The k-BDH Assumption Family: Bilinear Cryptography from Progressively Weaker Assumptions

Karyn Benson (UCSD)
Hovav Shacham (UCSD)
Brent Waters (UT-Austin)

CT-RSA 2013

Provable Security

How to show your cryptosystem is secure:

What if the Assumption is False?

- Cannot reason about security
- Adversary can use the attack on assumption to break cryptosystem

How to Pick a Good Assumption?

- Increase the size of parameters
- e.g., RSA assumes factoring a large number into 2 primes is hard
- Factor: 77, 3869, 702619, ...

- Use a family of assumptions
- As you increase a parameter k you become more confident in the security of the assumption
- Example: k-Linear [HK07, Sha07]

Family of Strictly Weaker Assumptigns

- An assumption A_{k+1} is weaker than assumption A_{k}, if
- If A_{k} holds then so does A_{k+1} (Breaking A_{k+1} also breaks A_{k})
- The assumption, A_{k+1}, is strictly weaker than assumption, A_{k}, if
- A_{k+1} is weaker than A_{k}
- And an oracle for A_{k} does not help break A_{k+1}

DDH Assumption

- Given $<g, g^{a}, g^{b}, T>$
- For some $g, g^{a}, g^{b}, T \in G$

It is hard to compute a discrete log in a finite cyclic group G

- Does $T \stackrel{?}{=} g^{a b}$
- No polynomial time algorithm can achieve non-negligible advantage deciding

Bilinear Maps

>e: $G \times G \rightarrow G_{T}$

- Bilinear: $\boldsymbol{e}\left(g^{a}, g^{b}\right)=\boldsymbol{e}(g, g)^{a b}$ for all $a, b \in Z_{p}$
- Non-Degenerate: If g generates G, then $\boldsymbol{e}(g, g) \neq 1$
- Computable: \boldsymbol{e} is efficiently computable on all input
- DDH does not hold for groups in which bilinear maps can be computed
- $<g, g^{a}, g^{b}, T^{?}{ }^{=} g^{a b}>$
- $\boldsymbol{e}\left(g^{a}, g^{b}\right) \stackrel{?}{=} \boldsymbol{e}(g, T)$

DBDH Assumption

- How can we use DDH in bilinear groups?
- Given $<g, g^{a}, g^{b}, g^{c}, T>$
- For some $g, g^{a}, g^{b}, g^{c} \in G$ and $T \in G_{T}$
- Does $T \stackrel{?}{=} \boldsymbol{e}(g, g)^{a b c}$
- Hard to compute discrete log: in G and G_{T}
- Bilinear maps have 2 inputs
- Can't undo a bilinear map
- No polynomial time algorithm can achieve non-negligible advantage deciding

Decision Linear (DLIN) Assumption

- How can we use DDH in settings where bilinear maps exist?
- Given $<g, g^{s_{1}}, g^{s_{2}}, g^{s_{1} r_{1}}, g^{s_{2} r_{2}}, T>$
- $g, g^{s_{1}}, g^{s_{2}}, g^{s_{1} r_{1}}, g^{s_{2} r_{2}}, T \in G$
- Does $T \stackrel{?}{=} g^{r_{1}+r_{2}}$

This is like 2 DDH

- It is hard to compute discrete logs
- Bilinear maps only pair 2 elements

$$
\left(\operatorname{not} 3: g^{s_{1}}, g^{s_{2}}, g^{r_{1}+r_{2}}\right)
$$

> problems:

$$
g, g^{s_{1}}, g^{r_{1}}, g^{s_{1} r_{1}}
$$

- No polynomial time algorithm can achieve non-negligible advantage deciding, even in generic bilinear groups [BBS04]
- Only a decisional problem - computationally same as DDH

k-Linear Family of Assumptions

- k-Linear generalizes the Linear Assumption
- 1-Linear is DDH
- 2-Linear is Linear Assumption
- For $k \geq 1$ Given $<g, g^{s_{1}}, \ldots, g^{s_{k}}, g^{s_{1} r_{1}}, \ldots, g^{s_{k} r_{k}}, T>$
- $g, g^{s_{1}}, \ldots, g^{s_{k}}, g^{s_{1} r_{1}}, \ldots, g^{s_{k} r_{k}}, T \in G$
- Does $T \stackrel{?}{=} g^{r_{1}+\cdots+r_{k}}$
- No polynomial time algorithm can achieve non-negligible advantage deciding
- Only a decisional problem - computationally same as DDH

How are DLIN and DBDH Related?

- If DLIN holds, then so does DBDH

$$
<g, g^{s_{1}}, g^{s_{2}}, g^{s_{1} r_{1}}, g^{s_{2} r_{2}}, T \stackrel{?}{=} g^{r_{1}+r_{2}}>
$$

DLIN Instance

$$
\begin{gathered}
<g, g^{s_{1}}, g^{s_{2}}, T \stackrel{?}{=} g^{r_{1}+r_{2}}, \boldsymbol{e}\left(g^{s_{1} r_{1}}, g^{s_{2}}\right) \cdot \boldsymbol{e}\left(g^{s_{2} r_{2}}, g^{s_{1}}\right)>= \\
<g, g^{s_{1}}, g^{s_{2}}, T \stackrel{?}{=} g^{r_{1}+r_{2}}, \boldsymbol{e}(g, g)^{\left(s_{1} s_{2}\right)\left(r_{1}+r_{2}\right)}>
\end{gathered}
$$

Can extend DBDH to a Family of Assumptions?

- Why?
- For $k>2$ unclear how k-Linear and DBDH are related
- k-Linear only operates in the source group
- Example: Boneh-Boyen IBE - the message is hidden in target group

This is should be like k DBDH problems

Failed Attempt

- Given $g, g^{a}, g^{b}, g^{s_{1}}, \ldots, g^{s_{k}}, g^{s_{1} r_{1}}, \ldots, g^{s_{k} r_{k}} \in$ and $T \in G_{T}$
- Does $T \stackrel{?}{=} \prod_{i} \boldsymbol{e}\left(g, g^{s_{i}}\right)^{a b r_{i}}=\prod_{i} \boldsymbol{e}(g, g)^{a b s_{i} r_{i}}=\boldsymbol{e}(g, g)^{a b\left(s_{1} r_{1}+\cdots+s_{k} r_{k}\right)}$
- Embeds k DBDH instances: $\left(g, g^{a}, g^{b}, g^{s_{i} r_{i}}, \boldsymbol{e}(g, g)^{a b\left(s_{i} r_{i}\right)}\right)$
- ... But is equivalent to DBDH:

$$
\left(g, g^{a}, g^{b} \prod_{i} g^{s_{i} r_{i}}=g^{\left(s_{1} r_{1}+\cdots+s_{k} r_{k}\right)}, T \stackrel{?}{\left.\prod_{i} \boldsymbol{e}(g, g)^{a b s_{i} r_{i}}\right)}\right.
$$

k-BDH Assumption

$>$ Given $g, g^{a}, g^{b}, g^{s_{1}}, \ldots, g^{s_{k}}, g^{s_{1} r_{1}}, \ldots, g^{s_{k} r_{k}} \in G$ and $T \in G_{T}$
$>$ Does $T \stackrel{?}{=} \prod_{i} \boldsymbol{e}(g, g)^{a b r_{i}}=\prod_{i} \boldsymbol{e}\left(g^{s_{i}}, g^{s_{i}}\right)^{\left(a / s_{i}\right)\left(b / s_{i}\right) r_{i}}=\boldsymbol{e}(g, g)^{a b\left(r_{1}+\cdots+r_{k}\right)}$
$>$ Embeds k DBDH instances: $\left(g^{s_{i}}, g^{a}, g^{b}, g^{s_{i} r_{i}}, \boldsymbol{e}\left(g^{s_{i}}, g^{s_{i}}\right)^{\left(a / s_{i}\right)\left(b / s_{i}\right) r_{i}}\right)$
> ... And is a family of strictly weaker assumptions!

A Family of Weaker Assumptions

- If the k-BDH assumption holds, so does the $(k+1)$-BDH assumption

$$
g, g^{x}, g^{y}, v_{1}, \ldots, v_{k}, v_{1}^{r_{1}}, \ldots, v_{k}^{r_{k}}, T \stackrel{?}{=} \prod_{1 \leq i \leq k} \boldsymbol{e}(g, g)^{x y r_{i}}
$$

k-BDH Instance

$$
\begin{aligned}
& <g, g^{x}, g^{y}, v_{1}, \ldots, v_{k+1}, v_{1}^{r_{1}}, \ldots, v_{k+1}^{r_{k+1}}, \\
& T \cdot \boldsymbol{e}\left(g^{x}, g^{y}\right)^{r_{k+1}} \stackrel{?}{=} \prod_{1 \leq i \leq k+1} \boldsymbol{e}(g, g)^{x y r_{i}>} \\
& (k+1)-\text { BDH Decider }
\end{aligned}
$$

Evidence of a Family of Strictly Weaker Assumptions

- An oracle for k-BDH does not help in deciding a $(k+1)$-BDH instance
- Similar to the separation proof of k-Linear [Sha07]
- Generic Group Model [BS84,Nechaev94,Shoup97]
- Interact with adversary using an idealized version of groups
- Bound the probability of finding an inconsistency if actual groups were used
- Oracle to k-BDH is implemented as a modified k-multilinear map
- maps k elements in G and one element G_{T} to an element group G_{M}

Application: IBE

- Fits in the Boneh-Boyen Framework - Base switching techniques needed
- Setup:
- Public parameters: $g, u=g^{x}, v_{1}=g^{s_{1}}, \ldots, v_{k}=g^{s_{k}}, v_{1}^{\hat{r}_{1}}, \ldots, v_{k}^{\hat{r}_{k}}, w_{1}, \ldots, w_{k}$
- Master key: $s_{1}, \ldots, s_{k}, \hat{r}_{1}, \ldots, \hat{r}_{k}, x$
- KeyGen(ID):
- Select random $n_{1}, \ldots, n_{k} \in Z_{p}^{*}$
- For each $1 \leq i \leq k$ output $\left(K_{A, i}, K_{B, i}\right)=\left(g^{x \hat{r}_{i}}\left(w_{i} u^{\mathrm{ID}}\right)^{n_{i}}, v_{i}^{n_{i}}\right)$
- Encrypt (m, ID):
- Select random $y_{1}, \ldots, y_{k} \in Z_{p}^{*}$
- Output $C_{0}=m \prod_{1 \leq i \leq k} \boldsymbol{e}\left(g^{x}, v_{i}^{\hat{r}_{i}}\right)^{y_{i}}$
- For each $1 \leq i \leq k$ output $\left(C_{A, i}, C_{B, i}\right)=\left(v_{i}^{y i},\left(w_{i} u^{\mathrm{ID}}\right)^{y_{i}}\right)$
- Decrypt(c):

$$
>\frac{C_{0} \cdot \Pi_{1 \leq i \leq k} \boldsymbol{e}\left(K_{B, i}, C_{B, i}\right)}{\prod_{1 \leq i \leq k} \boldsymbol{e}\left(K_{A, i}, C_{A, i}\right)}=\frac{m \prod_{1 \leq i \leq k} \boldsymbol{e}\left(g^{x}, v_{i}^{\hat{r}_{i}}\right)^{y_{i}} \cdot \prod_{1 \leq i \leq k} \boldsymbol{e}\left(v_{i}^{n_{i}},\left(w_{i} u \mathrm{u}^{\mathrm{ID}}\right)^{y_{i}}\right)}{\prod_{1 \leq i \leq k} \boldsymbol{e}\left(g^{x \hat{r}_{i}}\left(w_{i} u^{\mathrm{ID}}\right)^{n_{i}}, v_{i}^{y i}\right)}=m
$$

Conclusions

- Goal: Introduction the k-BDH Family of Assumptions
- Relationship to standard assumptions (DDH, k-Linear, DBDH)
- It is a family of strictly weaker assumptions
- Usable: We construct an IBE in the Boneh-Boyen Framework
- Future Work
- IBE construction grows with k (public parameters, keys, encryption)
- Different applications
> http://eprint.iacr.org/2012/687

Efficient Delegation of Key Generation and Revocation Functionalities in Identity-Based Encryption

Jae Hong Seo
Myongji University, Republic of Korea

Identity Based Encryption

Revocation Functionality in Identity-Based Encryption

ABC University

If user1 leaves the system (by expiration of contract) or user1's secret key is leaked (by hacking) and so he want to obtain other secret key?

KGC should revoke user1's secret key!! (and issues a new key if needed)

user1

Trivial Approach for Revocation Functionality in IBE

Trivial Approach for Revocation Functionality in IBE

Trivial Approach for Revocation Functionality in IBE

Our Goal:

Delegation of KGC's Roles (Key Generation \& Revocation)

Our Goal:

Delegation of KGC's Roles (Key Generation \& Revocation)

Outline

- Previous Approaches
- Revocable Symmetric Key Encryption: Broadcast Encryption
- Revocable Identity-Based Encryption

Trivial Approach - Exponentially large secret key
Our Approach - Asymmetric trade
Further Study

Broadcast Encryption (BE) Technique

We consider a binary tree kept by KGC

Broadcast Encryption (BE) Technique

Broadcast Encryption (BE) Technique

If u_{3}, u_{4}, and u_{6} are revoked, first compute triangles containing only non-revoked users.

Broadcast Encryption (BE) Technique

Encrypt a session key using $\mathrm{KEY}_{00}, \mathrm{KEY}_{101}, \mathrm{KEY}_{11}$. Then, only non-revoked user can recover the session key.
\# of triangles $\sim \log N$ (where N is \# of leaf nodes)

Revocable IBE:

Combining $B E$ technique with IBE scheme

ABC University

Revocable IBE:

Combining BE technique with IBE scheme

Revocable IBE:

Combining $B E$ technique with IBE scheme

Revocable IBE:

Combining BE technique with IBE scheme

Key Update Information related to time ' T '

Revocable IBE:

Combining BE technique with IBE scheme

Revocable IBE:

Combining BE technique with IBE scheme

ABC University

Only non-revoked users can generate a decryption key $\mathrm{dk}_{\mathrm{C}, \mathrm{T}}$, from $K U_{T}$ and SK

Trivial Approach for Our Goal

Hierarchical Structure ABC University for Key Generation

ABC, Science, Math, Prof. Emura

Trivial Approach

ABC, Science, Math, Prof. Emura

Trivial Approach

Binarv Tree for Revocation Binary Tree for Revocation / KGC) (managed by College)

Trivial Approach

Binarv Tree for Revocation Binary Tree for Revocation y KGC) (managed by College)

Binary Tree for Revocation
(managed by Department)

ABC, Science, Math, Prof. Emura

Trivial Approach

Binary Tree for Revocation (managed by KGC)

ABC, Science, Math, prof. Emura

Trivial Approach

Key Update for time period ' T ' (managed by KGC)

Binary Tree for Revocation (managed by KGC)

ABC, Science, Math, prof. Emura

Science is not revoked on time ' T '.
(1) It can create a decryption key relate to its identity \& time ' T '.

Key Update for tim (2) It can generate Key Update for its children. (managed by KGC)
imanaged by KGC)

ABC, Science, Math, prof. Emura

Trivial Approach

Key Update for time period ' T ' (managed by KGC)

Binary Tree for Revocation (managed by KGC)

Binary Tree for Revocation (managed by Science)
Key Update for 'T' (managed by Science)

Trivial Approach

Key Update for time period ' T ' (managed by KGC)

Binary Tree for Revocation (managed by KGC)

Binary Tree for Revocation (managed by Science)

No!

The parent (Science) has log N size secret key and one subkey is used for each time period.

A child (Math) does not know which subkey will be used for each time period.

Therefore, children should have $(\log N)^{2}$ subkeys.
n-th level user has $(\log N)^{n}$ size secret keys

Approach

Binary Tree for Revocation (managed by KGC)

cience

Binary Tree for Revocation

 (managed by Science)

Trivial Approach

Our Approach - Asymmetric Trade

Our Approach - Asymmetric Trade

sk|ID. Technically difficult part:

Separated subkeys do not

 leak any information.To this end, we used several re-randomization techniques.

$$
\mid D_{\ell}=I_{1}\|\cdots\|_{\ell}
$$

Our Result

- We propose the first practical RHIBE scheme
- Our scheme is based on Boneh-Boyen HIBE scheme
- The size of secret key is $\mathrm{O}\left(1^{2} \log \mathrm{~N}\right)$, where I is user's level.
- We proved that the proposed scheme satisfies a weaker security notion such as selective security notion.

Further Study

- Fully secure RHIBE

Different revocation method, such as Subset Difference Revocation methodology in functional encryption

Thanks!

RS^CONFERENCE2013

