The k-BDH Assumption Family: Bilinear Cryptography from **Progressively Weaker** Assumptions

Karyn Benson (UCSD)

Hovav Shacham (UCSD)

Brent Waters (UT-Austin

Provable Security

How to show your cryptosystem is secure:

What if the Assumption is False?

Cannot reason about security

Adversary can use the attack on assumption to break cryptosystem

How to Pick a Good Assumption?

Increase the size of parameters

- e.g., RSA assumes factoring a large number into 2 primes is hard
- ▶ Factor: 77, 3869, 702619, ...

- Use a family of assumptions
 - As you increase a parameter k you become more confident in the security of the assumption
 - Example: k-Linear [HK07, Sha07]

- An assumption A_{k+1} is weaker than assumption A_k , if
 - ▶ If A_k holds then so does A_{k+1} (Breaking A_{k+1} also breaks A_k)
- ▶ The assumption, A_{k+1} , is strictly weaker than assumption, A_k , if
 - $\blacktriangleright A_{k+1}$ is weaker than A_k
 - > And an oracle for A_k does not help break A_{k+1}

DDH Assumption

No polynomial time algorithm can achieve non-negligible advantage deciding

Bilinear Maps

- $\blacktriangleright e: G \times G \rightarrow G_T$
 - ► Bilinear: $e(g^a, g^b) = e(g, g)^{ab}$ for all $a, b \in Z_p$
 - ▶ Non-Degenerate: If g generates G, then $e(g,g) \neq 1$
 - Computable: e is efficiently computable on all input
- DDH does not hold for groups in which bilinear maps can be computed
 - $\triangleright < g, g^{a}, g^{b}, T \stackrel{?}{=} g^{ab} >$
 - $\blacktriangleright \boldsymbol{e}(g^{a},g^{b}) \stackrel{?}{=} \boldsymbol{e}(g,T)$

DBDH Assumption

How can we use DDH in bilinear groups?

• Given < $g, g^a, g^b, g^c, T >$

For some $g, g^a, g^b, g^c \in G$ and $T \in G_T$

Does $T \stackrel{?}{=} \boldsymbol{e}(g,g)^{abc}$

- Hard to compute discrete log: in G and G_T
 - Bilinear maps have 2 inputs
 - Can't undo a bilinear map

No polynomial time algorithm can achieve non-negligible advantage deciding

Decision Linear (DLIN) Assumption

How can we use DDH in settings where bilinear maps exist?

No polynomial time algorithm can achieve non-negligible advantage deciding, even in generic bilinear groups [BBS04]

Only a decisional problem - computationally same as DDH

k-Linear Family of Assumptions

- k-Linear generalizes the Linear Assumption
 - ► 1-Linear is DDH
 - 2-Linear is Linear Assumption
- For $k \ge 1$ Given $< g, g^{s_1}, ..., g^{s_k}, g^{s_1r_1}, ..., g^{s_kr_k}, T >$

►
$$g, g^{s_1}, \dots, g^{s_k}, g^{s_1r_1}, \dots, g^{s_kr_k}, T \in C$$

- **Does** $T \stackrel{?}{=} g^{r_1 + \dots + r_k}$
- No polynomial time algorithm can achieve non-negligible advantage deciding

This is like k DDH

problems

Only a decisional problem - computationally same as DDH

How are DLIN and DBDH Related?

▶ If DLIN holds, then so does DBDH

$$< g, g^{s_1}, g^{s_2}, g^{s_1r_1}, g^{s_2r_2}, T \stackrel{?}{=} g^{r_1+r_2} >$$

DLIN Instance

$$< g, g^{s_1}, g^{s_2}, T \stackrel{?}{=} g^{r_1 + r_2}, \boldsymbol{e}(g^{s_1 r_1}, g^{s_2}) \cdot \boldsymbol{e}(g^{s_2 r_2}, g^{s_1}) > = < g, g^{s_1}, g^{s_2}, T \stackrel{?}{=} g^{r_1 + r_2}, \boldsymbol{e}(g, g)^{(s_1 s_2)(r_1 + r_2)} >$$

DBDH Decider

Can extend DBDH to a Family of Assumptions?

Failed Attempt

 $\blacktriangleright \text{ Given } g, g^a, g^b, g^{s_1}, \dots, g^{s_k}, g^{s_1r_1}, \dots, g^{s_kr_k} \epsilon \text{ and } T \epsilon G_T$

Does $T \stackrel{?}{=} \prod_i e(g, g^{s_i})^{abr_i} = \prod_i e(g, g)^{abs_i r_i} = e(g, g)^{ab(s_1 r_1 + \dots + s_k r_k)}$

Embeds k DBDH instances: (g, g^a, g^b, g<sup>s_ir_i), e(g, g)^{ab(s_ir_i)}
... But is equivalent to DBDH: (g, g^a, g^b, \$\Pi_i g^{s_i r_i}\$) = g^{(s_1 r_1 + \dots + s_k r_k)}, T \frac{2}{2} \Pi_i e(g, g)^{abs_i r_i}\$)
</sup>

k-BDH Assumption

 $\blacktriangleright \text{ Given } g, g^a, g^b, g^{s_1}, \dots, g^{s_k}, g^{s_1r_1}, \dots, g^{s_kr_k} \in G \text{ and } T \in G_T$

> Does
$$T_{=}^{?} \prod_{i} e(g,g)^{abr_{i}} = \prod_{i} e(g^{s_{i}}, g^{s_{i}})^{(a/s_{i})(b/s_{i})r_{i}} = e(g,g)^{ab(r_{1}+\cdots+r_{k})}$$

Embeds k DBDH instances: (g^{si}, g^a, g^b, g<sup>si^ri</sub>, e(g^{si}, g^{si})^{(a/si)(b/si)ri})
 ... And is a family of strictly weaker assumptions!
</sup>

A Family of Weaker Assumptions

▶ If the *k*-BDH assumption holds, so does the (*k*+1)-BDH assumption

$$g, g^{x}, g^{y}, v_{1}, \dots, v_{k}, v_{1}^{r_{1}}, \dots, v_{k}^{r_{k}}, T \stackrel{?}{=} \prod_{1 \le i \le k} e(g, g)^{xyr_{i}}$$

k-BDH Instance

$$< g, g^{x}, g^{y}, v_{1}, ..., v_{k+1}, v_{1}^{r_{1}}, ..., v_{k+1}^{r_{k+1}},$$

 $T \cdot e(g^{x}, g^{y})^{r_{k+1}} \stackrel{?}{=} \prod e(g, g)^{xyr_{i}} >$

$$e(g^{k}, g^{j}) \stackrel{k+1}{=} \prod_{1 \le i \le k+1} e(g, g)$$

(k+1)-BDH Decider

Evidence of a Family of Strictly Weaker Assumptions

- ► An oracle for *k*-BDH does not help in deciding a (*k*+1)-BDH instance
- Similar to the separation proof of k-Linear [Sha07]
- Generic Group Model [BS84,Nechaev94,Shoup97]
 - Interact with adversary using an idealized version of groups
 - Bound the probability of finding an inconsistency if actual groups were used

Oracle to k-BDH is implemented as a modified k-multilinear map

 \blacktriangleright maps k elements in G and one element G_T to an element group G_M

Application: IBE

Fits in the Boneh-Boyen Framework Base switching techniques needed

- Setup:
 - Public parameters: $g, u = g^x, v_1 = g^{s_1}, \dots, v_k = g^{s_k}, v_1^{\hat{r}_1}, \dots, v_k^{\hat{r}_k}, w_1, \dots, w_k$
 - Master key: $s_1, ..., s_k, \hat{r}_1, ..., \hat{r}_k, x$
- KeyGen(ID):
 - Select random $n_1, \dots, n_k \in Z_p^*$
 - For each $1 \le i \le k$ output $(K_{A,i}, K_{B,i}) = (g^{x\hat{r}_i} (w_i u^{\text{ID}})^{n_i}, v_i^{n_i})$
- Encrypt (m, ID):
 - Select random $y_1, \dots, y_k \in Z_p^*$
 - Output $C_0 = m \prod_{1 \le i \le k} \boldsymbol{e} (g^x, v_i^{\hat{r}_i})^{y_i}$
 - For each $1 \le i \le k$ output $(C_{A,i}, C_{B,i}) = (v_i^{yi}, (w_i u^{\text{ID}})^{y_i})$
- Decrypt(c):

$$\frac{C_0 \cdot \prod_{1 \le i \le k} e(K_{B,i}, C_{B,i})}{\prod_{1 \le i \le k} e(K_{A,i}, C_{A,i})} = \frac{m \prod_{1 \le i \le k} e(g^x, v_i^{\hat{r}_i})^{y_i} \cdot \prod_{1 \le i \le k} e(v_i^{n_i}, (w_i u^{\text{ID}})^{y_i})}{\prod_{1 \le i \le k} e(g^{x\hat{r}_i} (w_i u^{\text{ID}})^{n_i}, v_i^{y_i})} = m$$

Conclusions

- ► Goal: Introduction the *k*-BDH Family of Assumptions
 - Relationship to standard assumptions (DDH, k-Linear, DBDH)
- It is a family of strictly weaker assumptions
- Usable: We construct an IBE in the Boneh-Boyen Framework
- Future Work
 - ▶ IBE construction grows with *k* (public parameters, keys, encryption)
 - Different applications
- http://eprint.iacr.org/2012/687

Security in knowledge

Efficient Delegation of Key Generation and Revocation Functionalities in Identity-Based Encryption

Jae Hong Seo

Myongji University, Republic of Korea

RSACONFERENCE2013

Session ID: CRYP-F41 Session Classification: Intermediate

Identity Based Encryption

Revocation Functionality in Identity-Based Encryption

Sender

user1

Trivial Approach for Revocation Functionality in IBE

Trivial Approach for Revocation Functionality in IBE

Trivial Approach for Revocation Functionality in IBE

Our Goal: Delegation of KGC's Roles (Key Generation & Revocation)

Our Goal: Delegation of KGC's Roles (Key Generation & Revocation)

Outline

- Previous Approaches
 - Revocable Symmetric Key Encryption: Broadcast Encryption
 - Revocable Identity-Based Encryption
- Trivial Approach Exponentially large secret key
- Our Approach Asymmetric trade
- Further Study

We consider a binary tree kept by KGC

If u_3 , u_4 , and u_6 are revoked, first compute triangles containing only non-revoked users.

Trivial Approach for Our Goal

ABC, Science, Math, Prof. Emura

ABC, Science, Math, prof. Emura

No!

Approach

The parent (Science) has log N size secret key and one subkey is used for each time period.

A child (Math) does not know which subkey will be used for each time period.

Therefore, children should have (logN)² subkeys.

n-th level user has (logN)ⁿ size secret keys

Our Approach – Asymmetric Trade

Our Approach – Asymmetric Trade

Our Result

- We propose the first practical RHIBE scheme
 - Our scheme is based on Boneh-Boyen HIBE scheme
 - The size of secret key is O(l²log N), where I is user's level.
 - We proved that the proposed scheme satisfies a weaker security notion such as *selective* security notion.

Further Study

- Fully secure RHIBE
- Different revocation method, such as Subset Difference
- Revocation methodology in functional encryption

Security in knowledge