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Flashback: RSA 2012 Keynote Cryptographers' Panel

\So Whit, do you feel vindicated?"
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A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems

R.L. Rivest, A. Shamir, and L. Adleman*



Textbook RSA

[Rivest Shamir Adleman 1977]

Public Key Private Key
N = pg modulus p,q primes
e encryption exponent d decryption exponent

(compute from e,p,q)

public key = (N, e)

N

ciphertext = message® mod N

N
7

/

message = ciphertext? mod N




What could go wrong: Repeated keys
RSA Public Keys

N = pg modulus

e encryption exponent

» Two hosts share e: not a problem.
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What could go wrong: Repeated keys
RSA Public Keys

N = pg modulus

e encryption exponent

» Two hosts share e: not a problem.

» Two hosts share N: — both know private key of the other.

Security Implications:

» Either host could man-in-the-middle the other.
» Either host could decrypt traffic from TLS RSA key exchange.



Looking for problems: Repeated keys

> 60% of hosts served non-unique public keys.

Many valid (and common) reasons to share keys:

» Shared hosting situations. Virtual hosting.

» A single organization registers many domain names with the
same key.



Looking for problems: Repeated keys

> 60% of hosts served non-unique public keys.

Common (and unwise) reasons to share keys:

» Device default certificates/keys.

» Apparent entropy problems in key generation.



Looking for problems: Repeated keys

> 60% of hosts served non-unique public keys.

Common (and unwise) reasons to share keys:

» Device default certificates/keys.

» Apparent entropy problems in key generation.

TLS: SSH:
default certificates/keys: default or low-entropy keys:
670,000 hosts (5%) 1,000,000 hosts (10%)

low-entropy repeated keys:
40,000 hosts (0.3%)



Looking for problems: Repeated keys

B Devices
[ Hosting providers
[JUnknown/other
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Number of repeats
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50 most repeated RSA SSH keys
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What could go wrong: RSA common factors

If two RSA moduli share a prime factor in common
— outside observer can factor both keys with GCD algorithm.

N1 = pq1 N> = pqg>
gcd(Ny, Np) = p

Time to factor Time to calculate GCD
768-bit RSA modulus: for 1024-bit RSA moduli:
2.5 calendar years 15us

[Kleinjung et al. 2010]



What could go wrong: RSA common factors

If two RSA moduli share a prime factor in common
— outside observer can factor both keys with GCD algorithm.

N1 = pq1 N> = pqg>
gcd(Ny, Np) = p

Security Implications:

» Anyone could man-in-the-middle vulnerable hosts.

» Anyone can decrypt traffic from TLS RSA key exchange.



What should happen if we GCD some RSA keys?

Experiment: Compute GCD of each pair M moduli randomly
chosen from P randomly primes.

What should happen? Nothing.



What should happen if we GCD some RSA keys?

Experiment: Compute GCD of each pair M moduli randomly
chosen from P randomly primes.

What should happen? Nothing.

Prime Number Theorem: Birthday bound:
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Efficiently computing pairwise GCDs

Computing pairwise gcd(/N;, N;) for our dataset would take
11 x 10°
15pus x < X2 >pairs ~ 30 years

of computation time.



Efficiently computing pairwise GCDs

Computing pairwise gcd( /A, N;) fag our dataset would take
11 .
15us x pairs =~ 30 years

of computation time.



Efficiently computing pairwise GCDs

Adapted efficient algorithm due
to [Bernstein 2004].

Ran on 11,170,883 distinct
moduli in SSL, SSH, and EFF
Observatory datasets

» 1.5 hours on 16 cores.

» $5 of Amazon ec2 time.

Ny Ny N3 Ny

VARVAR NS
% % product
\ / tree

N1N2N3Ny

SN

mod N?N? mod NZN?
modN? modN; modN? modN;

l l | l

/N /N2 /N3 /Na

remainder
tree

gcd(i,Nl) gcd(l,Nz)gcd(i,Ng) gcd(£N4)



Efficiently computing pairwise GCDs

Ny Ny N3 Ny

AW

Adapted efficient algorithm due % 9 product
to [Bernstein 2004]. N\ / tree
NiN2N3Ny

Ran on 11,170,883 distinct 7N mainder
moduli in SSL, SSH, and EFF modNiNy - modNiNg tre
Observatory datasets ' /N

modN? modN; modN? modN;

» 1.5 hours on 16 cores. | ! ] !
/Ni /N2 /N3 /Na

» $5 of Amazon ec2 time. | | | |
ged(+,Ny) ged( -, Ny) ged( -, N3) ged( -, Ng)

Results:

» 2,314 distinct prime factors factored 16,717 moduli

» Private keys for 64,081 TLS (0.50%) and 2,459 SSH (0.03%)
hosts in our scan
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FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION
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What could go wrong: Weak DSA signature nonce

DSA Public Key Private Key
p,q,g domain parameters X private key
y =g*modp

DSA signatures require a random nonce.

» If the nonce is predictable
— can easily compute long-term private key.

» Two distinct signatures use same nonce and private key
— can easily compute nonce
— can easily compute long-term private key.

Security Implications:

» Anyone could man-in-the-middle vulnerable hosts.



Computing weak DSA keys

v

Collected 9,114,925 DSA signatures from two SSH scans.

v

4,365 contained the same nonce as another signature.

v

Computed 281 distinct private DSA keys.

» Keys were served by 105,728 (1.03%) of SSH DSA hosts.



0.5% of all TLS hosts vulnerable! 1% of SSH hosts!
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. only two of the factored certificates were signed by a CA, and
both are expired. The web pages aren’t active.



only two of the factored certificates were signed by a CA, and
both are expired. The web pages aren’t active.

Look at subject information for certificates:

CN=self-signed, CN=system generated, CN=0168122008000024

CN=self-signed, CN=system generated, CN=0162092009003221

CN=self-signed, CN=system generated, CN=0162122008001051

C=CN, ST=Guangdong, 0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddre:
C=CN, ST=Guangdong, 0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddre:
CN=self-signed, CN=system generated, CN=0162072011000074

CN=self-signed, CN=system generated, CN=0162122009008149

CN=self-signed, CN=system generated, CN=0162122009000432

CN=self-signed, CN=system generated, CN=0162052010005821

CN=self-signed, CN=system generated, CN=0162072008005267

C=US, 0=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication

CN=self-signed, CN=system generated, CN=0162082009008123

CN=self-signed, CN=system generated, CN=0162072008005385

CN=self-signed, CN=system generated, CN=0162082008000317

C=CN, ST=Guangdong, 0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddre:
CN=self-signed, CN=system generated, CN=0162072008005597

CN=self-signed, CN=system generated, CN=0162072010002630

CN=self-signed, CN=system generated, CN=0162032010008958

CN=109.235.129.114

CN=self-signed, CN=system generated, CN=0162072011004982

CN=217.92.30.85

CN=self-signed, CN=system generated, CN=0162112011000190

CN=self-signed, CN=system generated, CN=0162062008001934

CN=self-signed, CN=system generated, CN=0162112011004312

CN=self-signed, CN=system generated, CN=0162072011000946

C=US, ST=0regon, L=Wilsonville, CN=141.213.19.107, 0=Xerox Corporation, OU=Xerox Office Business Group,
CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)

CN=self-signed, CN=system generated, CN=0162102011001174

CN=self-signed, CN=system generated, CN=0168112011001015

CN=self-signed, CN=system generated, C




Why do we find vulnerable keys?

Evidence strongly suggested widespread implementation problems.

Clue #1: Vast majority generated by network devices:

> Juniper network security devices

Cisco routers

v

v

IBM server management cards

v

Intel server management cards

» Innominate industrial-grade firewalls

| S

Identified devices from > 50 manufacturers



Why? Random number generation.
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crypto keys



Why? Random number generation.

crypto keys To generate random keys, we need a
source of randomness.
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Why? Random number generation.
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crypto keys To generate random keys, we need a
T source of randomness.

application pseudorandom
number generator
/ T N

time pid

“Any one who considers
@ arithmetical methods of
producing random digits is,

OS entro ool . .
Py P of course, in a state of sin.

—John von Neumann



Why? Random number generation.

)\

crypto keys To generate random keys, we need a
1 source of randomness.

application pseudorandom
number generator
/ T N

time pid

“Any one who considers
@ arithmetical methods of
producing random digits is,

OS entro ool . .
PY'P of course, in a state of sin.

ST VN
' ‘ \\\//}’ . —John von Neumann



Why? Random number generation.

%\é Hypothesis: Devices automatically

crypto keys generate crypto keys on first boot.

.

application pseudorandom
number generator

/ T N

time

OS entropy pool

A NN
¥ ® o -

pid



Why? Random number generation.

%\6 Hypothesis: Devices automatically

crypto keys generate crypto keys on first boot.

.

application pseudorandom
number generator

/ T N

time
OS entropy pool
' ‘ V . " Headless or embedded devices may

lack these entropy sources.

pid



Why? Random number generation.

%\é Hypothesis: Devices automatically

crypto keys generate crypto keys on first boot.

.

@

application pseudorandom
| 4
number generator OS random number generator may

e T N not have incorporated any entropy

pid when queried by software.

OS entropy pool

SN
' ‘ %\//J/ T Headless or embedded devices may

lack these entropy sources.

time



Why? Random number generation.

%\é Hypothesis: Devices automatically

crypto keys generate crypto keys on first boot.

.

application pseudorandom
number generator » OS random number generator may

e T N not have incorporated any entropy
pid when queried by software.

@ Experimentally verified Linux

“boot-time entropy hole”

time

OS entropy pool

SN
' ‘ %\//J/ T Headless or embedded devices may

lack these entropy sources.



Linux random number generators

/dev/random /dev/urandom
“high-quality” randomness pseudorandomness
blocks if insufficient entropy never blocks
available

As a general rule, /dev/urandom should be used for everything
except long-lived GPG/SSL/SSH keys—man random

random’s conservative blocking behavior is a usability problem.

This results in many developers using urandom for cryptography.



Generating vulnerable RSA keys in software

» Insufficiently random seeds for pseudorandom number
generator = we should see repeated keys.

prng.seed()
p = prng.random_prime ()

q = prng.random_prime()
N = p*xq
> We do:

» > 60% of hosts share keys
» At least 0.3% due to bad randomness.

» Repeated keys may be a sign that implementation is
vulnerable to a targeted attack.

But why do we see factorable keys?



Generating factorable RSA keys in software

prng.seed ()

p = prng.random_prime ()

prng.add_randomness()k_\ OpenSSL adds time in seconds
q = prng.random_prime()

N = pxq

Insufficient randomness can lead to factorable keys.

6—0—00—0—0}+6—0

I

Experimentally verified OpenSSL generates factorable keys in this
situation.



Distribution of prime factors
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Distribution of prime factors
IBM Remote Supervisor Adapter Il and Bladecenter Management Module
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Why do we see weak DSA signatures?

Step 1: DSA keys generated using insufficient entropy, so many
hosts shared keys.

Step 2: Signature nonces generated from PRNG counter seeded
once using insufficient entropy and never updated.

Two counters in same state — keys revealed.

Dropbear (popular SSH implementation) generates nonces this way.



Disclosure

> Wrote disclosures to 61 companies.

» 13 had Security Incident Response Team contact information
available.

» Have gotten responses from 28.
» 13 have told us they have fixed the problem
» 5 have informed us of security advisories

» Coordinating through US-CERT, ICS CERT, JP-CERT

Linux kernel has been patched.



More examples of bad randomness

RSA

» PGP database: factored 2 of 700,000 keys [Lenstra
et al. 2012]

» Taiwan Citizen Digital Certificates: 103 factored out of
2.26 million [Chou et al. 2012]

ECDSA

» Bitcoin: 133 of 187,000 addresses compromised from
nonrandom ECDSA signatures. [Moore Wustrow 2013]



More examples of bad randomness

RSA

» PGP database: factored 2 of 700,000 keys [Lenstra
et al. 2012]

» Taiwan Citizen Digital Certificates: 103 factored out of
2.26 million [Chou et al. 2012]

ECDSA

» Bitcoin: 133 of 187,000 addresses compromised from
nonrandom ECDSA signatures. [Moore Wustrow 2013]

Possible targeted attack?

» On traditional PCs, margin of safety for keys generated on
first boot is slim
Not observed to be exploitable (so far)



Practical mitigations

Developers and manufacturers:

» Collect entropy more aggressively, add hardware sources
> Provide seed in factory

» Run for a while before generating cryptographic keys.

CAs:

» Test for repeated, factorable, and other weak keys.

Users:

» Check against known weak keys.

> Regenerate keys.



Lessons

» New insights from taking a macroscopic view of
Systems: crypto practice.

» Cryptographic entropy is hard to get right.

> Need to design cryptosystems resilient to random
Cryptography: |\ ,mber generation problems. (e.g. DSA nonce
deterministically generated from message, salt.)



Contributions

New methodology for discovering vulnerabilities without having to
reverse-engineer or study particular implementations.

In-depth analysis of root causes of weak keys in widely deployed
software.

Mitigations and suggestions for developers, manufacturers, users,
and researchers.
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