
Cryptanalytic Attacks on

MIFARE Classic Protocol

Jovan Golić
jovan.golic@it.telecomitalia.it

Security Lab, Telecom Italia IT

1. MIFARE Classic Smart Card

2. Description of MIFARE Classic Protocol

3. Attack Scenarios

4. Objectives

5. Attacks on Genuine Session or Reader

6. Attacks on Genuine Tag – General Concepts

7. Attacks on Genuine Tag – Comparison

8. Generic Differential Attack on Genuine Tag

9. Multiple Sector Attack

10. Conclusions

Outline

► MIFARE Classic smart card is claimed to be the

most widely used contactless smart card in the

world, especially for access control to buildings

and public transport. It is said to cover more than

70% of market share for access control worldwide.

► It is used in RFID (Radio Frequency IDentification) and

NFC (Near Field Communication) systems.

► It implements a proprietary symmetric-key mutual

authentication protocol based on a proprietary stream

cipher known as CRYPTO1 (1994).

► CRYPTO1 is used for the authentication protocol and

also for encrypting messages on RFID/NFC channel

between card and reader (without data integrity).

1. MIFARE Classic Smart Card (1/2)

► CRYPTO1 and the protocol are reverse engineered in
[Nohl et al. ‘08], [Garcia et al. ‘08] and analyzed in

[Nohl et al. ‘08], [de Koning Gans et al. ‘08], [Garcia et

al. ‘08], [Garcia et al. ‘09], [Courtois ’09].

► CRYPTO1 uses a preshared 48-bit secret key. On a

standard CPU, brute-force attack on 48-bit key can

take several years, but less than an hour on FPGA
board (e.g., COPACOBANA [Kumar et al. ‘06]).

► Proposed cryptanalytic attacks in various

scenarios demonstrate that MIFARE Classic smart

card does not offer 48-bit security level.

► Dedicated reader infrastructure is not easy to change.

1. MIFARE Classic Smart Card (2/2)

► Memory of MIFARE Classic card/tag is divided into

sectors containing16-byte blocks; the last block of each

sector contains 48-bit secret key (in fact, two of them);

the first block of the first sector contains read-only data

including 32-bit tag identifier ID and manufacturer data.

► To write or read data from a given memory block, tag

and reader have to be authenticated to each other by a

challenge-response symmetric-key authentication

protocol using the key of the corresponding sector and

32-bit challenge tag and reader nonces nT and nR, which

are generated by respective pseudorandom number

generators.

2. Description of MIFARE Classic
Protocol (1/6)

► Tag nonce, nT, is generated by a 16-bit linear feedback

shift register (LFSR), which starts from the same state

after powering up the tag and has period 618 ms

► At most 16 bits of entropy

► True randomness – variable generation time of tag nonce.

► Reader nonce nR is generated by a pseudorandom

number generator, which starts from the same state

after reader restart and generates a nonce upon

invocation by authentication protocol

► True randomness – variable number of invocations after

restart.

► Fresh nonces protect against replay attacks.

2. Description of MIFARE Classic
Protocol (2/6)

► CRYPTO1 – nonlinear filter generator → 48-bit LFSR,

20-bit nonlinear filter function f

► Initialized by secret key and then refreshed by nonces nT and nR.

2. Description of MIFARE Classic
Protocol (3/6)

LFSR +

nT ID, nR, 0,0,…

0 1 9 11 47 45

f

Keystream

Input

ks0, ks1, ks2, ks3,…

► Three-pass authentication protocol for one sector

► For multiple sectors, for each new sector, Block is

encrypted by using previous sector key and nT is sent

encrypted with new key as nT ks0.

2. Description of MIFARE Classic
Protocol (5/6)

aT ks3

ID

Block

nT

nR ks1, aR ks2

Tag Reader

aR = suc2(nT)

aT = suc3(nT)

► suc function maps 32 bits into next 32 bits of 16-bit LFSR.

► First nT ID and then nR are bitwise XORed into LFSR

► ks0 is bitwise generated while XORing nT ID

► ks1 is bitwise generated while XORing nR

► ks2, ks3, and subsequent keystream are generated by clocking

LFSR autonomously.

► Tag and reader generate the same keystream, clocking

LFSR forwards, with a difference that reader uses nR

directly, whereas tag first decrypts encrypted nR bit-by-bit,

as the keystream bit encrypting a bit of nR depends only

on previous bits of nR.

► For multiple sectors, nT is treated analogously.

2. Description of MIFARE Classic
Protocol (4/6)

► Error detection in MIFARE Classic communication

protocol

► Every plaintext byte is followed by one parity bit computed as the

binary complement of the XOR of all 8 bits (ISO/IEC 14443-A)

► Each parity bit is encrypted with the same keystream bit used to

encrypt the next bit of plaintext.

► Due to linear coding preceding the encryption, ciphertext

reveals linear relations among keystream bits (1 relation

over 8+1 keystream bits per 8+1 ciphertext bits).

► Due to reused keystream bits, ciphertext reveals linear

relations among plaintext bits (1 relation over 8+1

plaintext bits per 1+1 ciphertext bits).

2. Description of MIFARE Classic
Protocol (6/6)

► Passive, genuine session scenario

► Attacker intercepts genuine session and aims at decrypting some

recorded traces (possibly also reconstructing the key)

► Impractical, due to very short distances needed.

► Active, genuine reader scenario

► Attacker uses fake/emulated tag to initiate fake authentication

sessions with genuine reader, in order to reconstruct the key

► Impractical, due to very short distances needed.

► Active, genuine tag scenario, also called tag-only scenario

► Attacker uses fake/emulated reader to initiate fake authentication

sessions with genuine tag (queries), in order to reconstruct the key

► Easy to implement, provided that the on-line stage is short.

3. Attack Scenarios

► Present a critical comprehensive survey of currently

known attacks on MIFARE Classic, in various attack

scenarios, and put them into the right perspective in

light of the prior art in cryptanalysis.

► Propose improvements of known attacks, if possible.

► In particular, in tag-only scenario, significantly

reduce required on-line time, while keeping off-line

time practical

► Few seconds or less is very practical, a few tens of seconds is

much less practical, a few minutes is impractical, ten or more

minutes is very impractical.

► Discuss design drawbacks and design principles.

4. Objectives

► Objective of two attacks [Garcia et al. ‘08] is to

reconstruct the 48-bit key from known keystream

► 64 bits of ks2 and ks3 from genuine session, passive scenario

► 32 bits of ks2 and, possibly, additional 32 bits of ks3 from genuine

reader (encrypting known command, such as ‘halt’).

► Internal state, e.g., 48-bit LFSR state S64 from which the

first bit of ks2 is generated is first recovered and, then,

the key is reconstructed by clocking LFSR backwards

(LFSR rollback)

► Possible even if encrypted {nR}=nR ks1 is known instead of nR

► Not only for f that does not depend on the left-most LFSR state
bit (by branching [Golić et al. ‘00]).

5. Attacks on Genuine Session or
Reader (1/2)

► Time-memory-data tradeoff (TMDT) attack in genuine

reader scenario requires multiple fake authentication

sessions (e.g., 4096 10 min) in on-line stage (T·M=248)
► Adaptation – success probability equal to 1 instead of being high

► On-line time can be reduced while keeping off-line time and

memory, at the expense of increasing pre-computation time.

► Inversion attack in genuine session or reader scenario

requires one/two genuine or fake authentication sessions

in on-line stage, for 64/32 known keystream bits

► Adaptation of generic inversion attack and decimation technique
from [Golić ‘96], [Golić et al. ‘00], to deal with short keystream

► Bad tap positions (attack takes 217/220 steps instead of 247 steps).

5. Attacks on Genuine Session or
Reader (2/2)

► Attacker can obtain known keystream only because of

a peculiar property of the authentication protocol

► In the second pass, fake reader sends fake 64-bit ciphertext,

i.e., encrypted values {nR} and {aR}, and 8 encrypted parity bits

p, {p}, of nR and aR, without knowing the key

► Authentication by tag will fail, but, if all 8 decrypted bits in p are

correct, tag sends back 4-bit ciphertext of a fixed 4-bit error

message, encrypted with first 4 bits of ks3, which reveals 4

keystream bits (such a query is called successful)

► In addition, correct parity bits reveal 8 independent linear

relations among keystream bits, i.e., 8 keystream parity bits

► Altogether, each sussessful query reveals 12 bits of

information about the key.

6. Attacks on Genuine Tag –
General Concepts (1/2)

► Queries can use random or fixed tag nonces. According to
[Garcia et al. ‘09], attacker can perform about

► 1500 queries/sec with a random tag nonce, qr

► 30 queries/sec with a fixed tag nonce, qf, by reset query technique

(switch-off the field, power-up passive tag, and start a query at a

fixed time after reset; at most ten attempts to get the same nT).

► Query strategies in on-line stage:

► For random nT, if {nR}, {aR}, {p} are randomly chosen, then, on

average, 256 queries qr are required to get one successful query,

since p is then random (here {aR}=aR ks2)

► For fixed nT, if {nR}, {aR} are fixed and {p} is varied, then, on

average, 128 queries qf are required to get one successful query,

since p is then fixed.

6. Attacks on Genuine Tag –
General Concepts (2/2)

7. Attacks on Genuine Tag –
Comparison (1/2)

► Three attacks proposed in [Garcia et al. ‘09] are here

denoted as Att. 1, 2, and 3

► Att. 1 has impractical off-line time (brute force)

► Att. 2 has impractical on-line time (15 min)

► Att. 3 has impractical setup time (brute force).

► The best previously known attack is differential attack
proposed in [Courtois ‘09] here denoted as Att. 4

► Att. 4 makes better use of differential properties of f than Att. 2,

thus significantly reducing on-line time

► In this work, Att. 4 is corrected&optimized into Att. 4*.

► New differential attack, Att. 5, significantly reduces on-

line time of Att. 4/4*, while keeping off-line time practical.

7. Attacks on Genuine Tag –
Comparison (2/2)

Attacks Att. 1 Att. 2 Att. 3 Att. 4* New Att. 5

Setup

time

0 0 248 0 0

Setup

memory

0 0 48·236 bit

384 GByte

0 0

On-line

time

1280qr

1 sec

28500qf

15 min

4230qr+128qf

7 sec

3(256qr+112qf)

11.7 sec

2(256qr+48qf)

3.5 sec

Off-line

time

5·248

3 year

232.8

10 min

224 TLU

20 sec

216+226fev

0

232+225fev

5 min

Off-line

memory

0 0 0 168 Byte 42 KByte

Success

Prob

100% 100% 100% 99.4% 99.1%

► Objective:

► From a number of successful queries for different (nT, {nR}), recover

a set of candidate LFSR states at a given time, for some (nT, {nR})

► By LFSR rollback, then recover a set of candidate keys and, finally,

get the unique key possibly using additional successful queries

► Problem: the values of nR are unknown to the attacker.

► First on-line phase: Get one successful query (random nT).

► Second on-line phase: Modify last m bits of {nR} and then

fix nT, {nR}, {aR} and vary last 5 bits of {p} until a successful

query occurs; on average, 16 such queries with a fixed nT,
for each of 2m-1 modifications of {nR} are needed.

► On-line stage thus yields 2m successful queries.

8. Generic Differential Attack on
Genuine Tag (1/5)

► Since nR ={nR}ks1, where the last m bits of ks1 depend

on the last m bits of {nR}, each m-bit change m of {nR} can

result in the same change of nR with some probability

depending on the filter function f.

► This is the probability that the last m keystream bits of ks1,

used for encrypting the last m bits of {nR}, are independent

of the last m bits of {nR}

► The first of these m bits is already independent, as it depends on

previous bits of {nR} only

► The remaining m-1 bits are output bits of (m-1)-bit augmented filter

function of all LFSR state bits as input bits; these m-1 output bits

are independent of the last m-1 input bits with probability m-1

8. Generic Differential Attack on
Genuine Tag (2/5)

► It follows that 0=1, 1=29/320.906, 2=(29/32)20.821

► Worst design case: m-1=1 would hold if f were independent of the

last m LFSR state bits

► Best design case: m-1=0 would hold if f were linear in the last
LFSR state bit (a sufficient condition from [Golić ‘96]).

► Since LFSR sequence depends linearly on nR, for each

value of m, subsequent LFSR sequence can be

expressed as bitwise XOR of unknown LFSR sequence

corresponding to initial value of {nR} and a known binary

sequence determined by known value of m (this holds

with probability m-1).

► 4 keystream bits from each successful query are used.

8. Generic Differential Attack on
Genuine Tag (3/5)

► Attacker thus obtains 4·2m equations of the form

zi=f(Sii), for 2m values of m and 96i 99, where Si is

unknown LFSR state for m=0 at time i, and zi and i

depend only on m (to be solved in off-line stage).

► Nonlinear system of equations can be solved for S99 by an

adapted variant of the well-known resynchronization
attack [Daemen et al. ‘94] (essentially, exhaustive search)

and using the fact that

► f depends only on 20 bits of LFSR state and after 2 steps, f

depends on the same 19 bits and 1 new bit (bad tap positions)

► Accordingly, z96 and z98 depend on 21 LFSR bits of S99 (as well as

z97 and z99 depend on other 21 LFSR bits of S99).

8. Generic Differential Attack on
Genuine Tag (4/5)

► Att. 4* is corrected&optimized Att. 4 from [Courtois ‘09],

which is a differential attack for m=3

► Queries with random/fixed tag nonces are better handled

► For one run, success probability 20.821 (instead of 0.75) and

average on-line time 3.9 sec (instead of 8.52 sec for first run

and 5.33 sec for other runs), and off-line time 0

► For 3 independent runs of Att. 4*, success probability 0.994,

average on-line time 11.7 sec, and average off-line time 0.

► Att. 5 is a new differential attack, for m=2

► For one run, success probability 10.906, average on-line time

1.77 sec, and off-line time 5 min

► For 2 independent runs of Att. 5, success probability 0.991,

average on-line time 3.5 sec, and average off-line time 5 min.

8. Generic Differential Attack on
Genuine Tag (5/5)

► Assumption: Key for the first sector has been already

recovered in any described attack scenario.

► Main feature is that nT is sent encrypted by tag

► This should prevent known keystream attacks, unless

► Entropy of nT is small! (Repeated keystream bits, timing.)

► By effectively guessing nT, attacker gets 96 keystream

bits in genuine session scenario [Garcia et al. ‘08] and

32 keystream bits in tag-only scenario [Garcia et al. ‘09]
and then applies adapted inversion attack.

► Consequently, tag-only attack scenario is much

easier for other sectors than for the first sector.

9. Multiple Sector Attack

► MIFARE Classic protocol does not offer 48-bit

security level due to:

► Repeatable and predictable tag nonces

► Really bad tap positions for filter function and bad choice of

filter function in CRYPTO1

► Generation&encryption of parity bits for error detection

► Peculiar feature that tag can sent an encrypted response if

authentication of reader fails.

► The most effective known attack is adapted inversion

attack in genuine session or genuine reader scenarios

► Impractical, due to very short distances to genuine static

reader required.

10. Conclusions (1/3)

► The most practical attack scenario is genuine tag

scenario, and the new attack, requiring only about 3 sec

of on-line time, is the most effective currently known

attack in this scenario

► It significantly improves on the most effective previously known

attack, requiring about 10 sec of on-line time.

► Practical countermeasures

► Use electromagnetic-shield covers for tags on smart cards

► User notification or activation on demand of on-going NFC

communications, for tags on mobile devices.

► Impractical countermeasure: Replace MIFARE Classic

cards/tags and dedicated readers (costly).

10. Conclusions (2/3)

► Light-weight cryptography

► Ease of implementation

► Reduced, but guaranteed security level

► Designs secure against known attacks

► Reduced security margins with respect to known attacks

► Difficult to satisfy in practice.

► Obscurity in cryptography

► Unknown algorithms make cryptanalysis significantly more difficult,

if not impossible

► Designs should be secure against known attacks even if

algorithms are compromised (e.g., reverse engineered)

► Typically not satisfied in practice.

10. Conclusions (3/3)

Asynchronous Computational VSS with
Reduced Communication Complexity

Cryptographer’s Track, RSA Conference 2013

Michael Backes Amit Datta Aniket Kate
Saarland University & MPI-SWS Carnegie Mellon University Saarland University

Germany USA Germany

Outline

Background

Secret Sharing
Asynchronous Verifiable Secret Sharing (AVSS)

State-of-the-art for AVSS and Shortcomings

Our Protocols

eAVSS: efficient AVSS
eAVSS-SC: efficient AVSS with Strong Commitment

VSS with Reduced Communication Complexity 2

Secret Sharing

VSS with Reduced Communication Complexity 3

Secret Sharing
Sharing Phase

VSS with Reduced Communication Complexity 3

Secret Sharing
Reconstruction Phase

VSS with Reduced Communication Complexity 3

Secret Sharing
(4, 1)-Secret Sharing

VSS with Reduced Communication Complexity 3

Polynomial-Based Shamir Secret Sharing
(n, 1)-Secret Sharing for secret S

VSS with Reduced Communication Complexity 4

Polynomial-Based Shamir Secret Sharing
Not an (n, 1)-Secret Sharing for secret S

VSS with Reduced Communication Complexity 4

Verifiable Secret Sharing—VSS

VSS with Reduced Communication Complexity 5

Verifiable Secret Sharing—VSS
Privacy Property

VSS with Reduced Communication Complexity 5

Verifiable Secret Sharing—VSS
Correctness Property

VSS with Reduced Communication Complexity 5

Verifiable Secret Sharing—VSS
Commitment Property

VSS with Reduced Communication Complexity 5

VSS in the Literature
Applications

1. Multi-party Computation 2. Threshold Cryptography

λi =
∏n

j=1
j 6=i

x−xj
xi−xj

3. Byzantine Agreement 4. Coin-tossing

VSS with Reduced Communication Complexity 6

VSS in the Literature

Communication Assumption
Most of the VSS protocols in the literature assume that the network to
be synchronous. However,

the Internet does not always function synchronously, and

there is no reliable broadcast channel available for free.

Therefore, we need VSS protocols that work in
the asynchronous communication setting

State-of-the-art
Asynchronous VSS (AVSS) protocols are inefficient in terms of
communication complexity

The best known AVSS protocol [Cachin et al., ACM CCS ’02]
communicates O(κn3) bits

VSS with Reduced Communication Complexity 7

VSS in the Literature

Communication Assumption
Most of the VSS protocols in the literature assume that the network to
be synchronous. However,

the Internet does not always function synchronously, and

there is no reliable broadcast channel available for free.

Therefore, we need VSS protocols that work in
the asynchronous communication setting

State-of-the-art
Asynchronous VSS (AVSS) protocols are inefficient in terms of
communication complexity

The best known AVSS protocol [Cachin et al., ACM CCS ’02]
communicates O(κn3) bits

VSS with Reduced Communication Complexity 7

VSS in the Literature

Communication Assumption
Most of the VSS protocols in the literature assume that the network to
be synchronous. However,

the Internet does not always function synchronously, and

there is no reliable broadcast channel available for free.

Therefore, we need VSS protocols that work in
the asynchronous communication setting

State-of-the-art
Asynchronous VSS (AVSS) protocols are inefficient in terms of
communication complexity

The best known AVSS protocol [Cachin et al., ACM CCS ’02]
communicates O(κn3) bits

VSS with Reduced Communication Complexity 7

Our Contributions

Communication complexity for AVSS can be reduced using the
concept of (constant-size) polynomial commitments

We present two AVSS protocols with O(κn2) communication
complexity:

Our first protocol satisfies the standard VSS definition
Applications:

1 Stand-alone VSS scenarios
2 Byzantine agreement

Our second protocol satisfies a stronger VSS definition
Applications:

1 multiparty computation (MPC)
2 threshold cryptography

VSS with Reduced Communication Complexity 8

Outline

Background

Secret Sharing
Asynchronous Verifiable Secret Sharing (AVSS)

State-of-the-art for AVSS and Shortcomings

Our Protocols

eAVSS: efficient AVSS
eAVSS-SC: efficient AVSS with Strong Commitment

VSS with Reduced Communication Complexity 9

Asynchronous Message Passing Setting

processes: p1, . . . , pn

pairwise connected by an asynchronous channel

messages can be arbitrarily delayed, or reordered
however, messages are eventually delivered

at most t of n processes may exhibit faulty behavior In this
setting, the optimal resiliency bound is n ≥ 3t+ 1

VSS with Reduced Communication Complexity 10

Asynchronous Message Passing Setting

processes: p1, . . . , pn

pairwise connected by an asynchronous channel

messages can be arbitrarily delayed, or reordered
however, messages are eventually delivered

at most t of n processes may exhibit faulty behavior In this
setting, the optimal resiliency bound is n ≥ 3t+ 1

VSS with Reduced Communication Complexity 10

State-of-the-art Protocol for AVSS

Sharing Phase

VSS with Reduced Communication Complexity 11

State-of-the-art Protocol for AVSS

Sharing Phase

VSS with Reduced Communication Complexity 12

State-of-the-art Protocol for AVSS

Message complexity: O(n2)

For verification:

Commitment matrix C = {Cjl} = gfjl

Reduced from O(n2) to O(n) with hash functions.

Communication complexity: O(κn3),

where κ is the security parameter

Reference :
C. Cachin, K. Kursawe, A.Lysyanskaya, and R. Strobl.
Asynchronous Verifiable Secret Sharing and Proactive Cryptosystems.
In ACM CCS ’02.

VSS with Reduced Communication Complexity 13

State-of-the-art Protocol for AVSS

Message complexity: O(n2)

For verification:

Commitment matrix C = {Cjl} = gfjl

Reduced from O(n2) to O(n) with hash functions.

Communication complexity: O(κn3),

where κ is the security parameter

Reference :
C. Cachin, K. Kursawe, A.Lysyanskaya, and R. Strobl.
Asynchronous Verifiable Secret Sharing and Proactive Cryptosystems.
In ACM CCS ’02.

VSS with Reduced Communication Complexity 13

State-of-the-art Protocol for AVSS

Message complexity: O(n2)

For verification:

Commitment matrix C = {Cjl} = gfjl

Reduced from O(n2) to O(n) with hash functions.

Communication complexity: O(κn3),

where κ is the security parameter

Reference :
C. Cachin, K. Kursawe, A.Lysyanskaya, and R. Strobl.
Asynchronous Verifiable Secret Sharing and Proactive Cryptosystems.
In ACM CCS ’02.

VSS with Reduced Communication Complexity 13

Outline

Background

Secret Sharing
Asynchronous Verifiable Secret Sharing (AVSS)

State-of-the-art for AVSS and Shortcomings

Our Protocols

eAVSS: efficient AVSS
eAVSS-SC: efficient AVSS with Strong Commitment

VSS with Reduced Communication Complexity 14

What We Want to Achieve

Message complexity: O(n2),

Communication complexity: O(κn2),

where κ is the security parameter

Solution : Constant-size Polynomial Commitments
Helps commit to a univariate polynimial by publishing just one value

Reference:
A.Kate, G. M. Zaverucha, and I. Goldberg.
Constant-Size Commitments to Polynomials and Their Applications.
In Proceedings of ASIACRYPT ’10.

VSS with Reduced Communication Complexity 15

What We Want to Achieve

Message complexity: O(n2),

Communication complexity: O(κn2),

where κ is the security parameter

Solution : Constant-size Polynomial Commitments
Helps commit to a univariate polynimial by publishing just one value

Reference:
A.Kate, G. M. Zaverucha, and I. Goldberg.
Constant-Size Commitments to Polynomials and Their Applications.
In Proceedings of ASIACRYPT ’10.

VSS with Reduced Communication Complexity 15

A PolyCommit scheme

Setup(1κ, t) generates an appropriate algebraic structure
G = 〈e,G,GT 〉 and the system parameter PK

Commit(PK, f(x)) outputs a commitment C to a polynomial f(x)

CreateWitness(PK, f(x), i) outputs 〈i, f(i), wi〉, where wi is a
witness for the evaluation f(i) of f(x)

VerifyEval(PK, C, i, f(i), wi) verifies that f(i) is indeed the evaluation
of the polynomial committed in C

Construction
Single element commitments for univariate polynomials

However, the scheme does not work for multi-variate
polynomials required in AVSS schemes!!

VSS with Reduced Communication Complexity 16

A PolyCommit scheme

Setup(1κ, t) generates an appropriate algebraic structure
G = 〈e,G,GT 〉 and the system parameter PK

Commit(PK, f(x)) outputs a commitment C to a polynomial f(x)

CreateWitness(PK, f(x), i) outputs 〈i, f(i), wi〉, where wi is a
witness for the evaluation f(i) of f(x)

VerifyEval(PK, C, i, f(i), wi) verifies that f(i) is indeed the evaluation
of the polynomial committed in C

Construction
Single element commitments for univariate polynomials

However, the scheme does not work for multi-variate
polynomials required in AVSS schemes!!

VSS with Reduced Communication Complexity 16

Our eAVSS Protocol
Dealer D

Select a polynomial f(x), such that f(0) = s

C = Commit(PK, f(x)), wi = CreateWitness((PK, f(x), i))

Send (C, wi, f(i)) to every party Pi

Party Pi

If VerifyEval(PK, C, i, f(i), wi) succeeds, send (echo, C)

On receiving (n− t) (echo, C), send (ready, share, C)

Otherwise:

(a) On receiving (n− 2t) (ready,*, C) signals,
send (ready, share, C) to every party Pj .

(b) On receiving (n− 2t) (ready,*, C′) signals,
send (ready, no-share, C′) to every party Pj .

On receiving (n− t) (ready, C) signals, and at least (n− 2t)
contain share, terminate

VSS with Reduced Communication Complexity 17

Our eAVSS Protocol
Dealer D

Select a polynomial f(x), such that f(0) = s

C = Commit(PK, f(x)), wi = CreateWitness((PK, f(x), i))

Send (C, wi, f(i)) to every party Pi

Party Pi

If VerifyEval(PK, C, i, f(i), wi) succeeds, send (echo, C)

On receiving (n− t) (echo, C), send (ready, share, C)

Otherwise:

(a) On receiving (n− 2t) (ready,*, C) signals,
send (ready, share, C) to every party Pj .

(b) On receiving (n− 2t) (ready,*, C′) signals,
send (ready, no-share, C′) to every party Pj .

On receiving (n− t) (ready, C) signals, and at least (n− 2t)
contain share, terminate

VSS with Reduced Communication Complexity 17

Salient Points

There are at least n− 2t ≥ 3t+ 1− 2t = t+ 1
honest parties with correct shares

There are at most n send, n2 echo,
and n2 ready messages

VSS with Reduced Communication Complexity 18

Properties of eAVSS

Liveness. If the dealer D is honest, then all honest parties
complete sharing.

Secrecy. If D is honest, then the adversary has no information
about s.

Agreement. If some honest party completes the sharing phase,
then all honest parties will eventually complete the
sharing phase.

Correctness. Once all honest parties complete sharing, there exists
a fixed value z ∈ Zp, such that the following holds:

(a) If an honest dealer has shared the secret s, then
s = z.

(b) If each of the honest servers Pi reconstructs some
zi, then zi = z

VSS with Reduced Communication Complexity 19

Properties of eAVSS

Liveness. If the dealer D is honest, then all honest parties
complete sharing.

Secrecy. If D is honest, then the adversary has no information
about s.

Agreement. If some honest party completes the sharing phase,
then all honest parties will eventually complete the
sharing phase.

Correctness. Once all honest parties complete sharing, there exists
a fixed value z ∈ Zp, such that the following holds:

(a) If an honest dealer has shared the secret s, then
s = z.

(b) If each of the honest servers Pi reconstructs some
zi, then zi = z

VSS with Reduced Communication Complexity 19

Suitable for

Byzantine Agreement Coin-tossing

VSS with Reduced Communication Complexity 20

Not Suitable for

Multi-party Computation Threshold Cryptography

λi =
∏n

j=1
j 6=i

x−xj
xi−xj

VSS with Reduced Communication Complexity 21

Properties of Stronger AVSS

VSS with Reduced Communication Complexity 22

Properties of Stronger AVSS

Liveness. If the dealer D is honest, then all honest parties
complete sharing.

Secrecy. If D is honest, then the adversary has no information
about s.

Agreement. If some honest party completes the sharing phase,
then all honest parties will eventually complete the
sharing phase.

Strong Correctness. Once t+ 1 honest parties complete sharing,
there exists a fixed value z ∈ Zp, such that the following
holds:

(a) If an honest dealer has shared the secret s, then
s = z.

(b) If each of the honest servers Pi reconstructs some
zi, then zi = z

VSS with Reduced Communication Complexity 22

Protocol for eAVSS-SC

Dealer sends polynomials f0(x), f1(x), ...fn(x), with
fk(x) = F (x, k), F (x, y) is of degree ≤ t. Commitments:
C0, C1, ..., Cn.

There will be at least t+ 1 honest parties with correct
polynomials fk(x) = F (x, k), and they compute their shares
sk = fk(0) = F (0, k) = F (k, 0) = f0(k)

These t+ 1 parties can enable any Pi to reconstruct its
polynomial f i(x) by sending fk(i) = f i(k)

Problem: Have to send a vector of commitments
in the echo and ready messages.

Solution: Perform another round of PolyCommit
on hash values of the commitments.

VSS with Reduced Communication Complexity 23

Protocol for eAVSS-SC

Dealer sends polynomials f0(x), f1(x), ...fn(x), with
fk(x) = F (x, k), F (x, y) is of degree ≤ t. Commitments:
C0, C1, ..., Cn.

There will be at least t+ 1 honest parties with correct
polynomials fk(x) = F (x, k), and they compute their shares
sk = fk(0) = F (0, k) = F (k, 0) = f0(k)

These t+ 1 parties can enable any Pi to reconstruct its
polynomial f i(x) by sending fk(i) = f i(k)

Problem: Have to send a vector of commitments
in the echo and ready messages.

Solution: Perform another round of PolyCommit
on hash values of the commitments.

VSS with Reduced Communication Complexity 23

Protocol for eAVSS-SC

Dealer sends polynomials f0(x), f1(x), ...fn(x), with
fk(x) = F (x, k), F (x, y) is of degree ≤ t. Commitments:
C0, C1, ..., Cn.

There will be at least t+ 1 honest parties with correct
polynomials fk(x) = F (x, k), and they compute their shares
sk = fk(0) = F (0, k) = F (k, 0) = f0(k)

These t+ 1 parties can enable any Pi to reconstruct its
polynomial f i(x) by sending fk(i) = f i(k)

Problem: Have to send a vector of commitments
in the echo and ready messages.

Solution: Perform another round of PolyCommit
on hash values of the commitments.

VSS with Reduced Communication Complexity 23

Protocol for eAVSS-SC

Dealer sends polynomials f0(x), f1(x), ...fn(x), with
fk(x) = F (x, k), F (x, y) is of degree ≤ t. Commitments:
C0, C1, ..., Cn.

There will be at least t+ 1 honest parties with correct
polynomials fk(x) = F (x, k), and they compute their shares
sk = fk(0) = F (0, k) = F (k, 0) = f0(k)

These t+ 1 parties can enable any Pi to reconstruct its
polynomial f i(x) by sending fk(i) = f i(k)

Problem: Have to send a vector of commitments
in the echo and ready messages.

Solution: Perform another round of PolyCommit
on hash values of the commitments.

VSS with Reduced Communication Complexity 23

Take Away

Constant-size polynomial commitments help
to obtain an AVSS protocol with reduced
communication complexity

We have presented two efficient AVSS schemes
(eAVSS and eAVSS-SC) with O(n2κ)
communication complexity

They reduce the communication complexity
of various AVSS applications by a linear
(in n) factor

Thanks!

VSS with Reduced Communication Complexity 24

Take Away

Constant-size polynomial commitments help
to obtain an AVSS protocol with reduced
communication complexity

We have presented two efficient AVSS schemes
(eAVSS and eAVSS-SC) with O(n2κ)
communication complexity

They reduce the communication complexity
of various AVSS applications by a linear
(in n) factor

Thanks!

VSS with Reduced Communication Complexity 24

	CRYP-R33_Golic v3.pdf
	CRYP-R33_Kate

