Mining Your Ps and @s
Detection of Widespread Weak Keys in
Embedded Devices

Nadia Heninger

UC San Diego
J

Microsoft Research New England

Zakir Durumeric Eric Wustrow Alex Halderman

University of Michigan

February 26, 2012

Flashback: RSA 2012 Keynote Cryptographers' Panel

\So Whit, do you feel vindicated?"

nk of America Corporation

<z Bank of America | Home | Pr %

.bankofamerica.com

v

of America %>

Oniine 1D

nline 1D

ount location

bonus cash

L=/ VeriSign Class 3 Public Primary Certification Authority - G5
L | VeriSign Class 3 Extended Validation 55L CA

s B www.bankofamerica.com

1 for: | Select a state B

Banking
Secure access to
your maney anytime,
anywhere,

Common Name

Country
Organization
Organizational Unit
Organizational Unit
Common Name

Serial Number
Version

Signature Algorithm
Parameters

Not Valid Before

Not Valid After

Algorhm
Paramet
Public Key
Exponent
Key Size
Key Usage

Signature

www.bankofamerica.com

us

VeriSign, Inc.

VeriSign Trust Network

Terms of use at https:/ fwww verisign.com/rpa ()06
VeriSign Class 3 Extended Validation 55L CA

77 24 50 6D 4F 9A 87 9D 4B C6 6E 67 BB F2 60 C9

with RSA Encryption (1.3840.113549.1.1.5)

Tuesday, February 28, 2012 7:00:00 PM Eastern
Standard Time

Thursday, February 28, 2013 6:59:59 PM Eastern
Standard Time

RSA Encryption (1.3.840.113545.1.1.1}

256 bytes : BDE6 52 EE 6GA SD C5 B3 ...
65537

2048 bits

Encrypt, Verify, Wrap, Derive

256 bytes - 77 D6 C8B 64 DC 24 3F 8C ...

Businesses & Institutions %
lafiol | Search Bank of America

{ Protect PI:

A

mericard Casl

s" credit car
k everywhere, every timr
k on groceries
k on gas

rewards on $1,500 in combinad
artar.

Website Ad

Locations

Enter city, state or ZIP code

More search options

Dthar sarvicas

naiad:~ nadiahd ssh ubuntu@ecz-EA-17-74-117.compute-1.amaZonaws .com

The
ed.
RS
Are

authenticity of host 'ec2-58-17-74-117.compute-1.omozonows.com (58.17.74.147)" can't be estoblish

key fingerprint is 58:71:68:e8:fd:6liec:df:94:69 abac:le63:a5:935.
you sUre you want to continue connecting (ves/no)? I

A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems

R.L. Rivest, A. Shamir, and L. Adleman*

Textbook RSA

[Rivest Shamir Adleman 1977]

Public Key Private Key
N = pg modulus p,q primes
e encryption exponent d decryption exponent

(compute from e,p,q)

public key = (N, e)

N

ciphertext = message® mod N

N
7

/

message = ciphertext? mod N

What could go wrong: Repeated keys
RSA Public Keys

N = pg modulus

e encryption exponent

» Two hosts share e: not a problem.

Number of Certs vs Exponent

100,000,000 W Number of
Certs

1,000,000
10,000

100

I A A A AJ'

R R R TN S L USRS o ;,e’ﬁ f\t& (ﬁ% o
o

G

What could go wrong: Repeated keys
RSA Public Keys

N = pg modulus

e encryption exponent

» Two hosts share e: not a problem.

» Two hosts share N: — both know private key of the other.

Security Implications:

» Either host could man-in-the-middle the other.
» Either host could decrypt traffic from TLS RSA key exchange.

Looking for problems: Repeated keys

> 60% of hosts served non-unique public keys.

Many valid (and common) reasons to share keys:

» Shared hosting situations. Virtual hosting.

» A single organization registers many domain names with the
same key.

Looking for problems: Repeated keys

> 60% of hosts served non-unique public keys.

Common (and unwise) reasons to share keys:

» Device default certificates/keys.

» Apparent entropy problems in key generation.

Looking for problems: Repeated keys

> 60% of hosts served non-unique public keys.

Common (and unwise) reasons to share keys:

» Device default certificates/keys.

» Apparent entropy problems in key generation.

TLS: SSH:
default certificates/keys: default or low-entropy keys:
670,000 hosts (5%) 1,000,000 hosts (10%)

low-entropy repeated keys:
40,000 hosts (0.3%)

Looking for problems: Repeated keys

B Devices
[Hosting providers
[JUnknown/other

10°

Number of repeats

10*

50 most repeated RSA SSH keys

[™ ssL Error

€ € (xheps//198.31.50.123

‘ @ www.snakeoil.dom

WwWw,

Time

¥ Details

Subject Name
Country
State/Province
Locality
Organization
Organizational Unit
Common Name
Email Address

Issuer Name
Country
State/Province
Locality
Organization
Organizational Unit
Common Name
Email Address

lL.dom

Issued by: Snake il CA
Expired: Friday, January 4, 2008 2:56:28 PM Eastern Standard

@ This certificate has expired

XY

Snake Desert

Snake Town

Snake Oil, Ltd
Webserver Team
www.snakeoil.dom
wiwwi@snakeoil.dom

Xy

Snake Desert

Snake Town

Snake Oil, Ltd
Certificate Authority
Snake Oil CA

ca@snakeoil.dom

What could go wrong: RSA common factors

If two RSA moduli share a prime factor in common
— outside observer can factor both keys with GCD algorithm.

N1 = pq1 N> = pqg>
gcd(Ny, Np) = p

Time to factor Time to calculate GCD
768-bit RSA modulus: for 1024-bit RSA moduli:
2.5 calendar years 15us

[Kleinjung et al. 2010]

What could go wrong: RSA common factors

If two RSA moduli share a prime factor in common
— outside observer can factor both keys with GCD algorithm.

N1 = pq1 N> = pqg>
gcd(Ny, Np) = p

Security Implications:

» Anyone could man-in-the-middle vulnerable hosts.

» Anyone can decrypt traffic from TLS RSA key exchange.

What should happen if we GCD some RSA keys?

Experiment: Compute GCD of each pair M moduli randomly
chosen from P randomly primes.

What should happen? Nothing.

What should happen if we GCD some RSA keys?

Experiment: Compute GCD of each pair M moduli randomly
chosen from P randomly primes.

What should happen? Nothing.

Prime Number Theorem: Birthday bound:
.. 2

~ 10%5% 512-bit primes Pr[nontrivial ged] ~ 1 — e=2M*/P

= Earth’s population #atoms in Earth #atoms in universe

& 1 - T T T T | —

£ [

2

§ 0 [| 1 1 1 | —

E' 1 1020 1040 1060 1080 10100

#moduli M

Efficiently computing pairwise GCDs

Computing pairwise gcd(/N;, N;) for our dataset would take
11 x 10°
15pus x < X2 >pairs ~ 30 years

of computation time.

Efficiently computing pairwise GCDs

Computing pairwise gcd(/A, N;) fag our dataset would take
11 .
15us x pairs =~ 30 years

of computation time.

Efficiently computing pairwise GCDs

Adapted efficient algorithm due
to [Bernstein 2004].

Ran on 11,170,883 distinct
moduli in SSL, SSH, and EFF
Observatory datasets

» 1.5 hours on 16 cores.

» $5 of Amazon ec2 time.

Ny Ny N3 Ny

VARVAR NS
% % product
\ / tree

N1N2N3Ny

SN

mod N?N? mod NZN?
modN? modN; modN? modN;

l l | l

/N /N2 /N3 /Na

remainder
tree

gcd(i,Nl) gcd(l,Nz)gcd(i,Ng) gcd(£N4)

Efficiently computing pairwise GCDs

Ny Ny N3 Ny

AW

Adapted efficient algorithm due % 9 product
to [Bernstein 2004]. N\ / tree
NiN2N3Ny

Ran on 11,170,883 distinct 7N mainder
moduli in SSL, SSH, and EFF modNiNy - modNiNg tre
Observatory datasets ' /N

modN? modN; modN? modN;

» 1.5 hours on 16 cores. | !] !
/Ni /N2 /N3 /Na

» $5 of Amazon ec2 time. | | | |
ged(+,Ny) ged(-, Ny) ged(-, N3) ged(-, Ng)

Results:

» 2,314 distinct prime factors factored 16,717 moduli

» Private keys for 64,081 TLS (0.50%) and 2,459 SSH (0.03%)
hosts in our scan

FIPS PUB 186-3

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

Digital Signature Standard (DSS)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

What could go wrong: Weak DSA signature nonce

DSA Public Key Private Key
p,q,g domain parameters X private key
y =g*modp

DSA signatures require a random nonce.

» If the nonce is predictable
— can easily compute long-term private key.

» Two distinct signatures use same nonce and private key
— can easily compute nonce
— can easily compute long-term private key.

Security Implications:

» Anyone could man-in-the-middle vulnerable hosts.

Computing weak DSA keys

v

Collected 9,114,925 DSA signatures from two SSH scans.

v

4,365 contained the same nonce as another signature.

v

Computed 281 distinct private DSA keys.

» Keys were served by 105,728 (1.03%) of SSH DSA hosts.

0.5% of all TLS hosts vulnerable! 1% of SSH hosts!

& =» @ |©® www.nytimes.com/2012/02/15/te

® Researchers Find Flaw in

arteve] X

HOME PAGE | TODAY'S PAPER [VIDEO | MOST POPULAR [TIMES TOPICS | Log In | Register Now | Help

Ehe New ork Times Business Day

Technology

WORLD | US. N.Y./REGION | BUSINESS | TECHNOLOGY SCIENCE ~HEALTH SPORTS — OPINION ~ARTS | STYLE TRAVEL JOBS REALESTATE AUTOS

Search All NYTimes.com

256-BIT

THE WORLD'S FIRST
HARDWARE ENCRYPTION

6" IRONKEY" FIPS 140-2
LEVEL 3 e

FLASH DRIVE

‘Advertise on NYTimes.com

Flaw Found in an Online Encryption Method Log in to see what your friends
are sharing on nytime: .

By "DTN‘M?RK?F,F ‘ Privacy Policy \Wha(sTm;'Y

SAN FRANCISCO — A team of European and American mathematicians [E3 RECOMMEND ‘What's Popular Now | £}

and cry have discovered an unexpected weakness in the » TWITTER Why I Am Leaving

Goldman Sachs

y

encryption system widely used worldwide for online shopping, banking, 1 | nyceom

e-mail and other Internet services intended to remain private and secure.
& COMMENTS
(127)

The flaw — which invelves a small but SIGNINTOE-
MAIL

@ Readers’ Comments measurable number of cases — has to do
Gazzang
the way the system generates = PRINT
Readers shared their thoughts on
Gy random numbers, which are used to) RePRINTS
Read All Comments (127) » make it practically impossible for an SHARE

attacker to unscramble digital messages.
‘Whil

it can affect the transactions of SOUND: OF MY VOICE
IN THEATRES 04:27.20)2

individual Internet users, there is nothing an individual can do about it.
The operators of large Web sites will need to make changes to ensure the | Click to View

security of their systems, the researchers said.

The potential danger of the flaw is that even though the number of users affected by the flaw

may be small, confidence in the security of Web transactions is reduced, the authors said.

‘Adveriise on NYTimes.com
Th it ires that first create and publish thi duct of two i bers,
@ system requires that a user first create and publish the product of two large prime numbers, L L e o

>
To encrypt a message, a second person employs a formula that contains the public number. In
Privacy Policy

in addition to another number, to generate a public “key.” The original numbers are kept secret.
San Up

practice, only someone with knowledge of the orij

inal prime numbers can decode that

. only two of the factored certificates were signed by a CA, and
both are expired. The web pages aren’t active.

only two of the factored certificates were signed by a CA, and
both are expired. The web pages aren’t active.

Look at subject information for certificates:

CN=self-signed, CN=system generated, CN=0168122008000024

CN=self-signed, CN=system generated, CN=0162092009003221

CN=self-signed, CN=system generated, CN=0162122008001051

C=CN, ST=Guangdong, 0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddre:
C=CN, ST=Guangdong, 0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddre:
CN=self-signed, CN=system generated, CN=0162072011000074

CN=self-signed, CN=system generated, CN=0162122009008149

CN=self-signed, CN=system generated, CN=0162122009000432

CN=self-signed, CN=system generated, CN=0162052010005821

CN=self-signed, CN=system generated, CN=0162072008005267

C=US, 0=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication

CN=self-signed, CN=system generated, CN=0162082009008123

CN=self-signed, CN=system generated, CN=0162072008005385

CN=self-signed, CN=system generated, CN=0162082008000317

C=CN, ST=Guangdong, 0=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddre:
CN=self-signed, CN=system generated, CN=0162072008005597

CN=self-signed, CN=system generated, CN=0162072010002630

CN=self-signed, CN=system generated, CN=0162032010008958

CN=109.235.129.114

CN=self-signed, CN=system generated, CN=0162072011004982

CN=217.92.30.85

CN=self-signed, CN=system generated, CN=0162112011000190

CN=self-signed, CN=system generated, CN=0162062008001934

CN=self-signed, CN=system generated, CN=0162112011004312

CN=self-signed, CN=system generated, CN=0162072011000946

C=US, ST=0regon, L=Wilsonville, CN=141.213.19.107, 0=Xerox Corporation, OU=Xerox Office Business Group,
CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)

CN=self-signed, CN=system generated, CN=0162102011001174

CN=self-signed, CN=system generated, CN=0168112011001015

CN=self-signed, CN=system generated, C

Why do we find vulnerable keys?

Evidence strongly suggested widespread implementation problems.

Clue #1: Vast majority generated by network devices:

> Juniper network security devices

Cisco routers

v

v

IBM server management cards

v

Intel server management cards

» Innominate industrial-grade firewalls

| S

Identified devices from > 50 manufacturers

Why? Random number generation.

%,

crypto keys

Why? Random number generation.

crypto keys To generate random keys, we need a
source of randomness.

Why? Random number generation.

crypto keys To generate random keys, we need a
1 source of randomness.

application pseudorandom
number generator

Why? Random number generation.
X,
crypto keys To generate random keys, we need a
T source of randomness.

application pseudorandom
number generator
/ T N

time pid

“Any one who considers
@ arithmetical methods of
producing random digits is,

OS entro ool . .
Py P of course, in a state of sin.

—John von Neumann

Why? Random number generation.

)\

crypto keys To generate random keys, we need a
1 source of randomness.

application pseudorandom
number generator
/ T N

time pid

“Any one who considers
@ arithmetical methods of
producing random digits is,

OS entro ool . .
PY'P of course, in a state of sin.

ST VN
' ‘ \\\//}’ . —John von Neumann

Why? Random number generation.

%\é Hypothesis: Devices automatically

crypto keys generate crypto keys on first boot.

.

application pseudorandom
number generator

/ T N

time

OS entropy pool

A NN
¥ ® o -

pid

Why? Random number generation.

%\6 Hypothesis: Devices automatically

crypto keys generate crypto keys on first boot.

.

application pseudorandom
number generator

/ T N

time
OS entropy pool
' ‘ V . " Headless or embedded devices may

lack these entropy sources.

pid

Why? Random number generation.

%\é Hypothesis: Devices automatically

crypto keys generate crypto keys on first boot.

.

@

application pseudorandom
| 4
number generator OS random number generator may

e T N not have incorporated any entropy

pid when queried by software.

OS entropy pool

SN
' ‘ %\//J/ T Headless or embedded devices may

lack these entropy sources.

time

Why? Random number generation.

%\é Hypothesis: Devices automatically

crypto keys generate crypto keys on first boot.

.

application pseudorandom
number generator » OS random number generator may

e T N not have incorporated any entropy
pid when queried by software.

@ Experimentally verified Linux

“boot-time entropy hole”

time

OS entropy pool

SN
' ‘ %\//J/ T Headless or embedded devices may

lack these entropy sources.

Linux random number generators

/dev/random /dev/urandom
“high-quality” randomness pseudorandomness
blocks if insufficient entropy never blocks
available

As a general rule, /dev/urandom should be used for everything
except long-lived GPG/SSL/SSH keys—man random

random’s conservative blocking behavior is a usability problem.

This results in many developers using urandom for cryptography.

Generating vulnerable RSA keys in software

» Insufficiently random seeds for pseudorandom number
generator = we should see repeated keys.

prng.seed()
p = prng.random_prime ()

q = prng.random_prime()
N = p*xq
> We do:

» > 60% of hosts share keys
» At least 0.3% due to bad randomness.

» Repeated keys may be a sign that implementation is
vulnerable to a targeted attack.

But why do we see factorable keys?

Generating factorable RSA keys in software

prng.seed ()

p = prng.random_prime ()

prng.add_randomness()k_\ OpenSSL adds time in seconds
q = prng.random_prime()

N = pxq

Insufficient randomness can lead to factorable keys.

6—0—00—0—0}+6—0

I

Experimentally verified OpenSSL generates factorable keys in this
situation.

Distribution of prime factors
Juniper SRX branch devices

[R B | [R B | [|
. : .

> 103
a
Q
=
54
E 102
5
E
ho
@)
S 10!

[E—
)}
[=]

Distribution of prime factors
IBM Remote Supervisor Adapter Il and Bladecenter Management Module

—_
)
)

W
S

Modulus frequency

Why do we see weak DSA signatures?

Step 1: DSA keys generated using insufficient entropy, so many
hosts shared keys.

Step 2: Signature nonces generated from PRNG counter seeded
once using insufficient entropy and never updated.

Two counters in same state — keys revealed.

Dropbear (popular SSH implementation) generates nonces this way.

Disclosure

> Wrote disclosures to 61 companies.

» 13 had Security Incident Response Team contact information
available.

» Have gotten responses from 28.
» 13 have told us they have fixed the problem
» 5 have informed us of security advisories

» Coordinating through US-CERT, ICS CERT, JP-CERT

Linux kernel has been patched.

More examples of bad randomness

RSA

» PGP database: factored 2 of 700,000 keys [Lenstra
et al. 2012]

» Taiwan Citizen Digital Certificates: 103 factored out of
2.26 million [Chou et al. 2012]

ECDSA

» Bitcoin: 133 of 187,000 addresses compromised from
nonrandom ECDSA signatures. [Moore Wustrow 2013]

More examples of bad randomness

RSA

» PGP database: factored 2 of 700,000 keys [Lenstra
et al. 2012]

» Taiwan Citizen Digital Certificates: 103 factored out of
2.26 million [Chou et al. 2012]

ECDSA

» Bitcoin: 133 of 187,000 addresses compromised from
nonrandom ECDSA signatures. [Moore Wustrow 2013]

Possible targeted attack?

» On traditional PCs, margin of safety for keys generated on
first boot is slim
Not observed to be exploitable (so far)

Practical mitigations

Developers and manufacturers:

» Collect entropy more aggressively, add hardware sources
> Provide seed in factory

» Run for a while before generating cryptographic keys.

CAs:

» Test for repeated, factorable, and other weak keys.

Users:

» Check against known weak keys.

> Regenerate keys.

Lessons

» New insights from taking a macroscopic view of
Systems: crypto practice.

» Cryptographic entropy is hard to get right.

> Need to design cryptosystems resilient to random
Cryptography: |\ ,mber generation problems. (e.g. DSA nonce
deterministically generated from message, salt.)

Contributions

New methodology for discovering vulnerabilities without having to
reverse-engineer or study particular implementations.

In-depth analysis of root causes of weak keys in widely deployed
software.

Mitigations and suggestions for developers, manufacturers, users,
and researchers.

Mining your Ps and Qs: Widespread Weak Keys in Network
Devices Nadia Heninger, Zakir Durumeric, Eric Wustrow,
and J. Alex Halderman Usenix Security 2012

https://factorable.net

