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ELGAMAL ENCRYPTION & 
BASIC CONCEPTS



CDH / DDH

► Computational Diffie-Hellman Assumption :

is at most negligible.

For all efficient algorithms      :generator of "nite cyclic group .

► Decisional Diffie-Hellman Assumption :

is at most negligible.
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ELGAMAL PUBLIC KEY ENCRYPTION SCHEME

pk : X = Gx sk : x

Encryption

Decryption

r  $ Zp

R Gr

Y  MXr

Output :  = (Y,R)

R0  Rx

Output : M = Y/R0

{
pk : X = Gx[ ] [ ]

{

►     is the generator of some "nite cyclic group       of prime order p.

,
*

[ElGamal84]
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►  ►  

IND-CCA2 security: strongest security notion.



SECURITY OF ELGAMAL
[TsiounisYung98]

ElGamal is IND-CPA under DDH.

ElGamal is not IND-CCA2.

► It is malleable: it’s easy to transform a ciphertext into another one 
that decrypts to a related plaintext.

► An IND-CCA2 attacker can ask for a decryption to win the game.
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HOW TO TWEAK ELGAMAL 
ENCRYPTION TO REACH 
IND-CCA2 SECURITY?



TWO OPTIONS

► 1st option: Include hashing
► Example: DHIES - R is hashed through some random oracle to create a 

symmetric key used to encrypt the message.
► The resulting scheme is no longer malleable. 
► It requires a symmetric cipher. 

► 2nd option: Add a non interactive proof of knowledge. 
► Example: Schnorr Signed ElGamal (SS-EG) - Add a Schnorr signature as 

a PoK of r.

k = H(R,R0)

[AbdallaBellareRogaway01]

[Jakobsson98] [TsiounisYung98]

.



► ROM-PA for a public-key encryption scheme:

PLAINTEXT-AWARENESS [BellareRogaway94]
[BelDesaiPointchRog98]
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PLAINTEXT-AWARENESS & IND-CCA2 SECURITY

► PA & IND-CCA2? 

IND-CPA + PA

IND-CCA2

(

[BelDesaiPointchRog98]

The only way to produce a valid ciphertext is to apply the encryption 
algorithm to a public key and a message, rendering a decryption 

oracle available to an IND-CCA2 adversary useless.

► Intuitively



LIMITATIONS OF SS-EG

► So... 
► Adding a Schnorr signature to ElGamal encryption would render 

the scheme IND-CCA2.

► However...
► No proof that SS-EG reaches IND-CCA2 security in the ROM;
► SS-EG is not plaintext-aware. [SeurinT13]



SCHNORR SIGNED ELGAMAL ENCRYPTION

pk : X = Gx sk : x

Encryption

Decryption

R Gr

Y  MXr

R0  Rx

Output : M = Y/R0

{r, a $ Zp

s = a+ cr

Output :  = (Y,R, s, c)

, A Ga

c H(Y,R,A) c = H(Y,R,A)?
A GsR�c

pk : X = Gx[ ] [ ]

{
*



► Sketch of the proof: 
► Assume it is ROM-PA secure and build a reduction  that solves the 

CDH problem.

(X = Gx, R = Gr)

LH = ((Y,R,A), c)
L = ;

 = (Y,R, s, c)

M

Gxr = Y/M

SS-EG IS NOT PLAINTEXT AWARE

R

P

Output:

s, c $ Zp

Y  $ G
A = GsR�c

H(Y,R,A) = c

[SeurinT13]

*

pk : X = Gx



CPS-EG: A NEW VARIANT OF 
SIGNED ELGAMAL 
ENCRYPTION



Chaum Pedersen Signed ElGamal

► CPS-EG - De"nition

Add a CP 
signature as a
PoK of a DL 
equality : 

logG(R)=logX(R’).

pk : X = Gx sk : x

Encryption Decryption

R Gr

Y  MXr

R0  Rx

Output : M = Y/R0

{r, a $ Zp

s = a+ cr

, A Ga

?

, A0  Xa

c H(Y,R,R0 = Xr, A,A0)

Output :  = (Y,R,A, s)

, A0  Ax

Xs = A0R0c

c H(Y,R,R0, A,A0)

Gs = ARc

pk : X = Gx[ ] [ ]

{
?

[SeurinT13]
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COMPARISON - EFFICIENCY

Scheme pub., sec. 
key size

exponen./
encryption

exponen./
decryption

ciphertext 
size

ElGamal G, p 2 1 2G

SS-EG G, p 3 2 2G+2p

TDH-1 G, p 3 
(+ 2 online) 3 3G+2p

TDH-2 G, 2p 5 3 3G+2p

CPS-EG G, p 4 4 3G+p

[ShoupGen02]



(Y,R,R0, A,A0)
or ;

CPS-EG REACHES IND-CCA2 SECURITY

► CPS-EG is IND-CPA.
► CPS-EG is ROM-PA:

P
L 
LH

 = (Y,R,A, s)

(Y,R, ⇤, A, ⇤)

(
A

?
= GsR�ci

A0 ?
= XsR0�ci

...

LH

...

✓ c1
c2✓

?

... ...

Output:

M = Y/R0
or ?Output:

[SeurinT13]



► Caution when relying on Chaum & Pedersen’s signature:
► If one uses the pair (s,c) in the ciphertext instead of (A,s) the scheme 

does not remain IND-CPA.
►  

► The attacker tries both values for R’.

►  

► It simply needs to test the two hash queries corresponding to the two 
possible values for R’.

► This defect is avoided when using the pair (A,s).

, R0 = Y/Mb.

A0 XR0, s, c A0 = XsR0�c.

CAUTION

c = H(Y,R,R0, A,A0)

Part of the 
ciphertext

M0, M1 known
to the attacker.

[Poettering]

[SeurinT13-Full]

is deduced from and :



CPS-EG IS ANONYMOUS & STRONGLY ROBUST

► Anonymity
► A ciphertext does not reveal the public key under which it was 

created.

CPS-EG is ANON-CCA2 under the DDH.

► Strong Robustness
► Hard to create a ciphertext that decrypts to a valid plaintext under 2 

different secret keys.

CPS-EG is SROB-CCA when H is a collision-
resistant hash function.

[BellareBoldyrevaDesaiPointcheval01]

[AbdallaBellareNeven10]



COMPARISON - SECURITY

Scheme IND-CCA2 under ANON+SROB

ElGamal (CPA under DDH)

SS-EG ~ GGM

TDH-1 DDH

TDH-2 DDH

CPS-EG DDH ✓



TO SUM UP

► New variant of signed ElGamal encryption : CPS-EG
► IND-CCA2-secure (plaintext-aware) under DDH assumption;
► Reaches CCA2-anonymity and strong robustness.

► There exists a hybrid version of CPS-EG.
► Full (and revised) version of this paper:

► Eprint #2012/649. [SeurinT13-Full]
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ELGAMAL



(X = Gx, R = Gr, R0)

M0,M1

(MbR
0, R)

b⇤

b⇤ == b

ELGAMAL: IND-CPA UNDER DDH

R

Output:

A
b $ {0, 1}

► Sketch of the proof:
► Reduction solving the DDH prob. from an IND-CPA attacker.

[TsiounisYung98]

pk X



DHIES



1ST OPTION: HASHED VARIANT

► Example: DHIES

, R0 = Xr

k = H(R,R0)

Output :  = (R, c = Ek(M)) Output : M = Dk(c)

pk : X = Gx sk : x

Encryption

Decryption

r  $ Zp

R Gr R0  Rx{
pk : X = Gx[ ] [

{
]

k = H(R,R0)

► The resulting scheme is no longer malleable. 
► It requires a symmetric cipher.

[AbdallaBellareRogaway01]



SECURITY OF DHIES

► Strong Diffie-Hellman Assumption

It is hard to compute DH(Y,X), even when additional access to a 
decision oracle is given, which on input (Z,T) returns 1 if 

DH(X,Z)=T and 0 otherwise.



LEMMA



Fix X = G

x

, x 2 F
p

. Let R = G

r

, R

0
, A = G

a

, A

0 2 G be four group elements

such that r, a 6= 0 mod p, and R

0 6= R

x

or A

0 6= A

x

.

Then there is at most one integer c 2 Z
p

such that there exists s 2 Z
p

satisfying

both G

s

= AR

c

and X

s

= A

0
R

0c
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CPS-EG - USEFUL LEMMA



NO PROOF OF IND-CCA2 
SECURITY FOR SS-EG



► Schnorr signatures are not online-extractable
► Suppose there exists  a forger and build a reduction that solves the 

DL problem.
► The reduction has to rewind the forger to obtain two signatures of 

the same message under the same public key.

SCHNORR SIGNATURES & FORKING LEMMA

R = GsY �c = Gs0Y �c0

dlog(Y ) =

s� s0

c� c0



NO PROOF THAT SS-EG IS IND-CCA2

► IND-CCA2 security & SS-EG
► Schnorr signatures are not online-extractable.
► Setting: We consider a(ny) reduction that would use an IND-CCA2 

adversary.
► The reduction has to answer hash queries and decryption queries.
► Possible for the adversary to construct a list of speci"c ciphertexts 

and hash queries, where one ciphert./h. query is obtained from the 
previous ones.

► If the attacker then sends its list of queries to the reduction, in the 
exact reverse order, then the reduction has to rewind the forger 
exponentially.



ROBUSTNESS AND 
ANONYMITY



WEAK ROBUSTNESS AND STRONG ROBUSTNESS

► Strong and Weak Robustness
► De!nition [Weak robustness]: Hard to create a ciphertext that 

decrypts under 2 different secret keys. 
► De!nition [Strong Robustness]: Hard to produce a plaintext that, once 

encrypted under some public key, decrypts to a valid plaintext 
under another secret key.

► Robustness can always be achieved
► How? Append public key of the receiver to the ciphertext.

[AbdallaBellareNeven10]



ROBUSTNESS COMBINED WITH ANONYMITY

► Robustness:
► De!nition [Robustness]: Hard to create a ciphertext that decrypts 

under 2 different secret keys. 

► Anonymity:
► De!nition [Anonymity]: A ciphertext does not reveal the public key 

under which it was created.

► Anonymity + Robustness:
► Help make encryption more resistant to misuse.
► Ex. Anonymously send a ciphertext to a particular target of a 

larger group. Who’s the target? Solution: Robustness.
► First solution for  robustness not ok.



HYBRID VARIANT HCPS-EG



HYBRID VERSION



PROPERTIES OF HCPS-EG

► IND-CCA2 secure in the ROM under CDH.
► Using the weakest form of security for the data encapsulation 

mechanism (DEM): ciphertext indistinguishability under one-time 
attacks (IND-OT).

► Example: With AES in counter mode.

► Anonymous against CCA2-attacks under CDH.
► Strongly robust.
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Introduction and Motivation
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Introduction to leakage-resilient PKE

• IND-CCA2 security assumes that the secret key sk is totally
randomly distributed, i.e., Entropy(sk) = |sk|.

• Side-channel attack, i.e., “memory attacks”, may leak
information about the secret key sk, i.e., Entropy(sk) ≤ |sk|.

• Leakage-resilient public key encryption (PKE) schemes are
designed to resist key leakage.

• We will consider IND-CCA2 security in bounded key-leakage
model, where the total amount of leaked information about the
key is bounded by some parameter λ (bits).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 3 of 40



Introduction to leakage-resilient PKE

• IND-CCA2 security assumes that the secret key sk is totally
randomly distributed, i.e., Entropy(sk) = |sk|.

• Side-channel attack, i.e., “memory attacks”, may leak
information about the secret key sk, i.e., Entropy(sk) ≤ |sk|.

• Leakage-resilient public key encryption (PKE) schemes are
designed to resist key leakage.

• We will consider IND-CCA2 security in bounded key-leakage
model, where the total amount of leaked information about the
key is bounded by some parameter λ (bits).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 3 of 40



Introduction to leakage-resilient PKE

• IND-CCA2 security assumes that the secret key sk is totally
randomly distributed, i.e., Entropy(sk) = |sk|.

• Side-channel attack, i.e., “memory attacks”, may leak
information about the secret key sk, i.e., Entropy(sk) ≤ |sk|.

• Leakage-resilient public key encryption (PKE) schemes are
designed to resist key leakage.

• We will consider IND-CCA2 security in bounded key-leakage
model, where the total amount of leaked information about the
key is bounded by some parameter λ (bits).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 3 of 40



Introduction to leakage-resilient PKE

• IND-CCA2 security assumes that the secret key sk is totally
randomly distributed, i.e., Entropy(sk) = |sk|.

• Side-channel attack, i.e., “memory attacks”, may leak
information about the secret key sk, i.e., Entropy(sk) ≤ |sk|.

• Leakage-resilient public key encryption (PKE) schemes are
designed to resist key leakage.

• We will consider IND-CCA2 security in bounded key-leakage
model, where the total amount of leaked information about the
key is bounded by some parameter λ (bits).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 3 of 40



Related Works

• In 2005, Akavia et.al.[AGV09] showed that the lattice-based
PKE scheme proposed by Regev [R05] is resilient to any leakage
of L/polylog(L) bits, with L the bit length of the secret key.

• In 2009, Noar and Segev [NS09] suggested that any PKE based
on hash proof systems [CS02] can be made secure against
chosen-plaintext key leakage attacks (IND-KL-CPA) with help of
randomness extractors.

• For chosen-ciphertext key leakage attacks (IND-KL-CCA2),
Naorand Segev [NS09] proved that Noar-Yung ’s “double
encryption” paradigm works as well.

IND-KL-CPA secure PKE1 + IND-KL-CPA secure PKE2 + NIZK
⇓

IND-KL-CCA2 secure PKE

The key leakage λ is also up to L(1− o(1)).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 4 of 40



Related Works

• In 2005, Akavia et.al.[AGV09] showed that the lattice-based
PKE scheme proposed by Regev [R05] is resilient to any leakage
of L/polylog(L) bits, with L the bit length of the secret key.

• In 2009, Noar and Segev [NS09] suggested that any PKE based
on hash proof systems [CS02] can be made secure against
chosen-plaintext key leakage attacks (IND-KL-CPA) with help of
randomness extractors.

• For chosen-ciphertext key leakage attacks (IND-KL-CCA2),
Naorand Segev [NS09] proved that Noar-Yung ’s “double
encryption” paradigm works as well.

IND-KL-CPA secure PKE1 + IND-KL-CPA secure PKE2 + NIZK
⇓

IND-KL-CCA2 secure PKE

The key leakage λ is also up to L(1− o(1)).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 4 of 40



Related Works

• In 2005, Akavia et.al.[AGV09] showed that the lattice-based
PKE scheme proposed by Regev [R05] is resilient to any leakage
of L/polylog(L) bits, with L the bit length of the secret key.

• In 2009, Noar and Segev [NS09] suggested that any PKE based
on hash proof systems [CS02] can be made secure against
chosen-plaintext key leakage attacks (IND-KL-CPA) with help of
randomness extractors.

• For chosen-ciphertext key leakage attacks (IND-KL-CCA2),
Naorand Segev [NS09] proved that Noar-Yung ’s “double
encryption” paradigm works as well.

IND-KL-CPA secure PKE1 + IND-KL-CPA secure PKE2 + NIZK
⇓

IND-KL-CCA2 secure PKE

The key leakage λ is also up to L(1− o(1)).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 4 of 40



Related Works

• In 2005, Akavia et.al.[AGV09] showed that the lattice-based
PKE scheme proposed by Regev [R05] is resilient to any leakage
of L/polylog(L) bits, with L the bit length of the secret key.

• In 2009, Noar and Segev [NS09] suggested that any PKE based
on hash proof systems [CS02] can be made secure against
chosen-plaintext key leakage attacks (IND-KL-CPA) with help of
randomness extractors.

• For chosen-ciphertext key leakage attacks (IND-KL-CCA2),
Naorand Segev [NS09] proved that Noar-Yung ’s “double
encryption” paradigm works as well.

IND-KL-CPA secure PKE1 + IND-KL-CPA secure PKE2 + NIZK

⇓
IND-KL-CCA2 secure PKE

The key leakage λ is also up to L(1− o(1)).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 4 of 40



Related Works

• In 2005, Akavia et.al.[AGV09] showed that the lattice-based
PKE scheme proposed by Regev [R05] is resilient to any leakage
of L/polylog(L) bits, with L the bit length of the secret key.

• In 2009, Noar and Segev [NS09] suggested that any PKE based
on hash proof systems [CS02] can be made secure against
chosen-plaintext key leakage attacks (IND-KL-CPA) with help of
randomness extractors.

• For chosen-ciphertext key leakage attacks (IND-KL-CCA2),
Naorand Segev [NS09] proved that Noar-Yung ’s “double
encryption” paradigm works as well.

IND-KL-CPA secure PKE1 + IND-KL-CPA secure PKE2 + NIZK
⇓

IND-KL-CCA2 secure PKE

The key leakage λ is also up to L(1− o(1)).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 4 of 40



Related Works

• In 2005, Akavia et.al.[AGV09] showed that the lattice-based
PKE scheme proposed by Regev [R05] is resilient to any leakage
of L/polylog(L) bits, with L the bit length of the secret key.

• In 2009, Noar and Segev [NS09] suggested that any PKE based
on hash proof systems [CS02] can be made secure against
chosen-plaintext key leakage attacks (IND-KL-CPA) with help of
randomness extractors.

• For chosen-ciphertext key leakage attacks (IND-KL-CCA2),
Naorand Segev [NS09] proved that Noar-Yung ’s “double
encryption” paradigm works as well.

IND-KL-CPA secure PKE1 + IND-KL-CPA secure PKE2 + NIZK
⇓

IND-KL-CCA2 secure PKE

The key leakage λ is also up to L(1− o(1)).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 4 of 40



Related Works

• In 2005, Akavia et.al.[AGV09] showed that the lattice-based
PKE scheme proposed by Regev [R05] is resilient to any leakage
of L/polylog(L) bits, with L the bit length of the secret key.

• In 2009, Noar and Segev [NS09] suggested that any PKE based
on hash proof systems [CS02] can be made secure against
chosen-plaintext key leakage attacks (IND-KL-CPA) with help of
randomness extractors.

• For chosen-ciphertext key leakage attacks (IND-KL-CCA2),
Naorand Segev [NS09] proved that Noar-Yung ’s “double
encryption” paradigm works as well.

IND-KL-CPA secure PKE1 + IND-KL-CPA secure PKE2 + NIZK
⇓

IND-KL-CCA2 secure PKE

The key leakage λ is also up to L(1− o(1)).

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 4 of 40



• In 2010, Dodis et.al. [DHLW10] exploited more efficient ways to
achieve IND-KL-CCA2 security.

• They proposed a new concept of true-simulation extractable
NIZK arguments, and gave a construction of
IND-KL-CCA2-secure PKE from an IND-KL-CPA secure one
together with a strong f -true-simulation extractable NIZK
argument. The key leakage λ is also up to L(1− o(1)).

IND-KL-CPA secure PKE + strong f -true-simulation extractable NIZK
⇓

IND-KL-CCA2 secure PKE

The key leakage λ is also up to L(1− o(1)).
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Practical PKE with IND-KL-CCA2 Security
• The variant of Cramer-Shoup cryptosystem (“KL-CS-PKE”)
presented by Naor-Segev [NS,CRYPTO09] is the most practical
one.

x1, x2︸ ︷︷ ︸
c

, y1, y2︸ ︷︷ ︸
d

z1, z2︸ ︷︷ ︸
h

⇓ ⇓
consistence check one-time key

Encryption Decryption

u1 = gr
1 , u2 = gr

2 , r ∈ Z∗
q , s ∈ {0, 1}t ; α = T(u1, u2, e, s);

e = M ⊕ Ext(hr , s); If v 6= ux1+y1α
1 ux2+y2α

2 , output ⊥;

α = T(u1, u2, e, s); v = crdrα; otherwise M = e ⊕ Ext(uz1
1 uz2

2 , s);

Output (u1, u2, s, e, v). Output M .

Figure: The KL-CS-PKE Scheme by Naor-Segev.

• It uses extractors to deal with key leakage.
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Undesirable dependency between λ and m: λ+ m ≤ log2 q − ω(log κ).
• m is the bit length of plaintext;
• q is the order of the group that CS is based.

Naor and Segev noted this and called for further refinement.
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Our contributions

• As a response to the calling-for of Naor and Segev [NS09], this
work answers the open question proposed in [NS09], and follows a
new technical line.

• Our proposal is almost efficient as the CS-PKE, and we show it is
λ ≤ log q − ω(log κ) leakage resilient. In addition, it has the
following two advantages:

• The plaintext space is the group G, enjoying a constant size q. It
is independent of the leakage parameter λ.

• The security reduction is tighter than that of KL-CS-PKE [NS09].
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Preliminaries
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Statistical Distance, Min-Entropy, and Leftover
Hash Lemma

Definition
Let X be a random variable, which takes value from a finite set X .

• The guessing probability of X is defined as
Pg(X) = maxx∈X Pr[X = x].

• The min entropy of X is defined as H∞(X) := − logPg(X). The
average min-entropy of X given Y is defined as the logarithm of
the average guessing probability of X given Y , i.e.,

H̃∞(X |Y ) := − log
(
Ey←Y [2−H∞(X|Y =y)].

)

• The statistic distance of two distributions of variable X and Y is
defined as

SD(X ,Y ) = 1
2
∑
a∈X
|Pr[X = a]− Pr[Y = a]|.

Lemma

[D08] Let Y ,Z be random variables and Y takes 2r possible values.
Then

H̃∞(X |(Y ,Z )) ≥ H̃∞(X |Z )− r .
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Universal Hash and Examples
Definition
(Universal hash functions) A family of functions
{Hk : X → Y, k ∈ K} is universal if

Prk∈K [Hk(x1) = Hk(x2)] ≤ 1
|Y|

.

for all x1 6= x2 with x1, x2 ∈ X .

Shoup05 : Universal hash {Hk1,k2,··· ,kl : Fl+1
q → Fq, ki ∈ Fq, i = 1, 2, · · · , l}

Hk1,k2,··· ,kl (x0, x1, · · · , xl) = x0 + k1x1 + · · ·+ klxl .

All operations are in the prime field Fq.
• Let G be a multiplicative group of prime order q with generator

g. Then (Zq,+) ∼= (G, ·) with bijection x → gx .
• The family {Hk1,k2,··· ,kl : Gl+1 → G, ki ∈ Zq, i = 1, 2, · · · , l} is
universal, where

Hk1,k2,··· ,kl (g0, g1, · · · , gl) = g0 · gk1
1 · . . . · g

kl
l (= gx0+k1x1+···+klxl ),

with gi = gxi for i = 0, 1, · · · , l.
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Leftover Hash Lemma[Dodis08]

Lemma
Assume {Hk : X → Y}k∈K is a family of universal hash functions. For
any random variables X ∈ X , Z ∈ Z, and K ← K,

SD((Hk(X),K ), (UY ,K )) ≤ 1
2
√

Pc(X)|Y| ≤ 1
2

√
2−H∞(X)|Y|,

and
SD((Hk(X),K ,Z ), (UY ,K ,Z )) ≤ 1

2

√
2−H̃∞(X|Z)|Y|,

where UY denotes a uniform distribution over Y.

Liu, Weng and Zhao Efficient KL-CS-PKE Slide 12 of 40



Extractors with Universal Hashing [Dodis08]
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IND-KL-CCA2 Security
KL-CCA2 Game: Adversary A v.s. its environment

Setup A queries the key generation oracle. The key generation
oracle computes (PK,SK) and responds with PK.

Morning Besides normal queries to decryption oracle Dec(sk, ·),
A is also allowed to make queries to a key-leakage
oracle KL(sk), as follows: A can adaptively query the
oracle KL(sk) with any function fi , i ≥ 1, and then gets
back fi(sk).

Noon A submits two messages (M0,M1) of equal length to the
encryption oracle.
The encryption oracle picks a random bit σ ∈ {0, 1}
and responds with the “target" ciphertext
ψ∗ = Encrypt(PK,mσ).

Afternoon A continues to query the decryption oracle with
arbitrary ciphertext ψ under the restriction: ψ 6= ψ∗,
but the KL(sk) oracle access is denied in the afternoon.

Guess A outputs a guess bit σ̂ ∈ {0, 1}.
The KL-CCA advantage of A against a PKE scheme:

AdvA = |Pr[σ = σ̂]− 1/2|.
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Overview of KL-CS-PKE by Naor and Segev
[CRYPTO09]

Key Generation A group (G, q, g). T: TCR hash function.

{
secret key: x1, x2, y1, y2, z1, z2 ∈R Zq
public key: c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h = gz1

1 gz2
2 .

PK = (G, q, g,T, c, d, h),SK = (x1, x2, y1, y2, z1, z2).

Encryption Decryption

u1 = gr
1 , u2 = gr

2 , r ∈ Z∗
q , s ∈ {0, 1}t ; α = T(u1, u2, e, s);

e = M ⊕ Ext(hr , s); If v 6= ux1+y1α
1 ux2+y2α

2 , output ⊥;

α = T(u1, u2, e, s); v = crdrα; otherwise M = e ⊕ Ext(uz1
1 uz2

2 , s);

Output (u1, u2, s, e, v). Output M .

Figure: The KL-CS-PKE Scheme by Naor-Segev.
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Overview of KL-CS-PKE by Naor and Segev
[CRYPTO09]

• The key leakage of CS-PKE brings two effects:

• The information leakage related to (x1, x2, y1, y2) makes the
security reduction looser than that of CS-PKE.

• The information leakage related to (z1, z2) makes it unsuitable to
mask the plaintext directly. Naor and Segev employed an
extractor Ext to distill a random shorter key from the ephemeral
key uz1

1 uz2
2 that is in turn used to mask the plaintext.

• m ≤ log2 q − λ− ω(log κ).
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Our Proposal
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New Idea and Key Observation

• The new idea is that all the three parts of secret key, namely
(x1, x2), (y1, y2) and (z1, z2), are involved both in the ciphertext
consistence check and the random distillation to mask plaintexts.

• The key observation is:
• The three parts of secret key altogether imply larger average
min-entropy, even conditioned on all the leaked information
bounded by λ ≤ log q − ω(log κ). Larger min-entropy implies
more randomness can be distilled.

• On the other hand, we use a special universal hash function (i.e.,
Hs(a, b) = a · bs, for a, b ∈ G and s ∈ Z∗

q) as an extractor, where
a = (cd)r and b = hr for r ∈ Z∗

q with our proposal, which allows
plaintext space to be G, and makes the security proof neat and
tighter.

• The actual design of our proposal was also carefully guided by
the underlying analysis, particularly for ensuring non-zero matrix
determinant.
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Overview of Our Proposal

Encryption Decryption

u1 = gr
1 , u2 = gr

2 , r , s ∈ Z∗q; α = T (u1, u2, e, s);

e = M · (cd)r · hrs; If v 6= ux1+y1α+z1
1 ux2+y2α+z2

2 , output ⊥;

α = T (u1, u2, e, s); otherwise

v = (c · h)r · drα; M = e · u−(x1+y1+z1s)
1 u−(x2+y2+z2s)

2 ;

Output (u1, u2, s, e, v) Output M .

Figure: Our proposal
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Proof Outline
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Main Theorem

Theorem
The above scheme is (log q, λ, ε)-IND-KL-CCA2 secure public key
encryption scheme. Here q is the prime order of the group G that
PKE is based on, λ ≤ log q − ω(log κ) (more precisely,
λ ≤ log q − 2 log 1

δ + 2 where δ = 2λ/2−1√q )) and

ε ≤ AdvDDH (κ) + AdvTCR(κ) + 2λQ(κ)
q −Q(κ) + 2λ/2−1

√q ,

where Q(κ) is the number of decryption queries.

• Plaintext length m = log q;
• Leakage parameter λ = log q − o(1).
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Security Proof

We proceed with a series of games played between a simulator D and
an adversary A, and show that Game i and Game i + 1 are
indistinguishable except with negligible probability, i = 0, 1, 2, 3, 4, 5.
We define Si as the event that the adversary A outputs a correct
guess of b.

Game 0: The original KL-CCA2 game.
Game 1: The same as Game 0 except for the generation of the

challenge ciphertext ψ∗. In this game, the simulator
generates the target ciphertext ψ∗ = (u∗1 , u∗2 , e∗, s∗, v∗)
with its secret key SK as follows.
e = M · u−(x1+y1+z1s)

1 u−(x2+y2+z2s)
2 = M · (cd)r · hrs;

v = ux1+y1α+z1
1 ux2+y2α+z2

2 = (c · h)r · drα.

The change is only conceptual, and thus Pr[S1] = Pr[S0].
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Game 2: Same as Game 1 except for the generation of the
challenge ciphertext C ∗ = (u∗1 , u∗2 , e∗, s∗, v∗), where
u∗1 = gr∗1

1 , u∗2 = gr∗2
2 , with r∗1 , r∗2 chosen uniformly at

random from Z∗q.

• In Game 1: (g1, g2, u∗1 , u∗2) is a DDH tuple, i.e, u∗1 = gr
1 , u∗2 = gr

2 .

• In Game 2: (g1, g2, u∗1 , u∗2) is a random tuple, i.e,
u∗1 = gr∗1

1 , u∗2 = gr∗2
2 .

By the DDH assumption, |Pr[S2]− Pr[S1]| is negligible.
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Game 3: Same as Game 2 except that the simulator applies a
special rejection rule. Let F denote the event that there
exists a decryption query of the form
C = (u1, u2, e, s, v) such that C 6= C ∗ but
T (u1, u2, e, s) = T (u∗1 , u∗2 , e∗, s∗), which means a hash
collision occurs. The simulator D rejects the
corresponding queried ciphertext C when F occurs.

By the TCR property of T , |Pr[S3]− Pr[S2]| is
negligible.
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Game 4: Same as Game 3, except that the simulator applies a
special rejection rule. If A asks for decryption of an
invalid ciphertext C = (u1, u2, e, s, v), i.e., (g1, g2, u1, u2)
is not a DDH tuple, the simulator D rejects with ⊥ and
the game aborts.

• In Game 3: C = (u1, u2, e, s, v) is rejected if it is
not consistent, i.e., v 6= ux1+y1α

1 ux2+y2α
2 .

• In Game 4: C = (u1, u2, e, s, v) is rejected if it is
not consistent, i.e. (logg1 u1 6= logg2 u2).

Let F ′ be the event that D outputs ⊥ for a consistent
but valid ciphertext, we have:
|Pr[S4| 6= F ′]− Pr[S3| 6= F ′]| ≤ Pr[F ′],
|Pr[S4]− Pr[S3]| ≤ Pr[F ′].

Below, we analyze the probability that the event F ′
occurs.
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Analyzing the Event F ′
Let β = logg1 g2. Firstly, note that by submitting valid ciphertexts to
the decryption oracle, the adversary only learns linear combinations of
the constraints logg1 c = x1 + βx2, logg1 d = y1 + βy2 and
logg1 h = z1 +βz2, which are already known from the public-keys. Also
note that q, g1, g2,T , u∗1 , u∗2 , s∗, σ all are independent of the secret key.

From the view of the attack and the λ-bit key leakage, what can be
learnt about the secret-keys can be formulated by the following
equations, where

logg1 c = x1 + βx2

logg1 d = y1 + βy2

logg1 h = z1 + βz2

logg1 v∗ = r∗1 x1 + r∗2βx2 + α∗r∗1 y1 + α∗r∗2βy2 + r∗1 z1 + r∗2βz2

logg1 e∗/Mb = r∗1 x1 + r∗2βx2 + r∗1 y1 + r∗2βy2 + s∗r∗1 z1 + s∗r∗2βz2;
λ-bit leakage of (x1, x2, y1, y2, z1, z2).
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As the secret key elements (x1, x2, y1, y2, z1, z2) are uniformly chosen
from Z6

q, according to the average min-entropy theory, we have

H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h,C ∗,Mb, λ-leakage)
= H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h, u∗1 , u∗2 , s∗, v∗, e∗/Mb, λ-leakage)
= H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h, v∗, e∗/Mb, λ-leakage) (1)
≥ log q − λ. (2)

Let C = (u1, u2, e, s, v) be the first invalid ciphertext submitted by A.
Let r1 = logg1 u1 and r2 = logg1 u2, then r1 6= r2. We must have:

logg1 c = x1 + βx2;
logg1 d = y1 + βy2;
logg1 h = z1 + βz2;
logg1 v∗ = r∗1 x1 + r∗2βx2 + α∗r∗1 y1 + α∗r∗2βy2 + r∗1 z1 + r∗2βz2;

logg1 e∗/Mb = r∗1 x1 + r∗2βx2 + r∗1 y1 + r∗2βy2 + s∗r∗1 z1 + s∗r∗2βz2;
logg1 v = r1x1 + r2βx2 + αr1y1 + αr2βy2 + r1z1 + r2βz2.

(3)
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Let A=


1 β 0 0 0 0
0 0 1 β 0 0
0 0 0 0 1 β
r∗1 r∗2β α∗r∗1 α∗r∗2β r∗1 r∗2β
r∗1 r∗2β r∗1 r∗2β s∗r∗1 s∗r∗2β
r1 r2β αr1 αr2β r1 r2β

 . This is distilled

into:


1 β 0 0 0 0
0 0 1 β 0 0
0 0 0 0 1 β
r∗1 r∗2β α∗r∗1 α∗r∗2β r∗1 r∗2β
r∗1 r∗2β r∗1 r∗2β s∗r∗1 s∗r∗2β
r1 r2β αr1 αr2β r1 r2β

·


x1
x2
y1
y2
z1
z2

 =


logg1 c
logg1 d
logg1 h
logg1 v∗

logg1 e∗/Mb
logg1 v

 .

(4)

The determinant of matrix A is given by

det(A) = β3(r∗1 − r∗2 )2(r1 − r2)(α∗ − α)(s∗ − 1).

Then det(A) 6= 0 except with a negligible probability 1/q. Hence Eq.
(4) is an injective function.
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An injective function preserves its min-entropy. Then

H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h,C ∗,Mb, λ-leakage)

= H̃∞((c, d, h, v∗, e∗/Mb, v)|c, d, h,C ∗,Mb, λ-leakage)

= H̃∞(v|c, d, h,C ∗,Mb, λ-leakage) ≤ log q − λ.

Therefore, the first invalid ciphertext C is accepted by D with
probability at most 2λ/q.
Similarly, the i-th invalid ciphertext is accepted by D with probability
at most 2λ/(q − i + 1) ≤ 2λ/(q −Q(κ)), where Q(κ) is the total
number of decryption queries.
By the union bound, we have

Pr[F ′] ≤ 2λQ(κ)
q −Q(κ)

and
|Pr[S4]− Pr[S3]| ≤ Pr[F ′] ≤ 2λQ(κ)

q −Q(κ) .
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Game 5: Same as Game 4 except for the generation of the
challenge ciphertext C ∗ = (u∗1 , u∗2 , e∗, s∗, v∗). The only
change is that e∗ is replaced with an element ê chosen
uniformly at random from G.

By definition, Pr[S5] = 1
2 .

What left to establish in the rest is to show:
|Pr[S5]− Pr[S4]| is negligible.
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|Pr[S5]− Pr[S4]| Is Negligible

• Since all the invalid ciphertext queries are rejected, decryption
oracle cannot help gain more information about the secret key.

• The only information related to secret key known by the
adversary is still characterized by the public key elements
(c, d, h), the λ-bit leakage, and (v∗, e∗) in C ∗.

• Next, we will show that e∗/Mb is in fact the output a
(2 log2 q − λ, δ) extractor with (u∗1)x1+y1(u∗2)x2+y2︸ ︷︷ ︸

a

and

(u∗1)z1(u∗2)z2︸ ︷︷ ︸
b

as input.

• Given the information c, d, h, v∗ and the λ-bit leakage, we
determine the average min-entropy

H̃∞

(u∗1)x1+y1(u∗2)x2+y2︸ ︷︷ ︸
a

, (u∗1)z1(u∗2)z2︸ ︷︷ ︸
b

| c, d, h, v∗, λ-leakage

 .
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Let us check the following equations in x1, x2, y1, y2, z1, z2.
logg1 c = x1 + βx2;
logg1 d = y1 + βy2;
logg1 h = z1 + βz2;
logg1 v∗ = r∗1 x1 + r∗2βx2 + α∗r∗1 y1 + α∗r∗2βy2 + r∗1 z1 + r∗2βz2;

logg1

(u∗1)x1+y1(u∗2)x2+y2︸ ︷︷ ︸
a

 = r∗1 x1 + r∗2βx2 + r∗1 y1 + r∗2βy2;

logg1

(u∗1)z1(u∗2)z2︸ ︷︷ ︸
b

 = r∗1 z1 + r∗2βz2.

(5)

Equivalently,
1 β 0 0 0 0
0 0 1 β 0 0
0 0 0 0 1 β
r∗1 r∗2β α∗r∗1 α∗r∗2β r∗1 r∗2β
r∗1 r∗2β r∗1 r∗2β 0 0
0 0 0 0 r∗1 r∗2β


︸ ︷︷ ︸

B

·


x1
x2
y1
y2
z1
z2

 =


logg1 c
logg1 d
logg1 h
logg1 v∗
logg1 a
logg1 b

 .

(6)
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r∗1 r∗2β r∗1 r∗2β 0 0
0 0 0 0 r∗1 r∗2β


︸ ︷︷ ︸

B

·


x1
x2
y1
y2
z1
z2

 =


logg1 c
logg1 d
logg1 h
logg1 v∗
logg1 a
logg1 b

 .
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The determinant of the above matrix B is −β3(α∗ − 1)(r∗1 − r∗2 )3 6= 0.

The function (x1, x2, y1, y2, z1, z2)→ (c, d, h, v∗, a, b) is injective, and
applying an injective function to a function preserves its min-entropy.
Hence,

H̃∞ (a, b | c, d, h, v∗, λ-leakage) (7)
= H̃∞

(
(u∗1)x1+y1(u∗2)x2+y2 , (u∗1)z1(u∗2)z2 |c, d, h, v∗, λ-leakage

)
(8)

= H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h, v∗, λ-leakage) (9)
≥ H̃∞((x1, x2, y1, y2, z1, z2)|c, d, h, v∗)− λ ≥ 2 log q − λ, . (10)
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• Applying the universal hash function Hs∗ : G×G→ G (i.e,
Hs∗(a, b) = a · bs∗ where a = (u∗1)x1+y1(u∗2)x2+y2 and
b = (u∗1)z1(u∗2)z2) as a (2 log2 q − λ, δ) extractor to the two
variables (u∗1)x1+y1(u∗2)x2+y2 , (u∗1)z1(u∗2)z2 , we have

e∗/Mb = Hs∗
(
(u∗1)x1+y1(u∗2)x2+y2 , (u∗1)z1(u∗2)z2

)
(11)

= (u∗1)x1+y1(u∗2)x2+y2 ((u∗1)z1(u∗2)z2)s∗ (12)
= (u∗1)x1+y1+z1s∗ · (u∗2)x2+y2+z2s∗ . (13)

• According to the generalized leftover lemma,
SD(e∗,U ) ≤ 1

2

√
q · 2λ

q2 = 2λ/2−1√q .

• Hence, |Pr[S5]− Pr[S4]| ≤ δ = 2λ/2−1√q
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Performance
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Parameters of CS-PKE, KL-CS-PKE and Our
Proposal

Let ε1 = AdvDDH (κ), ε2 = AdvTCR(κ), and |M | denote the plaintext
bit-length. Let λ be the amount of leakage bits, and Q(κ) be the
number of decryption queries.

Scheme |M | leakage AdvIND-KL-CCA2
PKE,A (1κ)

CS [CS03] log q — ε1 + ε2 + Q(κ)
q−Q(κ)

KL-CS [NS09]
m λ ε1 + ε2 + 2λQ(κ)

q−Q(κ) + 2(λ+m)/2−1
√q

(m + λ ≤ log q − ω(log κ))

Ours
log q λ ε1 + ε2 + 2λQ(κ)

q−Q(κ) + 2λ/2−1√q

(λ ≤ log q − ω(log κ))

Table: Parameters of CS-PKE, KL-CS-PKE and our proposals
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Efficiency and Ciphertext Sizes
of CS-PKE, KL-CS-PKE and Our Proposal

Scheme KeyGen Enc Dec Ciphertext Size

CS [CS03] 3 SE 3 Ex +1 S 2 SE 4G

KL-CS [NS09] 3 SE 3 Ex + 1 SE+ 1 Ext 2 SE 4G + t-bit

Ours 3 SE 2 Ex + 2 SE 2 SE 4G + log q-bit

Table: Efficiency and ciphertext sizes of CS-PKE, KL-CS-PKE and our
proposal
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Conclusion

• A response to Naor and Segev’s calling for further refinement of
key leakage resilient variant of Cramer-Shoup Cryptosystem in
order to get rid of the dependency between plaintext length m
and leakage parameter λ.

• With some careful observations and a calculation guided design,
our proposal follows a new line:

• The whole secret key is involved in both ciphertext consistence
checking and randomness distillation;

• A special universal hashing based extractor is employed;
alternatively, randomness extractor is only implicitly used with
our proposal).
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• Our scheme is IND-KL-CCA2 secure with a tighter reduction,
λ = log q − ω(log κ) leakage resilient, and the plaintext space is
the whole group that the scheme is based on and is independent
of the leakage parameter. The performance of our proposal is
comparable to the original Cramer-Shoup cryptosystem.

• To the best of our knowledge, the first leakage-resilient CS-type
cryptosystem whose plaintext length is independent of the key
leakage parameter, and is also the most efficient IND-CCA2 PKE
scheme resilient to up to log q − ω(log κ) leakage.
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Thanks
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