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Flashback: RSA 2012 Keynote Cryptographers' Panel

\So Whit, do you feel vindicated?"









Textbook RSA
[Rivest Shamir Adleman 1977]

Public Key

N = pq modulus

e encryption exponent

Private Key

p, q primes

d decryption exponent
(compute from e,p,q)

public key = (N, e)

ciphertext = messagee mod N

message = ciphertextd mod N



What could go wrong: Repeated keys

RSA Public Keys

N = pq modulus

e encryption exponent

I Two hosts share e: not a problem.

I Two hosts share N: → both know private key of the other.

Security Implications:

I Either host could man-in-the-middle the other.
I Either host could decrypt traffic from TLS RSA key exchange.
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Looking for problems: Repeated keys

> 60% of hosts served non-unique public keys.

Many valid (and common) reasons to share keys:

I Shared hosting situations. Virtual hosting.

I A single organization registers many domain names with the
same key.

TLS:
default certificates/keys:
670,000 hosts (5%)

low-entropy repeated keys:
40,000 hosts (0.3%)

SSH:
default or low-entropy keys:
1,000,000 hosts (10%)
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What could go wrong: RSA common factors

If two RSA moduli share a prime factor in common
→ outside observer can factor both keys with GCD algorithm.

N1 = pq1 N2 = pq2

gcd(N1,N2) = p

Time to factor
768-bit RSA modulus:
2.5 calendar years
[Kleinjung et al. 2010]

Time to calculate GCD
for 1024-bit RSA moduli:
15µs

Security Implications:

I Anyone could man-in-the-middle vulnerable hosts.

I Anyone can decrypt traffic from TLS RSA key exchange.
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What should happen if we GCD some RSA keys?

Experiment: Compute GCD of each pair M moduli randomly
chosen from P randomly primes.

What should happen? Nothing.

Prime Number Theorem:
∼ 10150 512-bit primes

Birthday bound:
Pr[nontrivial gcd] ≈ 1− e−2M2/P
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Efficiently computing pairwise GCDs

Computing pairwise gcd(Ni ,Nj) for our dataset would take

15µs×
(

11× 106

2

)
pairs ≈ 30 years

of computation time.
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Efficiently computing pairwise GCDs

Adapted efficient algorithm due
to [Bernstein 2004].

Ran on 11,170,883 distinct
moduli in SSL, SSH, and EFF
Observatory datasets

I 1.5 hours on 16 cores.

I $5 of Amazon ec2 time.
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Results:

I 2,314 distinct prime factors factored 16,717 moduli

I Private keys for 64,081 TLS (0.50%) and 2,459 SSH (0.03%)
hosts in our scan
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What could go wrong: Weak DSA signature nonce

DSA Public Key

p, q, g domain parameters

y = g x mod p

Private Key

x private key

DSA signatures require a random nonce.

I If the nonce is predictable
→ can easily compute long-term private key.

I Two distinct signatures use same nonce and private key
→ can easily compute nonce
→ can easily compute long-term private key.

Security Implications:

I Anyone could man-in-the-middle vulnerable hosts.



Computing weak DSA keys

I Collected 9,114,925 DSA signatures from two SSH scans.

I 4,365 contained the same nonce as another signature.

I Computed 281 distinct private DSA keys.

I Keys were served by 105,728 (1.03%) of SSH DSA hosts.



0.5% of all TLS hosts vulnerable! 1% of SSH hosts!





... only two of the factored certificates were signed by a CA, and
both are expired. The web pages aren’t active.

Look at subject information for certificates:

CN=self-signed, CN=system generated, CN=0168122008000024

CN=self-signed, CN=system generated, CN=0162092009003221

CN=self-signed, CN=system generated, CN=0162122008001051

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddress=service@mail.com

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddress=service@mail.com

CN=self-signed, CN=system generated, CN=0162072011000074

CN=self-signed, CN=system generated, CN=0162122009008149

CN=self-signed, CN=system generated, CN=0162122009000432

CN=self-signed, CN=system generated, CN=0162052010005821

CN=self-signed, CN=system generated, CN=0162072008005267

C=US, O=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication

CN=self-signed, CN=system generated, CN=0162082009008123

CN=self-signed, CN=system generated, CN=0162072008005385

CN=self-signed, CN=system generated, CN=0162082008000317

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddress=service@mail.com

CN=self-signed, CN=system generated, CN=0162072008005597

CN=self-signed, CN=system generated, CN=0162072010002630

CN=self-signed, CN=system generated, CN=0162032010008958

CN=109.235.129.114

CN=self-signed, CN=system generated, CN=0162072011004982

CN=217.92.30.85

CN=self-signed, CN=system generated, CN=0162112011000190

CN=self-signed, CN=system generated, CN=0162062008001934

CN=self-signed, CN=system generated, CN=0162112011004312

CN=self-signed, CN=system generated, CN=0162072011000946

C=US, ST=Oregon, L=Wilsonville, CN=141.213.19.107, O=Xerox Corporation, OU=Xerox Office Business Group,

CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)

CN=self-signed, CN=system generated, CN=0162102011001174

CN=self-signed, CN=system generated, CN=0168112011001015

CN=self-signed, CN=system generated, CN=0162012011000446

CN=self-signed, CN=system generated, CN=0162112011004041

CN=self-signed, CN=system generated, CN=0162112011000617

CN=self-signed, CN=system generated, CN=0162042011006791

CN=self-signed, CN=system generated, CN=0162072011005063

CN=self-signed, CN=system generated, CN=0162122008003402

CN=self-signed, CN=system generated, CN=0162072011005032

CN=self-signed, CN=system generated, CN=0162042011005343

CN=self-signed, CN=system generated, CN=0162012008002101

CN=self-signed, CN=system generated, CN=0162072008005492

CN=self-signed, CN=system generated, CN=0162092008000776

CN=self-signed, CN=system generated, CN=0162092008000852

CN=self-signed, CN=system generated, CN=0162112008000044
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Why do we find vulnerable keys?

Evidence strongly suggested widespread implementation problems.

Clue #1: Vast majority generated by network devices:

I Juniper network security devices

I Cisco routers

I IBM server management cards

I Intel server management cards

I Innominate industrial-grade firewalls

I . . .

Identified devices from > 50 manufacturers
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of course, in a state of sin.”

–John von Neumann
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Why? Random number generation.

crypto keys

application pseudorandom

number generator

time

OS entropy pool

pid

Hypothesis: Devices automatically
generate crypto keys on first boot.

I OS random number generator may
not have incorporated any entropy
when queried by software.

Experimentally verified Linux
“boot-time entropy hole”

I Headless or embedded devices may
lack these entropy sources.
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Linux random number generators

/dev/random

“high-quality” randomness

blocks if insufficient entropy
available

/dev/urandom

pseudorandomness

never blocks

As a general rule, /dev/urandom should be used for everything
except long-lived GPG/SSL/SSH keys.—man random

random’s conservative blocking behavior is a usability problem.

This results in many developers using urandom for cryptography.



Generating vulnerable RSA keys in software

I Insufficiently random seeds for pseudorandom number
generator =⇒ we should see repeated keys.

prng.seed()

p = prng.random_prime()

q = prng.random_prime()

N = p*q

I We do:
I > 60% of hosts share keys
I At least 0.3% due to bad randomness.

I Repeated keys may be a sign that implementation is
vulnerable to a targeted attack.

But why do we see factorable keys?



Generating factorable RSA keys in software

prng.seed()

p = prng.random_prime()

prng.add_randomness()

q = prng.random_prime()

N = p*q

OpenSSL adds time in seconds

Insufficient randomness can lead to factorable keys.

8F 2B C1 13 EA F1 AA

8F 2B C1 13 EA 92 41

time=0 time=1

Experimentally verified OpenSSL generates factorable keys in this
situation.



Distribution of prime factors
Juniper SRX branch devices
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Distribution of prime factors
IBM Remote Supervisor Adapter II and Bladecenter Management Module
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Why do we see weak DSA signatures?

Step 1: DSA keys generated using insufficient entropy, so many
hosts shared keys.

Step 2: Signature nonces generated from PRNG counter seeded
once using insufficient entropy and never updated.

Two counters in same state → keys revealed.

Dropbear (popular SSH implementation) generates nonces this way.



Disclosure

I Wrote disclosures to 61 companies.

I 13 had Security Incident Response Team contact information
available.

I Have gotten responses from 28.

I 13 have told us they have fixed the problem

I 5 have informed us of security advisories

I Coordinating through US-CERT, ICS CERT, JP-CERT

Linux kernel has been patched.



More examples of bad randomness

RSA

I PGP database: factored 2 of 700,000 keys [Lenstra
et al. 2012]

I Taiwan Citizen Digital Certificates: 103 factored out of
2.26 million [Chou et al. 2012]

ECDSA

I Bitcoin: 133 of 187,000 addresses compromised from
nonrandom ECDSA signatures. [Moore Wustrow 2013]

Possible targeted attack?

I On traditional PCs, margin of safety for keys generated on
first boot is slim

Not observed to be exploitable (so far)
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Practical mitigations

Developers and manufacturers:

I Collect entropy more aggressively, add hardware sources

I Provide seed in factory

I Run for a while before generating cryptographic keys.

CAs:

I Test for repeated, factorable, and other weak keys.

Users:

I Check against known weak keys.

I Regenerate keys.



Lessons

Systems:
I New insights from taking a macroscopic view of

crypto practice.

I Cryptographic entropy is hard to get right.

Cryptography:
I Need to design cryptosystems resilient to random

number generation problems. (e.g. DSA nonce
deterministically generated from message, salt.)



Contributions

New methodology for discovering vulnerabilities without having to
reverse-engineer or study particular implementations.

In-depth analysis of root causes of weak keys in widely deployed
software.

Mitigations and suggestions for developers, manufacturers, users,
and researchers.



Mining your Ps and Qs: Widespread Weak Keys in Network
Devices Nadia Heninger, Zakir Durumeric, Eric Wustrow,
and J. Alex Halderman Usenix Security 2012

https://factorable.net


