj−1 Lj

cj−1,i (input ciphertext)

8



Re-encryption mix-net

Lj−1 = (cj−1,1, . . . , cj−1,N)

Mj
Lj−1 Lj

Epk(1, rj ,i)× cj−1,i (re-encrypt)

8



Re-encryption mix-net

Lj−1 = (cj−1,1, . . . , cj−1,N)

Mj
Lj−1 Lj

cj ,i = Epk(1, rj ,πj (i))× cj−1,πj (i) (re-encrypt and permute)

Lj = (cj ,1, . . . , cj ,N)

8



Re-encryption mix-net

M1 M2
. . . Mk

L0 = list of input ciphertexts

L0 L1 L2 Lk−1 Lk

What if a mix-server is malicious?

9



Re-encryption mix-net

M1 M2
. . . Mk

L0 = list of input ciphertexts

L0 L1 L2 Lk−1 Lk

Each mix-server proves that it behaves!

9



Randomized Partial
Checking

10



Randomized partial checking: basic idea

Proposed by Jakobsson, Juels and Rivest USENIX

2002.

Each mix-server is challenged to reveal a little

about what it did. Privacy should still be
preserved jointly by the mix-servers.

11



Motivation

• Beautiful idea with potential to solve the problem for any
cryptosystem.

• Used in numerous papers about verifiable electronic voting
systems.

• Implemented in Civitas by Clarkson, ... at Cornell.

• Similar idea used in Scantegrity developed by Chaum, Rivest,
... at MIT, Maryland, Ottowa, Waterloo, George Washington.
Used in real municipal elections in Takoma Park.

• Implemented i several other research projects with
non-released code (we were generously given access).

12



Motivation

• Beautiful idea with potential to solve the problem for any
cryptosystem.

• Used in numerous papers about verifiable electronic voting
systems.

• Implemented in Civitas by Clarkson, ... at Cornell.

• Similar idea used in Scantegrity developed by Chaum, Rivest,
... at MIT, Maryland, Ottowa, Waterloo, George Washington.
Used in real municipal elections in Takoma Park.

• Implemented i several other research projects with
non-released code (we were generously given access).

I had a GOOD gut feeling about this!

12



Randomized partial checking

Mj

input intermediate output 13



Randomized partial checking

1. Partition Mj

input intermediate output 13



Randomized partial checking

1. Partition

2. Open

Mj

input intermediate output 13



More details

Before challenge, Mj also commits to:

• Origin index of each intermediate ciphertext.

• Destination index of each intermediate ciphertext.

14



More details

Before challenge, Mj also commits to:

• Origin index of each intermediate ciphertext.

• Destination index of each intermediate ciphertext.

Open chosen commitments along with randomness.

14



More details

Before challenge, Mj also commits to:

• Origin index of each intermediate ciphertext.

• Destination index of each intermediate ciphertext.

Open chosen commitments along with randomness.

Attacks works as if this was not in place.

14



Attacks

15



Attack on soundness

It is never verified that the revealed indices are
distinct.

Thus, nothing prevents Mj to replace all origin
indices by one.

This allows replacing all ciphertexts without

detection.

16



Attack on soundness

Mj

input intermediate output 17



Attack on soundness

Mj

input intermediate output 17



Attack on soundness

Mj

input intermediate output 17



Attack on soundness

Mj

looks less
suspicious!

input intermediate output 17



Recall Pfitzmann’s attack

Mix-Net

c1

c
δ
1
...

cN

mπ(N)

m1
...

m
δ
1

18



Recall Pfitzmann’s attack

Mix-Net

c1

c
δ
1
...

cN

mπ(N)

m1
...

m
δ
1

Force non-malleability, e.g., ZKPoK!

18



Attack on privacy

M1

cδi

cδ
′

j

Pfitzmann’s

attack!

ci

cj

input intermediate output 19



Attack on privacy

M1

cδi

cδ
′

j

Pfitzmann’s

attack!

ci

cj

input intermediate output 19



Attack on privacy

M1

cδi

cδ
′

j

Pfitzmann’s

attack!

ci

cj

input intermediate output 19



Attack on privacy

M1

cδi

cδ
′

j

Pfitzmann’s

attack!

ci

cj

looks less
suspicious!

input intermediate output 19



Privacy

Combined with Pfitzmann we can break privacy of

almost everybody, but it would be noticed in the
output (one-off attack).

...some additional observations.

20



Yeah, yeah, a very serious bug, but can it be patched?

Yes, it can be patched in the obvious way, but...

21



Yeah, yeah, a very serious bug, but can it be patched?

Yes, it can be patched in the obvious way, but...

Claim. c ciphertexts can be replaced with

probability roughly (1/2)c.

Correct. c ciphertexts can be replaced with

probability roughly (3/4)c.

21



Yeah, yeah, a very serious bug, but can it be patched?

Yes, it can be patched in the obvious way, but...

Claim. c ciphertexts can be replaced with

probability roughly (1/2)c.

Correct. c ciphertexts can be replaced with

probability roughly (3/4)c.

Important! Universal verifiability can be violated
for changes of c ciphertexts with work O

(

(4/3)c
)

instead of O(2c).

21



Wrong bound!

M1

input intermediate output 22



Wrong bound!

M1

input intermediate output 22



Wrong bound!

M1

OK!

input intermediate output 22



Wrong bound!

M1

input intermediate output 22



Wrong bound!

M1

OK!

input intermediate output 22



Wrong bound!

M1

input intermediate output 22



Wrong bound!

M1

OK!

input intermediate output 22



Wrong bound!

M1

input intermediate output 22



Wrong bound!

M1

FAIL!

input intermediate output 22



Wrong bound!

M1

input intermediate output 22



Wrong bound!

M1

(3/4)c

input intermediate output 22



Conclusion

23



Current work

We are writing down a rigorous proof of security for

mix-nets with randomized partial checking.

Non-standard weaker security properties than
claimed and hairy proof, but it works almost as
expected.

24



Recent attacks

Flaws have been found in all “big” verifiable
systems!

• Scytl mix-net (non-fatal vulnerabilities)

[KTW EVT/WOTE ’12]

• Helios (universal verifiability fails)

[BPW Asiacrypt ’12]

• Civitas, Scantegrity, N.N.,... (soundness fails)

[KW today]

25



Recent attacks

Flaws have been found in all “big” verifiable
systems!

• Scytl mix-net (non-fatal vulnerabilities)

[KTW EVT/WOTE ’12]

• Helios (universal verifiability fails)

[BPW Asiacrypt ’12]

• Civitas, Scantegrity, N.N.,... (soundness fails)

[KW today]

I am still optimistic about the whole thing!

25



What we need

Unless at least the counting in an electronic election
scheme is provably sound/verifiable it should not be

used.

We need several independent cryptographers

and/or machines to verify the proofs of security.

We must spend more time scrutinizing the proposals

of the community and the underlying assumptions.

26



Questions?

27


	CRYP-W22_Poettering.pdf
	CRYP-W22_Wikstrom
	Re-encryption Mix-Nets
	Randomized Partial Checking
	Attacks
	Conclusion


