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Digital Goods Economy 



Enforcing Secure Transactions 
through a Trusted Third Party (TTP) 



Problems with TTP 



Problems with TTP 



Fair Exchange in the  
Physical World is “easy” 

Buyer 

Seller 
Witness 

Witness 
Witness 

Physical proximity provides a high incentive  
to behave correctly. 

More precautions need to be taken  
in the digital world. 



Modeling Transactions  
with Digital Signatures 

Buyer 
Seller 

Digital Check 

Software License 

The problem: Who starts first? 
Impossibility Result [Cleve86] 



Gradual Release of a Secret 

1001 0111 

Bob’s signature Alice’s signature 

1 

0 

0 

1 

0 

1 

1 

1 

Allows to circumvent Cleve’s impossibility result  
(relaxed security definition). 

How do I know that the bit I received  
is not garbage? 



Our Construction 

• Fair Exchange of Digital Signatures 

 

• Boneh-Boyen [BB04] Short Signatures 

 

• No TTP 

 

• Practical 

 



Contributions 

• Formal definition of Partial Fairness 

 

• Efficiency 

 

 

 

 

• First protocol for Boneh-Boyen signatures 

𝜿: Security Parameter 𝜿 = 𝟏𝟔𝟎 

# Rounds 𝜅 + 1 161 

Communication 16𝜅2 + 12𝜅   bits ≈ 52 kB 

# Crypto operations 
per participant 

≈ 30𝜅 ≈ 4800 



Contributions 

 

• NIZK argument to prove that a commitment 
encodes a bit vector. 

 

• NIZK argument to prove a commitment to a 
bit vector is the binary expansion of the 

discrete logarithm 𝜃 of 𝐷 =  𝑔𝜃. 



Commitments 

secret 

Commitment 

secret = + 

I will try to open 
the box with 

another value. 

I will try to know 
what is in the box 

before I get the 
key. 

1 

2 

3 

secret 

The secret is revealed. 



Non-Interactive 
Zero-Knowledge Proofs 

0 
𝜋 , 

I want to fool Alice:  
Make she believe that the value in the 
box is binary while it is not (e.g: 15). 

I want to know exactly what is in the box  
(not only that the secret is a bit). 

= Yes / No + 0 
𝜋 

1 

2 

Prove something about the secret in the box  
without opening the box. 



Abstract Protocol 

 

Release Bits 

KeyGen 

Encrypt Signature 

Verify Encrypted 
Signature 

Setup 

Recover Signature 



Partial Fairness 

𝑚𝐴, 𝑚𝐵 , 𝑝𝑘𝐴 (𝑠𝑘𝐵, 𝑝𝑘𝐵) 

(𝑠𝑘𝐴, 𝑝𝑘𝐴) 
𝑚𝐴, 𝑚𝐵 

𝑂𝑆𝑖𝑔𝑛 𝑠𝑘𝐵,⋅  

𝜎𝐵 on 𝑚𝐴 

Bet according to  
partially released secret 𝜎𝐴 on 𝑚𝐵 

Not queried to 
signing oracle 
𝑂𝑆𝑖𝑔𝑛  



Protocol 

Signature 

1 0 1 1 0 0 

35 = 100011 2 
Encrypted 
Signature = + 1 

2 

3 𝜋1 Each small box contains a bit. 

𝜋2 
The sequence of small boxes is the binary expansion 
of the secret inside the big box. 

4 1 0 1 1 0 0 0 0 0 1 1 1 

5 
Encrypted 
Signature + 35 = 100011 2 = Signature 



Bilinear maps 

• 𝑝, 𝑒, 𝐺, 𝐺𝑇 , 𝑔 ← 𝐵𝑀𝐺𝑒𝑛 1
𝑘  

 

• 𝐺 = 𝐺𝑇 = 𝑝 

• 𝑒: 𝐺 × 𝐺 → 𝐺𝑇 

• 𝑒 𝑔𝑎, 𝑔𝑏 = 𝑒 𝑔, 𝑔  
𝑎𝑏

 

• 𝑒 𝑔, 𝑔  generates 𝐺𝑇 



Assumptions 

• Given (𝑔, 𝑔𝑠, 𝑔𝑠
2
, 𝑔𝑠
3
, ⋯ , 𝑔𝑠

𝑞
) it’s hard to 

compute 

• 𝑔
1

𝑠
   (𝑞- Diffie-Hellman Inversion) 

•  𝑒(𝑔, 𝑔, )
1

𝑠
    (𝑞-Bilinear Diffie-Hellman Inversion) 

• (𝑐, 𝑔
1

𝑠+𝑐
  ) (𝑞-Strong Diffie-Hellman) 

• 𝑔𝑠
𝑞+𝑖

 for 1 ≤ 𝑖 ≤ 𝑞  
 (𝑞 + 𝑖 Diffie-Hellman Exponent) 

 

 



Assumptions 

 

• Proposition:  𝑞 − 𝐵𝐷𝐻𝐼 ⇒  𝑞 + 𝑖 − 𝐷𝐻𝐸 

 

• Our protocol is secure under 

• 𝑞 − 𝑆𝐷𝐻 

• 𝑞 − 𝐵𝐷𝐻𝐼 



Short Signatures w/o  
Random Oracle [BB04] 

• 𝑲𝒆𝒚𝑮𝒆𝒏(𝟏𝒌) 
1.  𝑥, 𝑦 ∈  𝑍𝑝 

2.  𝑢 = 𝑔𝑥 , 𝑣 = 𝑔𝑦 

3.  𝑝𝑘 = (𝑢, 𝑣), 𝑠𝑘 = (𝑥, 𝑦) 

4. return (𝑠𝑘, 𝑝𝑘) 

 

• 𝑺𝑺𝒊𝒈𝒏(𝒔𝒌,𝒎) 

1.  𝑟 ∈  𝑍𝑝 

2.  return 𝜎 = (𝑔
1

𝑥+𝑚+𝑦𝑟 , 𝑟)  =  (𝜎𝑟, 𝑟) 

 

• 𝑺𝑽𝒇(𝒑𝒌,𝒎, 𝝈) 

1. Check that  𝒆 𝝈𝒓, 𝒖𝒈
𝒎𝒗𝒓 = 𝑒(𝑔

1

𝑥+𝑚+𝑦𝑟, 𝑔𝑥+𝑚+𝑦𝑟)  =  𝒆(𝒈, 𝒈)  



Protocol 

Signature 

1 0 1 1 0 0 

35 = 100011 2 
Encrypted 
Signature = + 1 

2 

3 𝜋1 Each small box contains a bit. 

𝜋2 
The sequence of small boxes is the binary expansion 
of the secret inside the big box. 

4 1 0 1 1 0 0 0 0 0 1 1 1 

5 
Encrypted 
Signature + 35 = 100011 2 = Signature 



The Encrypted Signature 

• Computing 
 𝜃 ←  Z𝑝 

 𝐷 =  𝑔𝜃  

 𝝈 = (𝒈
𝜽

𝒙+𝒎+𝒚𝒓, 𝒓) 

 

• Checking 

 Given 𝐷, 𝜎, 𝑝𝑘,𝑚  parse 𝜎 and  pk  as 
 𝜎 = 𝜎𝜃 , 𝑟  

 𝑝𝑘 = (𝑔, 𝑢 = 𝑔𝑥, 𝑣 = 𝑔𝑦) 

 𝒆 𝝈𝜽, 𝒖𝒈
𝒎𝒗𝒓 = 𝑒(𝑔

𝜃

𝑥+𝑚+𝑦𝑟, 𝑔𝑥+𝑚+𝑦𝑟  ) = 𝒆(𝑫, 𝒈) 

 

Secret key / “blinding” factor 

Boneh-Boyen signature 
“blinded” by 𝜃  



Protocol 

Signature 

1 0 1 1 0 0 

35 = 100011 2 
Encrypted 
Signature = + 1 

2 

3 𝜋1 Each small box contains a bit. 

𝜋2 
The sequence of small boxes is the binary expansion 
of the secret inside the big box. 

4 1 0 1 1 0 0 0 0 0 1 1 1 

5 
Encrypted 
Signature + 35 = 100011 2 = Signature 



NIZK argument 1 

• 𝐶𝑅𝑆 = 𝑔, 𝑔𝑠, 𝑔𝑠
2
, 𝑔𝑠
3
, ⋯ , 𝑔𝑠

𝑞
= 𝑔0, 𝑔1, 𝑔2, 𝑔3, … , 𝑔𝑞  

• Statement 

Let 𝐶 = (𝐶1, 𝐶2, … , 𝐶𝑞)  

The prover knows 𝑟𝑖 , 𝑏𝑖 ∈  (𝑍𝑝× {0,1}) such that 𝑪𝒊 = 𝒈
𝒓𝒊𝒈𝒊
𝒃𝒊  

• Argument 

• 𝐴𝑖 = 𝑔𝑞−𝑖
𝑟𝑖  𝑔𝑞
𝑏𝑖    

• 𝐵𝑖 such that 𝑒(𝐴𝑖 , 𝐶𝑖𝑔𝑖
−1) = 𝑒(𝐵𝑖 , 𝑔) 

• Return (𝐴𝑖, 𝐵𝑖) for each 𝑖 ∈ [1. . 𝑞] 

• Verification 

• 𝑒(𝐴𝑖 , 𝑔) = 𝑒(𝐶𝑖 , 𝑔𝑞−𝑖) 

• 𝑒(𝐴𝑖 , 𝐶𝑖𝑔𝑖
−1) = 𝑒(𝐵𝑖, 𝑔) 

Shift 𝐶𝑖 by 𝑞 − 𝑖 
positions to the right. 

Force the product 
𝒃𝒊(𝒃𝒊 − 𝟏) to be 
computed in the 

exponent. 



NIZK argument 1 

• Theorem: 

The argument is perfectly complete, 
computationally sound under the 𝑞 + 𝑖 - DHE 
assumption and perfectly zero-knowledge. 

Proof (sketch).  

     𝑒 𝐴𝑖 , 𝐶𝑖𝑔𝑖
−1 = 𝑒(𝑔𝑞−𝑖 

𝑟𝑖 𝑔𝑞
𝑏𝑖  , 𝑔𝑟𝑖𝑔𝑖

𝑏𝑖−1)  

= 𝑒 𝑔𝑞−𝑖 
𝑟𝑖
2

𝑔𝑞
𝑟𝑖 2𝑏𝑖−1 𝒈𝒒+𝒊

𝒃𝒊 𝒃𝒊−𝟏  , 𝑔 = 𝑒(𝐵𝑖 , 𝑔)    

𝐵𝑖 
If 𝑏𝑖 ∉  {0,1},  the adversary breaks  

the 𝑞 + 𝑖 − DHE assumption. 



Protocol 

Signature 

1 0 1 1 0 0 

35 = 100011 2 
Encrypted 
Signature = + 1 

2 

3 𝜋1 Each small box contains a bit. 

𝜋2 
The sequence of small boxes is the binary expansion 
of the secret inside the big box. 

4 1 0 1 1 0 0 0 0 0 1 1 1 

5 
Encrypted 
Signature + 35 = 100011 2 = Signature 



NIZK argument 2 

• 𝐶𝑅𝑆 = 𝑔, 𝑔𝑠, 𝑔𝑠
2
, 𝑔𝑠
3
, ⋯ , 𝑔𝑠

𝑞
= 𝑔0, 𝑔1, 𝑔2, 𝑔3, … , 𝑔𝑞  

 

• We set 𝑞 = 𝜅 (security parameter) 

 

• Statement 

 The prover knows 𝑟𝑖 , 𝑏𝑖 ∈  (𝑍𝑝× {0,1})  and 𝜃   

such that 𝐶𝑖 = 𝑔
𝑟𝑖𝑔𝑖
𝑏𝑖 , 𝐷 = 𝑔𝜃 and 

 

𝜃 = 𝑏𝑖2
𝑖−1

𝜅

𝑖=1

 



NIZK argument 2 

• Verification: Input (𝐶𝑅𝑆, 𝐷, 𝐶1, … , 𝐶𝑘 , 𝜋) 

 

• Parse 𝜋 =  (𝑟′, 𝑈, 𝑉) 

 

• Check that 𝑒(
 𝐶𝑖
𝑘
𝑖=1

𝑔𝒓′
, 𝑔) = 𝑒(𝑈, 𝑔1) 

 

• Check that 𝑒(
𝑈

𝐷
, 𝑔) = 𝑒(𝑉, 𝑔1𝑔

−2) 

 

 𝐶𝑖

𝑘

𝑖=1

= 𝑔𝑟𝑖𝑔𝑖
𝑏𝑖

𝑘

𝑖=1

⇔ [𝒓′, 𝑏1, 𝑏2, … , 𝑏𝜅] 

 

𝑈 = ( 𝑔𝑖
𝑏𝑖) 

𝑘

𝑖=1

𝟏/𝒔

= 𝑔𝒊−𝟏
𝑏𝑖

𝑘

𝑖=1

⇔ [𝑏1, 𝑏2, … , 𝑏𝜅] 

𝑈 ⇔ 𝑃(𝑠)  (i.e. 𝑈 = 𝑔𝑃(𝑠) )   
𝑉 ⇔𝑊 𝑠       s.t.       𝑃 𝑠 − 𝑃(2) = 𝑊(𝑠)(𝑠 − 2) 

𝜃  

𝑟’ = 𝑟𝑖
𝑖

 



• Theorem: 

The argument is perfectly complete, 
computationally sound under the 𝑞 − 𝑆𝐷𝐻 
assumption and perfectly zero-knowledge. 

NIZK argument 2 



Protocol 

Signature 

1 0 1 1 0 0 

35 = 100011 2 
Encrypted 
Signature = + 1 

2 

3 𝜋1 Each small box contains a bit. 

𝜋2 
The sequence of small boxes is the binary expansion 
of the secret inside the big box. 

4 1 0 1 1 0 0 0 0 0 1 1 1 

5 
Encrypted 
Signature + 35 = 100011 2 = Signature 



Recovering the Signature 

• All the bits 𝑏𝑖  are revealed 

 

• Compute 𝜃 =   𝑏𝑖 2
𝑖−1𝜅

𝑖=1  

 

• We have 𝜎  =  𝑔
𝜃

𝑥+𝑚+𝑦𝑟, 𝑟 = (𝜎𝜃 , 𝑟) 

 

• Compute 𝝈 = (𝜎𝜃
𝟏/𝜽 , 𝒓) 



Proofs of Knowledge 

 

• Discrete logarithm 𝜃 of 

 𝐷 = 𝑔𝜃     

 

• 𝑟𝑖 , 𝑏𝑖 such that 

 𝐶𝑖 = 𝑔
𝑟𝑖𝑔𝑖
𝑏𝑖 

     

Needed in order to 
simulate the adversary 
despite it aborts early. 



Simultaneous  Hardness of Bits  
for Discrete Logarithm 

𝑙 = 𝜔( log 𝜅) 

An adversary cannot distinguish between a  
random sequence  of 𝜿 − 𝒍 bits 
and the first 𝜿 − 𝒍 bits of 𝜽  given  𝒈𝜽 . 

Holds in the generic group model 
[Schnorr98] 



Conclusion 

• Fair exchange protocol for short signatures 
[BB04] without TTP 

 

• Practical 

 

• Two new NIZK arguments 



Partial Fairness 

• A randomized protocol for signing contracts 
[EGL85] 

• Gradual release of a secret [BCDB87] 

• Practically and Provably secure release of a 
secret and exchange of signatures 
[Damgard95] 

• Resource Fairness and Composability of 
Cryptographic protocols [GMPY06] 

 

“Time-line” 
assumptions, 

Generic 
construction 

RSA, Rabin, 
ElGamal 

signatures 

Only contract 
signing 



• Theorem: 

The protocol is partially fair under the  
𝜅 − 𝑆𝐷𝐻 and the 𝜅 − 𝐵𝐷𝐻𝐼 assumption. 



Proof (Sketch) 

• Type I 

• Does not forge values but aborts «early» 

• => He has to break the signature scheme 

 

• Careful: 
What happens if A detects he is simulated? 

• The simulator will try to break the SHDL assumption 

• If few bits remain, it does not win, everything is OK! 

 

 



Proof (Sketch) 

 

• Type II 

 

• Forge values  

  

• The simulator can extract all values computed by 
adversary and break the soundness of the NIZK 
arguments or binding property of commitment 
scheme. 
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Attribute-based systems [SW05,GPSW06,MPR11]

Policies and credentials are labeled with attributes
Highly expressive, fine grained access policy
Non-interactive role based access control

Cheng Chen (ISCAS) CT-RSA 2013 2 / 23



Performance tradeoff

Efficiency: communication, computation costs
Security: adaptive vs selective, CPA vs CCA
Flexibility: expressiveness

Cheng Chen (ISCAS) CT-RSA 2013 3 / 23



Current status

Most existing ABE and ABS schemes have linear-size
ciphertexts and signatures.
Some recent proposals focused on reducing the
overhead, but achieved better efficiency at the expense
of weaker security.
None work achieve both adaptive security and
constant-size ciphertexts and signatures for a relatively
expressive access policy.

Cheng Chen (ISCAS) CT-RSA 2013 4 / 23



The motive of this work: full security and constant-size
overhead

Offer solutions that achieve both full security and constant-size ABE
ciphertexts or ABS signatures:

Give formal definitions and security models for predicate
encryption (PE) and predicate signatures (PS).
Propose a generic construction of attribute-based systems
supporting threshold access policies from inner-product systems.
The resulting attribute-based constructions preserve the properties
from underlying inner-product schemes.
Present concrete constructions of fully secure ABE/ABS with
constant-size ciphertexts/signatures from the IPE/IPS schemes
tailored to our needs.

Cheng Chen (ISCAS) CT-RSA 2013 5 / 23



Background: predicate encryption (PE)
Setup(1κ)→ (PP,Msk)

KeyGen(PP,Msk,X)→ skX

Enc(PP,Y,Msg)→ CTY

Dec(PP, skX,CT)→ Msg′

Dec(PP, skX,Enc(PP,Y,Msg)) = Msg ⇐⇒ R(X,Y) = 1

Cheng Chen (ISCAS) CT-RSA 2013 6 / 23



Security: ciphertext indistinguishability

Experiment Expind
PE(κ):

Y ←− A
b R←− {0, 1}

PP,MSK R←− Setup
(Msg0,Msg1,Y)

R←− AKeyGen(·)(PP)
CT R←− Enc(PP,Y,Msgb)

b′ ←− AKeyGen(·)(PP,CT)
If b = b′ and R(X,Y) 6= 1 return 1 else return 0

Cheng Chen (ISCAS) CT-RSA 2013 7 / 23



Variants of PE
There exist many public key primitives that can be viewed as special cases of
PE:

ABE: ciphertext-policy (CP) & key-policy (KP)

X :−→ S ⊆ {att1, . . . , attn}, Y :−→ φ, φ is an access structure

R(X,Y) =

{
1 if S ∈ φ
0 if S 6∈ φ

Inner-product encryption (IPE):

X :−→ ~v ∈ Zn
p, Y :−→ ~x ∈ Zn

p

R(X,Y) =

{
1 if 〈~v,~x〉 = 0
0 if 〈~v,~x〉 6= 0

Cheng Chen (ISCAS) CT-RSA 2013 8 / 23



Predicate signature (PS)
Setup(1κ)→ (PP,Msk)

KeyGen(PP,Msk,X)→ skX

Sign(PP,Y, skX,Msg)→ σ

Verify(PP, σ,Y)→ {0, 1}

Verify(PP, Sign(PP,KeyGen(PP,Msk,X),Msg),Y) = 1⇐⇒ R(X,Y) = 1
Cheng Chen (ISCAS) CT-RSA 2013 9 / 23



Security: unforgeability

Experiment Expunf
PS(κ):

Y ←− A
PP,MSK R←− Setup

(Msg,Y, σ) R←− AKeyGen(·),Sign(·)(PP)
If Verify(PP, σ, Y) = 1, R(X,Y) 6= 1
and (Msg,Y) has not been made as

signature queries return 1 else return 0

Cheng Chen (ISCAS) CT-RSA 2013 10 / 23



Security: perfect privacy

A predicate signature ensures the verifier only knows that the signer’s role can
satisfy the specified signing policy.

For any Msg, X1,X2 and Y such that R(X1,Y) = R(X2,Y) = 1, we have

Sign(PP,KeyGen(PP,MSK,X1), Y,Msg) ≡ Sign(PP,KeyGen(PP,MSK,X2), Y,Msg)

Cheng Chen (ISCAS) CT-RSA 2013 11 / 23



Variants of PS
There exist many signature primitives that can be viewed as special cases of
PS:

ABS:

X :−→ S ⊆ {att1, . . . , attn}, Y :−→ φ, φ is an access structure

R(X,Y) =

{
1 if S ∈ φ
0 if S 6∈ φ

Inner-product signature (IPS):

X :−→ ~v ∈ Zn
p, Y :−→ ~x ∈ Zn

p

R(X,Y) =

{
1 if 〈~v,~x〉 = 0
0 if 〈~v,~x〉 6= 0

Cheng Chen (ISCAS) CT-RSA 2013 12 / 23



Intuitions of generic constructions: exact threshold policy
[KSW08]

Express an attribute subset S as a vector~xS:

~xS := (

att1︷︸︸︷
b1 , . . . ,

atti︷︸︸︷
bi , . . .), for i = 1, 2, . . . bi =

{
1 if atti ∈ S
0 if atti 6∈ S

If S1 and S2 have t attributes overlap, we have

〈~xS1 ,~xS2〉 = t

Cheng Chen (ISCAS) CT-RSA 2013 13 / 23



Exact threshold policy from inner-product policy

Setup(κ,U): IPE.Setup(κ, n + 1)→ (PP,MSK);

Enc(PP,Γ := (Ω, t),Msg): IPE.Enc(PP, (t,~xΩ),M)→ CTΓ;

KeyGen(PP,MSK, S): IPE.KeyGen(PP,MSK, (−1,~xS))→ SKS;

Dec(PP,CTΓ,SKS): IPE.Dec(PP,CTΓ,SKS)→ Msg.

Correctness. 〈(−1,~xS), (t,~xΩ)〉 = 0 if |Ω ∩ S| = t.

Cheng Chen (ISCAS) CT-RSA 2013 14 / 23



Exact threshold to threshold: IPE to tKP-ABE
Introduce multiple IPE secret keys to achieve flexibility:

tKP.KeyGen(PP,Γ := (Ω, t),MSK) :

IPE.KeyGen(PP, (t,~xΩ),MSK)→ IPE.SK1

IPE.KeyGen(PP, (t + 1,~xΩ),MSK)→ IPE.SK2

IPE.KeyGen(PP, (t + 2,~xΩ),MSK)→ IPE.SK3

...

KP.SK(Ω,t) := {IPE.SKj}1≤j≤m−t+1

tKP.Enc(PP, S,Msg) :

IPE.Enc(PP, (−1,~xS),Msg)→ CT

Cheng Chen (ISCAS) CT-RSA 2013 15 / 23



Exact threshold to threshold: IPE to tCP-ABE

tCP.KeyGen(PP, S,MSK) :

IPE.KeyGen(PP, (1,~xS, 0),MSK)→ IPE.SK1

IPE.KeyGen(PP, (1,~xS,−1),MSK)→ IPE.SK2

IPE.KeyGen(PP, (1,~xS,−2),MSK)→ IPE.SK3

...

CP.SKS := {IPE.SKi}1≤i≤|S|−1

tCP.Enc(PP,Γ := (Ω, t),Msg) :

IPE.Enc(PP, (−t,~xΩ, 1),Msg)→ CT

Cheng Chen (ISCAS) CT-RSA 2013 16 / 23



Exact threshold to threshold: IPS to tABS

tABS.KeyGen(PP, S,MSK) :

IPS.KeyGen(PP, (1,~xS, 0),MSK)→ IPS.SK1

IPS.KeyGen(PP, (1,~xS,−1),MSK)→ IPS.SK2

IPS.KeyGen(PP, (1,~xS,−2),MSK)→ IPS.SK3

...

ABS.SKS := {IPS.SKi}1≤i≤|S|−1

tABS.Sign(PP,ABS.SKS,Γ := (Ω, t),Msg) :

IPS.Sign(PP, IPS.SKk−t+1, (−t,~xΩ, 1),Msg)→ σ

where IPS.SKk−t+1 ← IPS.KeyGen(PP, (−t,~xS, t − k),MSK)

k := |S ∩ Ω| ≥ t
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Concrete constructions of tABE and tABS

Basing the transformation from inner-product systems to attribute-based
systems supporting threshold access structures:

Properties-preserving:
I full security/selective security
I constant-size ciphertext/signature
I perfect privacy

Building blocks of IPE/IPS schemes tailored to our needs:
I IPE: [AL10], but too complicated.
I IPS: non-existent.
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The properties of underlying IPE & IPS

scheme group order based on size of CT or signature
[AL10] prime none constant
Our IPE composite [AL10] constant
Our IPS1 composite our IPE constant
Our IPS2 prime our IPE & DPVS constant
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Our IPE: fully secure IPE with constant-size ciphertexts in
composite order group

IPE.Setup(λ, n)→ (PP,MSK)

PP :=
(
I := (N = p1p2p3,G,GT , e), g,~h := (h0, . . . , hn), e(g, g)α

)
MSK := (α, X3 ).
IPE.KeyGen(PP,MSK,~v)→ IPE.SK~v := (K0,K1, . . . ,Kn)

K0 := gr · R0 , K1 := gαhr
0 · R1 ,

{
Ki :=

(
h
− vi

v1
1 hi

)r
· Ri

}
i=2,...,n

.

IPE.Enc(PP,~x,Msg)→ CT := (C,C0,C1)

C := Msg · e(g, g)αs, C0 := gs, C1 :=
(

h0

n∏
j=1

hxj
j

)s
.

IPE.Dec(PP,~x, IPE.SK~v,CT): The algorithm computes

Msg′ = C · e(C1,K0)

e(C0,K1
∏n

j=2 Kxj
j )
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The security of our IPE & IPS

Dual system proof [Wat09] is applied to obtain full
security.
Some composite order complexity assumptions are
introduced.
Our IPS scheme is prefectly private because the
distribution of the signature is the same.
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Comparisons

scheme security size of SK size of CT or Sig expressiveness Pai

CP-ABE

[EM+09] selective O(n) O(1) (n,n)-threshold 2
[CZF11] selective O(n) O(1) and-gate 2
[HLR10] selective O(n) O(1) threshold 3
[GZC11] selective O(n)2 O(1) threshold 3
[OT10] full O(n) O(n) general O(n)
Our CP-ABE full O(n)2 O(1) threshold 2

KP-ABE
[ABP11] selective O(n)2 O(1) general 3
[OT10] full O(n) O(n) general O(n)
Our KP-ABE full O(n)2 O(1) threshold 2

ABS

[HLLR12a] selective O(n) O(1) threshold 12
[HLLR12b] selective O(n)2 O(1) threshold 3
[OT11] full O(n) O(n) general O(n)
Our ABS full O(n)2 O(1) threshold 3
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Conclusion

We define the syntax and security notions of PE/PS.
We bridge a connection between inner-product systems
and attribute-based systems.
Our tABE/tABS schemes achieve both full security and
short ciphertexts/signatures.
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