Fair Exchange of Short Signatures without Trusted Third Party

Philippe Camacho
University of Chile

Digital Goods Economy

iTunes

Enforcing Secure Transactions through a Trusted Third Party (TTP)

amazon.com

Problems with TTP

Anonymous Claims To Have Hacked 28,000 PayPal Passwords For Guy Fawkes Day

```
The Huffington Post | By Cavan Sieczkowski \(\mathbb{K}^{3}\)
Posted: 11/05/2012 11:15 am EST Updated: 11/05/2012 1:01 pm EST
```


Problems with TTP

PayPal

Privacy Policy
Last Update: Jul 13, 2010

Jump to section:

How we collect information about you
How we use cookies
How we protect and store personal information
How we use the personal information we collect
Marketing
How we share personal information with other PayPal users
How we share personal information with other parties
How you can control our communications with you
How you can access or change your personal information
Binding Corporate Rules
How you can contact us about privacy questions

This policy describes the ways we collect, store, use and protect your personal information. You accept this policy and consent to such collection, storage and use when you sign up for or use our products, services or any other feature, technologies or functionalities offered by us on our website or through any other means (collectively "the PayPal Services"). We may amend this policy at any time by posting a revised version on our website. The revised version will be effective at the time we post it. In addition, if the revised version includes a substantial change, we will provide you with 30 days' prior notice by posting notice of the change on the "Policy Updates" page of our website. After this 30 days notice, you will be considered as having expressly consented to all amendments to this policy.

Fair Exchange in the

 Physical World is "easy"

Modeling Transactions with Digital Signatures

The problem: Who starts first? Impossibility Result [Cleve86]

Software License

Seller
Buyer

Gradual Release of a Secret

0

How do I know that the bit I received is not garbage?

Our Construction

- Fair Exchange of Digital Signatures
- Boneh-Boyen [BB04] Short Signatures
- No TTP
- Practical

Contributions

- Formal definition of Partial Fairness
- Efficiency

	$\boldsymbol{\kappa}$: Security Parameter	$\boldsymbol{\kappa}=\mathbf{1 6 0}$
\# Rounds	$\kappa+1$	161
Communication	$16 \kappa^{2}+12 \kappa$ bits	$\approx 52 \mathrm{kB}$
\# Crypto operations per participant	$\approx 30 \kappa$	≈ 4800

- First protocol for Boneh-Boyen signatures

Contributions

- NIZK argument to prove that a commitment encodes a bit vector.
- NIZK argument to prove a commitment to a bit vector is the binary expansion of the discrete logarithm θ of $D=g^{\theta}$.

Non-Interactive Zero-Knowledge Proofs

Prove something about the secret in the box without opening the box.

Abstract Protocol

Partial Fairness

$O_{\text {Sign }}\left(s k_{B},\right)$

$\left(s k_{B}, p k_{B}\right)$
$\frac{\operatorname{Pr}\left[\operatorname{SVf}\left(p k_{B}, m_{B}, \sigma_{A}\right)=\text { valid }\right]}{\operatorname{Pr}\left[\operatorname{SVf}\left(p k_{A}, m_{A}, \sigma_{B}\right)=\text { valid }\right]} \leq Q(\kappa)$

Bet according to partially released secret

Protocol

Bilinear maps

- $\left(p, e, G, G_{T}, g\right) \leftarrow \operatorname{BMGen}\left(1^{k}\right)$
- $|G|=\left|G_{T}\right|=p$
- $e: G \times G \rightarrow G_{T}$
- $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$
- $e(g, g)$ generates G_{T}

Assumptions

- Given $\left(g, g^{s}, g^{s^{2}}, g^{s^{3}}, \cdots, g^{s^{q}}\right)$ it's hard to compute
- $g^{\frac{1}{s}}$ (q - Diffie-Hellman Inversion)
- $e(g, g,)^{\frac{1}{s}}$ (q-Bilinear Diffie-Hellman Inversion)
- $\left(c, g^{\frac{1}{s+c}}\right)$ (q-Strong Diffie-Hellman)
- $g^{s^{q+i}}$ for $1 \leq i \leq q$
($q+i$ Diffie-Hellman Exponent)

Assumptions

- Proposition: $q-B D H I \Rightarrow q+i-D H E$
- Our protocol is secure under
- q-SDH
- q - BDHI

Short Signatures w/o Random Oracle [BBO4]

- KeyGen $\left(\mathbf{1}^{k}\right)$

1. $x, y \in Z_{p}$
2. $u=g^{x}, v=g^{y}$
3. $p k=(u, v), s k=(x, y)$
4. return $(s k, p k)$

- SSign(sk,m)

1. $r \in Z_{p}$
2. return $\sigma=\left(g^{\frac{1}{x+m+y r}}, r\right)=\left(\sigma_{r}, r\right)$

- $\quad \operatorname{SVf}(p k, m, \sigma)$

1. Check that $e\left(\sigma_{r}, u g^{m} v^{r}\right)=e\left(g^{\frac{1}{x+i+y r}}, g^{x+m+y r}\right)=e(g, g)$

Protocol

The Encrypted Signature

- Computing
- $\theta \leftarrow \mathrm{Z}_{p} \quad$ - $\left.\left.D=g^{\theta}\right\} \begin{array}{l}\text { Secret key / "blinding" factor } \text {. }\end{array}\right\} \begin{aligned} & \text {. }\end{aligned}$
- $\boldsymbol{\sigma}=\left(\boldsymbol{g}^{\frac{\theta}{x+m+y r}}, \boldsymbol{r}\right) \xrightarrow{\begin{array}{c}\text { Boneh-Boyen signature } \\ \text { "blinded" by } \theta\end{array}}$
- Checking
- Given ($D, \sigma, p k, m$) parse σ and $p k$ as
- $\sigma=\left(\sigma_{\theta}, r\right)$
- $\quad p k=\left(g, u=g^{x}, v=g^{y}\right)$
- $\boldsymbol{e}\left(\boldsymbol{\sigma}_{\theta}, \boldsymbol{u} \boldsymbol{g}^{m} v^{r}\right)=e\left(g^{\frac{\theta}{x+2+y r} r}, g^{x+m+y r}\right)=\boldsymbol{e}(\boldsymbol{D}, \boldsymbol{g})$

Protocol

NIZK argument 1

- $C R S=\left(g, g^{s}, g^{s^{2}}, g^{s^{3}}, \cdots, g^{s^{q}}\right)=\left(g_{0}, g_{1}, g_{2}, g_{3}, \ldots, g_{q}\right)$
- Statement

Let $C=\left(C_{1}, C_{2}, \ldots, C_{q}\right)$
The prover knows $\left(r_{i}, b_{i}\right) \in\left(Z_{p} \times\{0,1\}\right)$ such that $\boldsymbol{C}_{\boldsymbol{i}}=\boldsymbol{g}^{\boldsymbol{r}_{\boldsymbol{i}}} \boldsymbol{g}_{\boldsymbol{i}}^{\boldsymbol{b}_{\boldsymbol{i}}}$

- Argument
- $A_{i}=g_{q-i}^{r_{i}} g_{q}^{b_{i}}$

Shift C_{i} by $q-i$ positions to the right.

- B_{i} such that $e\left(A_{i}, C_{i} g_{i}^{-1}\right)=e\left(B_{i}, g\right)$
- Return $\left(A_{i}, B_{i}\right)$ for each $i \in[1 . . q]$
- Verification
- $e\left(A_{i}, g\right)=e\left(C_{i}, g_{q-i}\right)$
- $e\left(A_{i}, C_{i} g_{i}^{-1}\right)=e\left(B_{i}, g\right)$

NIZK argument 1

- Theorem:

The argument is perfectly complete, computationally sound under the $q+i$ - DHE assumption and perfectly zero-knowledge.

Proof (sketch).

$$
\begin{aligned}
& e\left(A_{i}, C_{i} g_{i}^{-1}\right)=e\left(g_{q-i}^{r_{i}} g_{q}^{b_{i}}, g^{r_{i}} g_{i}^{b_{i}-1}\right) \\
= & e(\underbrace{g_{q-i}^{r_{i}^{2}} g_{q}^{r_{i}\left(2 b_{i}-1\right)}}_{B_{i}} g_{\substack{\text { If } b_{i} \notin\{0,1\}, \text { the adversary breaks } \\
\text { the } q+i-\text { DHE assumption. }}}^{b_{i}\left(b_{i}-1\right)}, g)=e\left(B_{i}, g\right)
\end{aligned}
$$

Protocol

NIZK argument 2

- CRS $=\left(g, g^{s}, g^{s^{2}}, g^{s^{3}}, \cdots, g^{s^{q}}\right)=\left(g_{0}, g_{1}, g_{2}, g_{3}, \ldots, g_{q}\right)$
- We set $q=\kappa$ (security parameter)
- Statement
- The prover knows $\left(r_{i}, b_{i}\right) \in\left(Z_{p} \times\{0,1\}\right)$ and θ such that $C_{i}=g^{r_{i}} g_{i}^{b_{i}}, D=g^{\theta}$ and

$$
\theta=\sum_{i=1}^{\kappa} b_{i} 2^{i-1}
$$

NIZK argument 2

- Verification: Input (

$$
\prod_{i=1}^{k} C_{i}=\prod_{i=1}^{k} g^{r_{i}} g_{i}^{b_{i}} \Leftrightarrow\left[r^{\prime}, b_{1}, b_{2}, \ldots, b_{\kappa}\right]
$$

- Parse $\pi=\left(r^{\prime}, U, V\right)$

$$
U=\left(\prod_{i=1}^{k} g_{i}^{b_{i}}\right)^{1 / s}=\prod_{i=1}^{k} g_{i-1}^{b_{i}} \Leftrightarrow\left[b_{1}, b_{2}, \ldots, b_{k}\right]
$$

- Check that $e\left(\frac{\Pi_{i=1}^{k} c_{i}}{g^{r}{ }^{r}}, g\right)=e\left(U, g_{1}\right)$
- Check that $e\left(\frac{U}{D}, g\right)=e\left(V, g_{1} g^{-2}\right)$

$$
\begin{aligned}
& \left.U \Leftrightarrow P(s) \text { (i.e. } U=g^{P(s)}\right) \\
& V \Leftrightarrow W(s) \quad \text { s.t. } \quad P(s)-P(2)=W(s)(s-2)
\end{aligned}
$$

NIZK argument 2

- Theorem:

The argument is perfectly complete, computationally sound under the $q-S D H$ assumption and perfectly zero-knowledge.

Protocol

Recovering the Signature

- All the bits b_{i} are revealed
- Compute $\theta=\sum_{i=1}^{K} b_{i} 2^{i-1}$
- We have $\sigma=\left(g^{\frac{-0}{x+m+y r}}, r\right)=\left(\sigma_{\theta}, r\right)$
- Compute $\sigma=\left(\sigma_{\theta}{ }^{1 / \theta}, r\right)$

Proofs of Knowledge

- Discrete logarithm θ of
- $D=g^{\theta}$
- r_{i}, b_{i} such that
- $C_{i}=g^{r_{i}} g_{i}^{b_{i}}$

Simultaneous Hardness of Bits for Discrete Logarithm

Holds in the generic group model [Schnorr98]

An adversary cannot distinguish between a random sequence of $\boldsymbol{\kappa}-\boldsymbol{l}$ bits and the first $\boldsymbol{\kappa}-\boldsymbol{l}$ bits of $\boldsymbol{\theta}$ given $\boldsymbol{g}^{\boldsymbol{\theta}}$.

$$
\begin{gathered}
A d v^{S H D L}(\mathcal{A}, \kappa)=\left|\operatorname{Pr}\left[\begin{array}{c}
\theta \stackrel{R}{R} \mathbb{Z}_{p}: \\
1 \leftarrow \mathcal{A}\left(g^{\theta}, \theta[1 \ldots \kappa-l]\right)
\end{array}\right]-\operatorname{Pr}\left[\begin{array}{c}
\theta, \alpha \stackrel{R}{*} \mathbb{Z}_{p}: \\
1 \leftarrow \mathcal{A}\left(g^{\theta}, \alpha[1 \ldots \kappa-l]\right)
\end{array}\right]\right| \\
l=\omega(\log \kappa)
\end{gathered}
$$

Conclusion

- Fair exchange protocol for short signatures [BB04] without TTP
- Practical
- Two new NIZK arguments

Partial Fairness

Only contract signing

- A randomized protocol for signing contracts [EGL85]
- Gradual release of a secret [BCDB87]
- Practically and Provably secure release of a secret and exchange of signatures
[Damgard95]
- Resource Fairness and Composability of Cryptographic protocols [GMPY06]

- Theorem:

The protocol is partially fair under the $\kappa-S D H$ and the $\kappa-B D H I$ assumption.

Proof (Sketch)

- Type I
- Does not forge values but aborts «early»
- => He has to break the signature scheme
- Careful:

What happens if A detects he is simulated?

- The simulator will try to break the SHDL assumption
- If few bits remain, it does not win, everything is OK!

Proof (Sketch)

- Type II
- Forge values
- The simulator can extract all values computed by adversary and break the soundness of the NIZK arguments or binding property of commitment scheme.

Fully Secure Attribute-Based Systems with Short Ciphertexts/Signatures and Threshold Access Structures

Cheng Chen ${ }^{1}$ Jie Chen ${ }^{2}$ Hoonwei Lim ${ }^{2}$ Zhenfeng Zhang ${ }^{1}$ Dengguo Feng ${ }^{1}$ San Ling ${ }^{2}$ Huaxiong Wang ${ }^{2}$

${ }^{1}$ Institute of Software, Chinese Academy of Sciences, China
${ }^{2}$ Nanyang Technological University, Singapore

CT-RSA 2013

Attribute-based systems [SW05,GPSW06,MPR11]

- Policies and credentials are labeled with attributes
- Highly expressive, fine grained access policy
- Non-interactive role based access control

Performance tradeoff

- Efficiency: communication, computation costs
- Security: adaptive vs selective, CPA vs CCA
- Flexibility: expressiveness

Current status

- Most existing ABE and ABS schemes have linear-size ciphertexts and signatures.
- Some recent proposals focused on reducing the overhead, but achieved better efficiency at the expense of weaker security.
- None work achieve both adaptive security and constant-size ciphertexts and signatures for a relatively expressive access policy.

The motive of this work: full security and constant-size overhead

Offer solutions that achieve both full security and constant-size ABE ciphertexts or ABS signatures:

- Give formal definitions and security models for predicate encryption (PE) and predicate signatures (PS).
- Propose a generic construction of attribute-based systems supporting threshold access policies from inner-product systems.
- The resulting attribute-based constructions preserve the properties from underlying inner-product schemes.
- Present concrete constructions of fully secure ABE/ABS with constant-size ciphertexts/signatures from the IPE/IPS schemes tailored to our needs.

Background: predicate encryption (PE)

- $\operatorname{Setup}\left(1^{\kappa}\right) \rightarrow(P P, M s k)$

MSK 『
$\mathrm{PK} \mathrm{K}_{\mathrm{JN}}(\mathrm{O}$

- $\operatorname{KeyGen}(P P, M s k, X) \rightarrow s k_{X}$

- $\operatorname{Enc}(P P, Y, M s g) \rightarrow C T_{Y}$

- $\operatorname{Dec}\left(P P, s k_{X}, C T\right) \rightarrow M s g^{\prime}$

$\operatorname{Dec}\left(P P, s k_{X}, \operatorname{Enc}(P P, Y, M s g)\right)=M s g \quad \Longleftrightarrow \quad R(X, Y)=1$

Security: ciphertext indistinguishability

Experiment $\operatorname{Exp}_{\mathcal{P} \mathcal{E}}^{\text {ind }}(\kappa)$:
 $Y \longleftarrow \mathcal{A}$
 $b \stackrel{R}{\longleftarrow}\{0,1\}$
 PP, MSK $\stackrel{R}{\leftarrow}$ Setup

$$
\begin{gathered}
\left(M s g_{0}, M s g_{1}, Y\right) \stackrel{R}{\longleftarrow} \mathcal{A}^{\text {KeyGen }(\cdot)}(\mathrm{PP}) \\
\mathrm{CT} \stackrel{R}{\longleftarrow} \operatorname{Enc}\left(\mathrm{PP}, Y, M s g_{b}\right) \\
b^{\prime} \longleftarrow \mathcal{A}^{\text {KeyGen(.) }}(\mathrm{PP}, \mathrm{CT})
\end{gathered}
$$

If $b=b^{\prime}$ and $R(X, Y) \neq 1$ return 1 else return 0

Variants of PE

There exist many public key primitives that can be viewed as special cases of PE:

- ABE: ciphertext-policy (CP) \& key-policy (KP)

$$
\begin{gathered}
X: \longrightarrow S \subseteq\left\{\text { att }_{1}, \ldots, \text { att }_{n}\right\}, \quad Y: \longrightarrow \phi, \phi \text { is an access structure } \\
R(X, Y)=\left\{\begin{array}{lll}
1 & \text { if } & S \in \phi \\
0 & \text { if } & S \notin \phi
\end{array}\right.
\end{gathered}
$$

- Inner-product encryption (IPE):

$$
\begin{aligned}
& X: \longrightarrow \vec{v} \in \mathbb{Z}_{p}^{n}, \quad Y: \longrightarrow \vec{x} \in \mathbb{Z}_{p}^{n} \\
& R(X, Y)=\left\{\begin{array}{lll}
1 & \text { if } & \langle\vec{v}, \vec{x}\rangle=0 \\
0 & \text { if } & \langle\vec{v}, \vec{x}\rangle \neq 0
\end{array}\right.
\end{aligned}
$$

Predicate signature (PS)

- $\operatorname{Setup}\left(1^{\kappa}\right) \rightarrow(P P, M s k)$

MSK \longmapsto

- $\operatorname{KeyGen}(P P, M s k, X) \rightarrow s k_{X}$

- $\operatorname{Sign}\left(P P, Y, s k_{X}, M s g\right) \rightarrow \sigma$

- Verify $(P P, \sigma, Y) \rightarrow\{0,1\}$

$\operatorname{Verify}(P P, \operatorname{Sign}(P P, \operatorname{KeyGen}(P P, M s k, X), M s g), Y)=1 \Longleftrightarrow R(X, Y)=1$

Security: unforgeability

$$
\begin{gathered}
\text { Experiment } \operatorname{Exp}_{\mathcal{P S}}^{\text {unf }}(\kappa): \\
Y \longleftarrow \mathcal{A} \\
\mathrm{PP}, \mathrm{MSK}{ }^{R} \operatorname{Setup} \\
(M s g, Y, \sigma) \longleftarrow R \mathcal{A}^{\operatorname{KeyGen}(\cdot), \operatorname{Sign}(\cdot)}(\mathrm{PP}) \\
\text { If Verify }(P P, \sigma, Y)=1, R(X, Y) \neq 1 \\
\text { and }(M s g, Y) \text { has not been made as } \\
\text { signature queries return } 1 \text { else return } 0
\end{gathered}
$$

Security: perfect privacy

A predicate signature ensures the verifier only knows that the signer's role can satisfy the specified signing policy.

For any Msg, X_{1}, X_{2} and Y such that $R\left(X_{1}, Y\right)=R\left(X_{2}, Y\right)=1$, we have
$\operatorname{Sign}\left(\mathrm{PP}, \operatorname{KeyGen}\left(\mathrm{PP}, \mathrm{MSK}, X_{1}\right), Y, M s g\right) \equiv \operatorname{Sign}\left(\mathrm{PP}, \operatorname{KeyGen}\left(\mathrm{PP}, \mathrm{MSK}, X_{2}\right), Y, M s g\right)$

Variants of PS

There exist many signature primitives that can be viewed as special cases of PS:

- ABS:

$$
\begin{gathered}
X: \longrightarrow S \subseteq\left\{\text { att }_{1}, \ldots, \text { att }_{n}\right\}, \quad Y: \longrightarrow \phi, \phi \text { is an access structure } \\
R(X, Y)=\left\{\begin{array}{lll}
1 & \text { if } & S \in \phi \\
0 & \text { if } & S \notin \phi
\end{array}\right.
\end{gathered}
$$

- Inner-product signature (IPS):

$$
\begin{aligned}
& X: \longrightarrow \vec{v} \in \mathbb{Z}_{p}^{n}, \quad Y: \longrightarrow \vec{x} \in \mathbb{Z}_{p}^{n} \\
& R(X, Y)=\left\{\begin{array}{lll}
1 & \text { if } & \langle\vec{v}, \vec{x}\rangle=0 \\
0 & \text { if } & \langle\vec{v}, \vec{x}\rangle \neq 0
\end{array}\right.
\end{aligned}
$$

Intuitions of generic constructions: exact threshold policy [KSW08]

Express an attribute subset S as a vector \vec{x}_{S} :

$$
\vec{x}_{S}:=(\overbrace{b_{1}}^{a t t_{1}}, \ldots, \overbrace{b_{i}}^{a t t_{i}}, \ldots), \quad \text { for } \quad i=1,2, \ldots \quad b_{i}=\left\{\begin{array}{lll}
1 & \text { if } & a t t_{i} \in S \\
0 & \text { if } & a t t_{i} \notin S
\end{array}\right.
$$

If S_{1} and S_{2} have t attributes overlap, we have

$$
\left\langle\vec{x}_{S_{1}}, \vec{x}_{S_{2}}\right\rangle=t
$$

Exact threshold policy from inner-product policy

- $\operatorname{Setup}(\kappa, \mathrm{U}): \operatorname{IPE} . \operatorname{Setup}(\kappa, n+1) \rightarrow(\mathrm{PP}, \mathrm{MSK})$;
- $\operatorname{Enc}(\mathrm{PP}, \Gamma:=(\Omega, t), M s g)$: IPE.Enc $\left(\mathrm{PP},\left(t, \vec{x}_{\Omega}\right), M\right) \rightarrow \mathrm{CT}_{\Gamma}$;
- KeyGen(PP, MSK, S): IPE.KeyGen $\left(\mathrm{PP}, \mathrm{MSK},\left(-1, \vec{x}_{S}\right)\right) \rightarrow \mathrm{SK}_{S}$;
- $\operatorname{Dec}\left(\mathrm{PP}, \mathrm{CT}_{\Gamma}, \mathrm{SK}_{S}\right):$ IPE.Dec $\left(\mathrm{PP}, \mathrm{CT}_{\Gamma}, \mathrm{SK}_{S}\right) \rightarrow M s g$.

Correctness. $\left\langle\left(-1, \vec{x}_{S}\right),\left(t, \vec{x}_{\Omega}\right)\right\rangle=0$ if $|\Omega \cap S|=t$.

Exact threshold to threshold: IPE to tKP-ABE
Introduce multiple IPE secret keys to achieve flexibility:

```
tKP.KeyGen(PP, }\Gamma:=(\Omega,t),MSK) :
    IPE.KeyGen(PP, (t, \mp@subsup{\vec{x}}{\Omega}{}),MSK) }->\mathrm{ IPE.SKK 
    IPE.KeyGen(PP, (t+1, 脐),MSK) }->\mathrm{ IPE.SK
    IPE.KeyGen(PP, (t+2, 苃),MSK) }->\mathrm{ IPE.SK 
    KP.SK
tKP.Enc(PP, S,Msg) :
    IPE.Enc(PP, (-1, \vec{x}
```

Exact threshold to threshold: IPE to tCP-ABE
tCP.KeyGen(PP, S, MSK) :
IPE.KeyGen(PP, $\left(1, \vec{x}_{S}, 0\right)$, MSK $) \rightarrow$ IPE.SK ${ }_{1}$
IPE.KeyGen (PP, $\left(1, \vec{x}_{S},-1\right)$, MSK $) \rightarrow$ IPE. SK $_{2}$
IPE.KeyGen (PP, $\left(1, \vec{x}_{S},-2\right)$, MSK $) \rightarrow$ IPE.SK 3

CP.SK $_{S}:=\left\{\text { IPE.SK }_{i}\right\}_{1 \leq i \leq|S|-1}$
tCP.Enc $(P \mathrm{P}, \Gamma:=(\Omega, t), M s g):$
IPE.Enc $\left(\mathrm{PP},\left(-t, \vec{x}_{\Omega}, 1\right), M s g\right) \rightarrow$ CT

Exact threshold to threshold: IPS to tABS

tABS.KeyGen(PP, S, MSK) :
IPS.KeyGen(PP, $\left(1, \vec{x}_{S}, 0\right)$, MSK $) \rightarrow$ IPS.SK ${ }_{1}$
IPS.KeyGen(PP, $\left(1, \vec{x}_{S},-1\right)$, MSK $) \rightarrow$ IPS.SK 2 IPS.KeyGen(PP, $\left(1, \vec{x}_{S},-2\right)$, MSK $) \rightarrow$ IPS.SK 3
$\mathrm{ABS}^{\mathrm{SK}}{ }_{S}:=\left\{\mathrm{IPS}_{\mathrm{SK}}^{i}\right\}_{1 \leq i \leq|S|-1}$
tABS.Sign(PP, $\left.\mathrm{ABS}^{\mathrm{SBK}}{ }_{S}, \Gamma:=(\Omega, t), M s g\right):$
IPS.Sign(PP, IPS.SK $\left.k-t+1,\left(-t, \vec{x}_{\Omega}, 1\right), M s g\right) \rightarrow \sigma$
where IPS. $\mathrm{SK}_{k-t+1} \leftarrow \mathrm{IPS}$.KeyGen(PP, $\left(-t, \vec{x}_{S}, t-k\right)$, MSK $)$ $k:=|S \cap \Omega| \geq t$

Concrete constructions of $t \mathrm{ABE}$ and tABS

Basing the transformation from inner-product systems to attribute-based systems supporting threshold access structures:

- Properties-preserving:
- full security/selective security
- constant-size ciphertext/signature
- perfect privacy
- Building blocks of IPE/IPS schemes tailored to our needs:
- IPE: [AL10], but too complicated.
- IPS: non-existent.

The properties of underlying IPE \& IPS

scheme	group order	based on	size of CT or signature
[AL10]	prime	none	constant
Our IPE	composite	[AL10]	constant
Our IPS1	composite	our IPE	constant
Our IPS2	prime	our IPE \& DPVS	constant

Our IPE: fully secure IPE with constant-size ciphertexts in composite order group

- IPE.Setup $(\lambda, n) \rightarrow(\mathrm{PP}, \mathrm{MSK})$
$\mathrm{PP}:=\left(\mathcal{I}:=\left(N=p_{1} p_{2} p_{3}, G, G_{T}, e\right), g, \vec{h}:=\left(h_{0}, \ldots, h_{n}\right), e(g, g)^{\alpha}\right)$
MSK $:=\left(\alpha, \widehat{X_{3}}\right)$.
- IPE.KeyGen(PP, MSK, $\vec{v}) \rightarrow$ IPE.SK $\vec{v}:=\left(K_{0}, K_{1}, \ldots, K_{n}\right)$

$$
K_{0}:=g^{r} \cdot \boxed{R_{0}}, \quad K_{1}:=g^{\alpha} h_{0}^{r} \cdot \boxed{R_{1}}, \quad\left\{K_{i}:=\left(h_{1}^{-\frac{v_{i}}{v_{1}}} h_{i}\right)^{r} \cdot \boxed{R_{i}}\right\}_{i=2, \ldots, n} .
$$

- IPE.Enc $(\mathrm{PP}, \vec{x}, M s g) \rightarrow \mathrm{CT}:=\left(C, C_{0}, C_{1}\right)$

$$
C:=M s g \cdot e(g, g)^{\alpha s}, \quad C_{0}:=g^{s}, \quad C_{1}:=\left(h_{0} \prod_{j=1}^{n} h_{j}^{x_{j}}\right)^{s} .
$$

- IPE.Dec(PP, \vec{x}, IPE. SK $\left._{\vec{v}}, \mathrm{CT}\right)$: The algorithm computes

$$
M s g^{\prime}=C \cdot \frac{e\left(C_{1}, K_{0}\right)}{e\left(C_{0}, K_{1} \prod_{j=2}^{n} K_{j}^{x_{j}}\right)}
$$

- Dual system proof [Wat09] is applied to obtain full security.
- Some composite order complexity assumptions are introduced.
- Our IPS scheme is prefectly private because the distribution of the signature is the same.

Comparisons

	scheme	security	size of SK	size of CT or Sig	expressiveness	Pai
CP-ABE	[EM+09]	selective	$\mathcal{O}(n)$	$\mathcal{O}(1)$	(n, n)-threshold	2
	[CZF11]	selective	$\mathcal{O}(n)$	$\mathcal{O}(1)$	and-gate	2
	[HLR10]	selective	$\mathcal{O}(n)$	$\mathcal{O}(1)$	threshold	3
	[GZC11]	selective	$\mathcal{O}(n){ }^{2}$	$\mathcal{O}(1)$	threshold	3
	[OT10]	full	$\mathcal{O}(n)$	$\mathcal{O}(n)$	general	$\mathcal{O}(n)$
	Our CP-ABE	full	$\mathcal{O}(n)^{2}$	$\mathcal{O}(1)$	threshold	2
KP-ABE	[ABP11]	selective	$\mathcal{O}(n){ }^{2}$	$\mathcal{O}(1)$	general	3
	[OT10]	full	$\mathcal{O}(n)$	$\mathcal{O}(n)$	general	$\mathcal{O}(n)$
	Our KP-ABE	full	$\mathcal{O}(n)^{2}$	$\mathcal{O}(1)$	threshold	2
ABS	[HLLR12a]	selective	$\mathcal{O}(n)$	$\mathcal{O}(1)$	threshold	12
	[HLLR12b]	selective	$\mathcal{O}(n)^{2}$	$\mathcal{O}(1)$	threshold	3
	[OT11]	full	$\mathcal{O}(n)$	$\mathcal{O}(n)$	general	$\mathcal{O}(n)$
	Our ABS	full	$\mathcal{O}(n){ }^{2}$	$\mathcal{O}(1)$	threshold	3

Conclusion

- We define the syntax and security notions of PE/PS.
- We bridge a connection between inner-product systems and attribute-based systems.
- Our tABE/tABS schemes achieve both full security and short ciphertexts/signatures.

