
Mining Your Ps and Qs
Detection of Widespread Weak Keys in

Embedded Devices

Nadia Heninger

UC San Diego
↓

Microsoft Research New England

Zakir Durumeric Eric Wustrow Alex Halderman

University of Michigan

February 26, 2012

Flashback: RSA 2012 Keynote Cryptographers' Panel

\So Whit, do you feel vindicated?"

Textbook RSA
[Rivest Shamir Adleman 1977]

Public Key

N = pq modulus

e encryption exponent

Private Key

p, q primes

d decryption exponent
(compute from e,p,q)

public key = (N, e)

ciphertext = messagee mod N

message = ciphertextd mod N

What could go wrong: Repeated keys

RSA Public Keys

N = pq modulus

e encryption exponent

I Two hosts share e: not a problem.

I Two hosts share N: → both know private key of the other.

Security Implications:

I Either host could man-in-the-middle the other.
I Either host could decrypt traffic from TLS RSA key exchange.

What could go wrong: Repeated keys

RSA Public Keys

N = pq modulus

e encryption exponent

I Two hosts share e: not a problem.

I Two hosts share N: → both know private key of the other.

Security Implications:

I Either host could man-in-the-middle the other.
I Either host could decrypt traffic from TLS RSA key exchange.

Looking for problems: Repeated keys

> 60% of hosts served non-unique public keys.

Many valid (and common) reasons to share keys:

I Shared hosting situations. Virtual hosting.

I A single organization registers many domain names with the
same key.

TLS:
default certificates/keys:
670,000 hosts (5%)

low-entropy repeated keys:
40,000 hosts (0.3%)

SSH:
default or low-entropy keys:
1,000,000 hosts (10%)

Looking for problems: Repeated keys

> 60% of hosts served non-unique public keys.

Common (and unwise) reasons to share keys:

I Device default certificates/keys.

I Apparent entropy problems in key generation.

TLS:
default certificates/keys:
670,000 hosts (5%)

low-entropy repeated keys:
40,000 hosts (0.3%)

SSH:
default or low-entropy keys:
1,000,000 hosts (10%)

Looking for problems: Repeated keys

> 60% of hosts served non-unique public keys.

Common (and unwise) reasons to share keys:

I Device default certificates/keys.

I Apparent entropy problems in key generation.

TLS:
default certificates/keys:
670,000 hosts (5%)

low-entropy repeated keys:
40,000 hosts (0.3%)

SSH:
default or low-entropy keys:
1,000,000 hosts (10%)

Looking for problems: Repeated keys

104

105

50 most repeated RSA SSH keys

N
um

be
ro

fr
ep

ea
ts

Devices
Hosting providers
Unknown/other

What could go wrong: RSA common factors

If two RSA moduli share a prime factor in common
→ outside observer can factor both keys with GCD algorithm.

N1 = pq1 N2 = pq2

gcd(N1,N2) = p

Time to factor
768-bit RSA modulus:
2.5 calendar years
[Kleinjung et al. 2010]

Time to calculate GCD
for 1024-bit RSA moduli:
15µs

Security Implications:

I Anyone could man-in-the-middle vulnerable hosts.

I Anyone can decrypt traffic from TLS RSA key exchange.

What could go wrong: RSA common factors

If two RSA moduli share a prime factor in common
→ outside observer can factor both keys with GCD algorithm.

N1 = pq1 N2 = pq2

gcd(N1,N2) = p

Time to factor
768-bit RSA modulus:
2.5 calendar years
[Kleinjung et al. 2010]

Time to calculate GCD
for 1024-bit RSA moduli:
15µs

Security Implications:

I Anyone could man-in-the-middle vulnerable hosts.

I Anyone can decrypt traffic from TLS RSA key exchange.

What should happen if we GCD some RSA keys?

Experiment: Compute GCD of each pair M moduli randomly
chosen from P randomly primes.

What should happen? Nothing.

Prime Number Theorem:
∼ 10150 512-bit primes

Birthday bound:
Pr[nontrivial gcd] ≈ 1− e−2M2/P

1 1020 1040 1060 1080 10100
0

1

Earth’s population #atoms in Earth #atoms in universe

#moduli M

P
[n
on

tr
iv
ia
l
gc
d
]

What should happen if we GCD some RSA keys?

Experiment: Compute GCD of each pair M moduli randomly
chosen from P randomly primes.

What should happen? Nothing.

Prime Number Theorem:
∼ 10150 512-bit primes

Birthday bound:
Pr[nontrivial gcd] ≈ 1− e−2M2/P

1 1020 1040 1060 1080 10100
0

1

Earth’s population #atoms in Earth #atoms in universe

#moduli M

P
[n
on

tr
iv
ia
l
gc
d
]

Efficiently computing pairwise GCDs

Computing pairwise gcd(Ni ,Nj) for our dataset would take

15µs×
(

11× 106

2

)
pairs ≈ 30 years

of computation time.

Efficiently computing pairwise GCDs

Computing pairwise gcd(Ni ,Nj) for our dataset would take

15µs×
(

11× 106

2

)
pairs ≈ 30 years

of computation time.

Efficiently computing pairwise GCDs

Adapted efficient algorithm due
to [Bernstein 2004].

Ran on 11,170,883 distinct
moduli in SSL, SSH, and EFF
Observatory datasets

I 1.5 hours on 16 cores.

I $5 of Amazon ec2 time.

N1N2N3N4

×

N4N3

×

N2N1

N1N2N3N4

mod N2
1 N2

2

mod N2
1

/N1

·

mod N2
2

/N2

·

mod N2
3 N2

4

mod N2
3

/N3

·

mod N2
4

/N4

·gcd(,N1) gcd(,N2)gcd(,N3) gcd(,N4)

product
tree

remainder
tree

Results:

I 2,314 distinct prime factors factored 16,717 moduli

I Private keys for 64,081 TLS (0.50%) and 2,459 SSH (0.03%)
hosts in our scan

Efficiently computing pairwise GCDs

Adapted efficient algorithm due
to [Bernstein 2004].

Ran on 11,170,883 distinct
moduli in SSL, SSH, and EFF
Observatory datasets

I 1.5 hours on 16 cores.

I $5 of Amazon ec2 time.

N1N2N3N4

×

N4N3

×

N2N1

N1N2N3N4

mod N2
1 N2

2

mod N2
1

/N1

·

mod N2
2

/N2

·

mod N2
3 N2

4

mod N2
3

/N3

·

mod N2
4

/N4

·gcd(,N1) gcd(,N2)gcd(,N3) gcd(,N4)

product
tree

remainder
tree

Results:

I 2,314 distinct prime factors factored 16,717 moduli

I Private keys for 64,081 TLS (0.50%) and 2,459 SSH (0.03%)
hosts in our scan

What could go wrong: Weak DSA signature nonce

DSA Public Key

p, q, g domain parameters

y = g x mod p

Private Key

x private key

DSA signatures require a random nonce.

I If the nonce is predictable
→ can easily compute long-term private key.

I Two distinct signatures use same nonce and private key
→ can easily compute nonce
→ can easily compute long-term private key.

Security Implications:

I Anyone could man-in-the-middle vulnerable hosts.

Computing weak DSA keys

I Collected 9,114,925 DSA signatures from two SSH scans.

I 4,365 contained the same nonce as another signature.

I Computed 281 distinct private DSA keys.

I Keys were served by 105,728 (1.03%) of SSH DSA hosts.

0.5% of all TLS hosts vulnerable! 1% of SSH hosts!

... only two of the factored certificates were signed by a CA, and
both are expired. The web pages aren’t active.

Look at subject information for certificates:

CN=self-signed, CN=system generated, CN=0168122008000024

CN=self-signed, CN=system generated, CN=0162092009003221

CN=self-signed, CN=system generated, CN=0162122008001051

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddress=service@mail.com

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddress=service@mail.com

CN=self-signed, CN=system generated, CN=0162072011000074

CN=self-signed, CN=system generated, CN=0162122009008149

CN=self-signed, CN=system generated, CN=0162122009000432

CN=self-signed, CN=system generated, CN=0162052010005821

CN=self-signed, CN=system generated, CN=0162072008005267

C=US, O=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication

CN=self-signed, CN=system generated, CN=0162082009008123

CN=self-signed, CN=system generated, CN=0162072008005385

CN=self-signed, CN=system generated, CN=0162082008000317

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddress=service@mail.com

CN=self-signed, CN=system generated, CN=0162072008005597

CN=self-signed, CN=system generated, CN=0162072010002630

CN=self-signed, CN=system generated, CN=0162032010008958

CN=109.235.129.114

CN=self-signed, CN=system generated, CN=0162072011004982

CN=217.92.30.85

CN=self-signed, CN=system generated, CN=0162112011000190

CN=self-signed, CN=system generated, CN=0162062008001934

CN=self-signed, CN=system generated, CN=0162112011004312

CN=self-signed, CN=system generated, CN=0162072011000946

C=US, ST=Oregon, L=Wilsonville, CN=141.213.19.107, O=Xerox Corporation, OU=Xerox Office Business Group,

CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)

CN=self-signed, CN=system generated, CN=0162102011001174

CN=self-signed, CN=system generated, CN=0168112011001015

CN=self-signed, CN=system generated, CN=0162012011000446

CN=self-signed, CN=system generated, CN=0162112011004041

CN=self-signed, CN=system generated, CN=0162112011000617

CN=self-signed, CN=system generated, CN=0162042011006791

CN=self-signed, CN=system generated, CN=0162072011005063

CN=self-signed, CN=system generated, CN=0162122008003402

CN=self-signed, CN=system generated, CN=0162072011005032

CN=self-signed, CN=system generated, CN=0162042011005343

CN=self-signed, CN=system generated, CN=0162012008002101

CN=self-signed, CN=system generated, CN=0162072008005492

CN=self-signed, CN=system generated, CN=0162092008000776

CN=self-signed, CN=system generated, CN=0162092008000852

CN=self-signed, CN=system generated, CN=0162112008000044

... only two of the factored certificates were signed by a CA, and
both are expired. The web pages aren’t active.

Look at subject information for certificates:

CN=self-signed, CN=system generated, CN=0168122008000024

CN=self-signed, CN=system generated, CN=0162092009003221

CN=self-signed, CN=system generated, CN=0162122008001051

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+1145D5C30089/emailAddress=service@mail.com

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+139819C30089/emailAddress=service@mail.com

CN=self-signed, CN=system generated, CN=0162072011000074

CN=self-signed, CN=system generated, CN=0162122009008149

CN=self-signed, CN=system generated, CN=0162122009000432

CN=self-signed, CN=system generated, CN=0162052010005821

CN=self-signed, CN=system generated, CN=0162072008005267

C=US, O=2Wire, OU=Gateway Device/serialNumber=360617088769, CN=Gateway Authentication

CN=self-signed, CN=system generated, CN=0162082009008123

CN=self-signed, CN=system generated, CN=0162072008005385

CN=self-signed, CN=system generated, CN=0162082008000317

C=CN, ST=Guangdong, O=TP-LINK Technologies CO., LTD., OU=TP-LINK SOFT, CN=TL-R478+3F5878C30089/emailAddress=service@mail.com

CN=self-signed, CN=system generated, CN=0162072008005597

CN=self-signed, CN=system generated, CN=0162072010002630

CN=self-signed, CN=system generated, CN=0162032010008958

CN=109.235.129.114

CN=self-signed, CN=system generated, CN=0162072011004982

CN=217.92.30.85

CN=self-signed, CN=system generated, CN=0162112011000190

CN=self-signed, CN=system generated, CN=0162062008001934

CN=self-signed, CN=system generated, CN=0162112011004312

CN=self-signed, CN=system generated, CN=0162072011000946

C=US, ST=Oregon, L=Wilsonville, CN=141.213.19.107, O=Xerox Corporation, OU=Xerox Office Business Group,

CN=XRX0000AAD53FB7.eecs.umich.edu, CN=(141.213.19.107|XRX0000AAD53FB7.eecs.umich.edu)

CN=self-signed, CN=system generated, CN=0162102011001174

CN=self-signed, CN=system generated, CN=0168112011001015

CN=self-signed, CN=system generated, CN=0162012011000446

CN=self-signed, CN=system generated, CN=0162112011004041

CN=self-signed, CN=system generated, CN=0162112011000617

CN=self-signed, CN=system generated, CN=0162042011006791

CN=self-signed, CN=system generated, CN=0162072011005063

CN=self-signed, CN=system generated, CN=0162122008003402

CN=self-signed, CN=system generated, CN=0162072011005032

CN=self-signed, CN=system generated, CN=0162042011005343

CN=self-signed, CN=system generated, CN=0162012008002101

CN=self-signed, CN=system generated, CN=0162072008005492

CN=self-signed, CN=system generated, CN=0162092008000776

CN=self-signed, CN=system generated, CN=0162092008000852

CN=self-signed, CN=system generated, CN=0162112008000044

Why do we find vulnerable keys?

Evidence strongly suggested widespread implementation problems.

Clue #1: Vast majority generated by network devices:

I Juniper network security devices

I Cisco routers

I IBM server management cards

I Intel server management cards

I Innominate industrial-grade firewalls

I . . .

Identified devices from > 50 manufacturers

Why? Random number generation.

crypto keys

application pseudorandom

number generator

time

OS entropy pool

pid

Why? Random number generation.

crypto keys

application pseudorandom

number generator

time

OS entropy pool

pid

To generate random keys, we need a
source of randomness.

“Any one who considers
arithmetical methods of
producing random digits is,
of course, in a state of sin.”

–John von Neumann

Why? Random number generation.

crypto keys

application pseudorandom

number generator

time

OS entropy pool

pid

To generate random keys, we need a
source of randomness.

“Any one who considers
arithmetical methods of
producing random digits is,
of course, in a state of sin.”

–John von Neumann

Why? Random number generation.

crypto keys

application pseudorandom

number generator

time

OS entropy pool

pid

To generate random keys, we need a
source of randomness.

“Any one who considers
arithmetical methods of
producing random digits is,
of course, in a state of sin.”

–John von Neumann

Why? Random number generation.

crypto keys

application pseudorandom

number generator

time

OS entropy pool

pid

To generate random keys, we need a
source of randomness.

“Any one who considers
arithmetical methods of
producing random digits is,
of course, in a state of sin.”

–John von Neumann

Why? Random number generation.

crypto keys

application pseudorandom

number generator

time

OS entropy pool

pid

Hypothesis: Devices automatically
generate crypto keys on first boot.

I OS random number generator may
not have incorporated any entropy
when queried by software.

Experimentally verified Linux
“boot-time entropy hole”

I Headless or embedded devices may
lack these entropy sources.

Why? Random number generation.

crypto keys

application pseudorandom

number generator

time

OS entropy pool

pid

Hypothesis: Devices automatically
generate crypto keys on first boot.

I OS random number generator may
not have incorporated any entropy
when queried by software.

Experimentally verified Linux
“boot-time entropy hole”

I Headless or embedded devices may
lack these entropy sources.

Why? Random number generation.

crypto keys

application pseudorandom

number generator

time

OS entropy pool

pid

Hypothesis: Devices automatically
generate crypto keys on first boot.

I OS random number generator may
not have incorporated any entropy
when queried by software.

Experimentally verified Linux
“boot-time entropy hole”

I Headless or embedded devices may
lack these entropy sources.

Why? Random number generation.

crypto keys

application pseudorandom

number generator

time

OS entropy pool

pid

Hypothesis: Devices automatically
generate crypto keys on first boot.

I OS random number generator may
not have incorporated any entropy
when queried by software.

Experimentally verified Linux
“boot-time entropy hole”

I Headless or embedded devices may
lack these entropy sources.

Linux random number generators

/dev/random

“high-quality” randomness

blocks if insufficient entropy
available

/dev/urandom

pseudorandomness

never blocks

As a general rule, /dev/urandom should be used for everything
except long-lived GPG/SSL/SSH keys.—man random

random’s conservative blocking behavior is a usability problem.

This results in many developers using urandom for cryptography.

Generating vulnerable RSA keys in software

I Insufficiently random seeds for pseudorandom number
generator =⇒ we should see repeated keys.

prng.seed()

p = prng.random_prime()

q = prng.random_prime()

N = p*q

I We do:
I > 60% of hosts share keys
I At least 0.3% due to bad randomness.

I Repeated keys may be a sign that implementation is
vulnerable to a targeted attack.

But why do we see factorable keys?

Generating factorable RSA keys in software

prng.seed()

p = prng.random_prime()

prng.add_randomness()

q = prng.random_prime()

N = p*q

OpenSSL adds time in seconds

Insufficient randomness can lead to factorable keys.

8F 2B C1 13 EA F1 AA

8F 2B C1 13 EA 92 41

time=0 time=1

Experimentally verified OpenSSL generates factorable keys in this
situation.

Distribution of prime factors
Juniper SRX branch devices

100

101

102

103

M
od

ul
us

fr
eq

ue
nc

y

Distribution of prime factors
IBM Remote Supervisor Adapter II and Bladecenter Management Module

0

50

100

M
od

ul
us

fr
eq

ue
nc

y

Why do we see weak DSA signatures?

Step 1: DSA keys generated using insufficient entropy, so many
hosts shared keys.

Step 2: Signature nonces generated from PRNG counter seeded
once using insufficient entropy and never updated.

Two counters in same state → keys revealed.

Dropbear (popular SSH implementation) generates nonces this way.

Disclosure

I Wrote disclosures to 61 companies.

I 13 had Security Incident Response Team contact information
available.

I Have gotten responses from 28.

I 13 have told us they have fixed the problem

I 5 have informed us of security advisories

I Coordinating through US-CERT, ICS CERT, JP-CERT

Linux kernel has been patched.

More examples of bad randomness

RSA

I PGP database: factored 2 of 700,000 keys [Lenstra
et al. 2012]

I Taiwan Citizen Digital Certificates: 103 factored out of
2.26 million [Chou et al. 2012]

ECDSA

I Bitcoin: 133 of 187,000 addresses compromised from
nonrandom ECDSA signatures. [Moore Wustrow 2013]

Possible targeted attack?

I On traditional PCs, margin of safety for keys generated on
first boot is slim

Not observed to be exploitable (so far)

More examples of bad randomness

RSA

I PGP database: factored 2 of 700,000 keys [Lenstra
et al. 2012]

I Taiwan Citizen Digital Certificates: 103 factored out of
2.26 million [Chou et al. 2012]

ECDSA

I Bitcoin: 133 of 187,000 addresses compromised from
nonrandom ECDSA signatures. [Moore Wustrow 2013]

Possible targeted attack?

I On traditional PCs, margin of safety for keys generated on
first boot is slim

Not observed to be exploitable (so far)

Practical mitigations

Developers and manufacturers:

I Collect entropy more aggressively, add hardware sources

I Provide seed in factory

I Run for a while before generating cryptographic keys.

CAs:

I Test for repeated, factorable, and other weak keys.

Users:

I Check against known weak keys.

I Regenerate keys.

Lessons

Systems:
I New insights from taking a macroscopic view of

crypto practice.

I Cryptographic entropy is hard to get right.

Cryptography:
I Need to design cryptosystems resilient to random

number generation problems. (e.g. DSA nonce
deterministically generated from message, salt.)

Contributions

New methodology for discovering vulnerabilities without having to
reverse-engineer or study particular implementations.

In-depth analysis of root causes of weak keys in widely deployed
software.

Mitigations and suggestions for developers, manufacturers, users,
and researchers.

Mining your Ps and Qs: Widespread Weak Keys in Network
Devices Nadia Heninger, Zakir Durumeric, Eric Wustrow,
and J. Alex Halderman Usenix Security 2012

https://factorable.net

