Introduction 0000	Clavier <i>et al.'s</i> Paper 0000000	This Paper 000000	Conclusion 000

Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations

Aurélie Bauer Éliane Jaulmes Emmanuel Prouff <u>Justine Wild</u>

ANSSI

Session ID: CRYP-T18 Session Classification: Advanced

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Justine Wild

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion

1 Introduction

2 Clavier et al.'s Paper

- Attack: Horizontal Correlation Analysis
- Countermeasures against Horizontal Attacks

3 This Paper

- Attacks on Clavier et al. Countermeasures
- New Countermeasure against Horizontal Attacks
- Simulation Results of Our Attacks

4 Conclusion

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff,	Justine Wild
Horizontal and Vertical Side-Channel Attacks agai	nst Secure RSA Implementations

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion

1 Introduction

2 Clavier et al.'s Paper

- Attack: Horizontal Correlation Analysis
- Countermeasures against Horizontal Attacks

3 This Paper

- Attacks on Clavier et al. Countermeasures
- New Countermeasure against Horizontal Attacks
- Simulation Results of Our Attacks

4 Conclusion

5SI 17

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Justine Wild	ANS
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	3/

Introduction	Clavier et al.'s Paper	This Paper	Conclusion
•000			

Side-Channel Analysis On RSA

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>

Introduction	Clavier et al.'s Paper	This Paper	Conclusion
•000			

Side-Channel Analysis On RSA

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Justine Wild

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion
0000			

Side-Channel Analysis On RSA

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Justine Wild

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Justine Wild

Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations

ANSSI 4 / 17

Regular Square & Multiply

Ø

Aurélie Bauer,	Éliane Jaulmes,	Emmanuel Prouff,	Justine Wild	
Horizontal and	Vertical Side-Cl	hannel Attacks agair	st Secure RSA	Implementations

Intr 000	oduction	Clavier <i>et al.'s</i> Paper 0000000		This Paper 000000	Conclusion
	Exponentiation	$c = m^d \mod d$	N,	secret $d = (1, d_{\ell-2},, d_0)_2$	
	Square & Multi	ply Atomic		Example: $d = 1011$	
	$\begin{aligned} R_0 &= 1, \ R_1 = m, \ i = \\ \text{while } i \leq 0 \ \text{do} \\ R_0 &= R_0 \times R_k \\ k &= k \oplus d_i \\ i &= i - \neg k \\ \text{Return } R_0 \end{aligned}$	= <i>l</i> -1, <i>k</i> =0		 <i>R</i>₀ = 1 × 1, <i>d</i>₃ = 1, <i>k</i> = 1, <i>i</i> = 3 <i>R</i>₀ = 1 × <i>m</i>, <i>d</i>₃ = 1, <i>k</i> = 0, <i>i</i> = 	2
	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ \hline \\ \hline \\ \hline$				

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff,	Justine Wild
Horizontal and Vertical Side-Channel Attacks aga	inst Secure RSA Implementations

Regular Square & Multiply

Introduction 000●	Clavier <i>et al.'s</i> Paper 0000000	This Paper 000000	Conclusion
Exponentiation	$n: c = m^d \mod N$, secret $d = (1, d_{\ell-2},, d_0)_2$	
Square & Multi	ply Atomic	Example: $d = 1011$	
$\begin{aligned} R_0 = 1, & R_1 = m, i \\ \text{while } i \leq 0 \text{ do} \\ R_0 = R_0 \times R_k \\ & k = k \oplus d_i \\ & i = i - \neg k \\ \text{Return } R_0 \end{aligned}$	= l - 1, k = 0	▶ $R_0 = 1 \times 1, \ d_3 = 1, \ k = 1, \ i = 3$ ▶ $R_0 = 1 \times m, \ d_3 = 1, \ k = 0, \ i =$ ▶ $R_0 = m \times m, \ d_2 = 0, \ k = 0, \ i =$	2 = 1
$\begin{array}{c} \longleftrightarrow \\ \hline \\$			

Aurélie Bauer, É	liane Jaulmes, Emm	anuel Prouff, <u>Justine</u>	Wild
Horizontal and V	Vertical Side-Channe	l Attacks against Sec	ure RSA Implementations

Regular Square & Multiply

Introduction 000●	Clavier <i>et al.'s</i> Paper 0000000	This Paper C 000000 0	onclusion
Exponentiation Square & Multip $R_0 = 1, R_1 = m, i = while i \le 0$ do $R_0 = R_0 \times R_k$ $k = k \oplus d_i$	$c = m^d \mod N,$ $c = l - 1, \ k = 0$	secret $d = (1, d_{\ell-2},, d_0)_2$ Example: $d = 1011$ $R_0 = 1 \times 1, d_3 = 1, k = 1, i = 3$ $R_0 = 1 \times m, d_3 = 1, k = 0, i = 2$ $R_0 = m \times m, d_2 = 0, k = 0, i = 1$	
Return R_0		• $R_0 = m^2 \times m^2$, $d_1 = 1$, $k = 1$, <i>i</i>	= 1
$\begin{array}{c} \longleftrightarrow \\ \downarrow \\$			

Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementation	ons

Introduction 000●	Clavier <i>et al.'s</i> Paper 0000000	This Paper 000000	Conclusion
Exponentia	tion: $c = m^d \mod N$, secret $d = (1, d_{\ell-2},, d_0)_2$	
Square & M	ultiply Atomic	Example: $d = 1011$	
$R_0 = 1, R_1 = m$ while $i \le 0$ do $R_0 = R_0 \times R_i$ $k = k \oplus d_i$ $i = i - \neg k$ Return R_0	, i=l-1, k=0 k	$R_0 = 1 \times 1, \ d_3 = 1, \ k = 1, \ i = 3$ $R_0 = 1 \times m, \ d_3 = 1, \ k = 0, \ i = 3$ $R_0 = m \times m, \ d_2 = 0, \ k = 0, \ i = 3$ $R_0 = m^2 \times m^2, \ d_1 = 1, \ k = 1, $ $R_0 = m^4 \times m, \ \dots$	2 = 1 <i>i</i> = 1
		$R \xrightarrow{d_i = 1}_{d_i = 0} R \times R \xrightarrow{d_i = 1}_{q'_{i+1} = 1} R \times I$	M

Aurélie Bauer, Eliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementation

Regular Square & Multiply

Introduction	Clavier et al.'s Paper	This Paper	Conclusion

1 Introduction

2 Clavier et al.'s Paper

- Attack: Horizontal Correlation Analysis
- Countermeasures against Horizontal Attacks

3 This Paper

- Attacks on Clavier et al. Countermeasures
- New Countermeasure against Horizontal Attacks
- Simulation Results of Our Attacks

4 Conclusion

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	ANSSI
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	6/17

- Do we multiply by the message or not ?
- ► Horizontal core idea: distinguish *R* × *R* from *R* × *M* with a single trace

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	ANSSI
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	6/17

Introduction	Clavier et al.'s Paper	This Paper	Conclusion
	000000		
Attack: Horizontal Correlation A	nalysis		

Zoom on the Long Integer Multiplication

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff,	Justine Wild	ANSSI
Horizontal and Vertical Side-Channel Attacks agair	nst Secure RSA Implementations	7 / 17

Introduction	Clavier et al.'s Paper	This Paper	Conclusion
	000000		
Attack: Horizontal Correlation A	Analysis		

Zoom on the Long Integer Multiplication

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	ANSSI
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	7 / 17

Introduction	Clavier et al.'s Paper	This Paper	Conclusion
	000000		
Attack: Horizontal Correlation Analysis			

Zoom on the Long Integer Multiplication

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Justine Wild

Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations

ANSSI 7 / 17

Introduction Clavier et al.'s Pag	Der This Paper Conclusion		
Attack: Horizontal Correlation Analysis			
Horizontal Correlation Ana	alysis $(X = M \implies \text{hit} = 1$		
• Hypothesis: $X = M$	$\begin{cases} X \neq M \implies \text{bit} = 0 \\ X \neq M \implies \text{bit} = 0 \end{cases}$		
Simulation	Observation		
$\ell(r_0 \cdot x_0) \ell(r_0 \cdot x_1) \cdots \ell(r_0 \cdot x_{t-1})$	$HW(r_0 \cdot m_0) HW(r_0 \cdot m_1) \cdots HW(r_0 \cdot m_{t-1})$		
$\ell(r_1 \cdot x_0) \ell(r_1 \cdot x_1) \cdots \ell(r_1 \cdot x_{t-1})$	$HW(r_1 \cdot m_0)$ $HW(r_1 \cdot m_1)$ \cdots $HW(r_1 \cdot m_{t-1})$		
$\ell(r_{t-1} \cdot x_0) \ell(r_{t-1} \cdot x_1) \cdots \ell(r_{t-1} \cdot x_{t-1})$	$HW(r_{t-1} \cdot m_0) HW(r_{t-1} \cdot m_1) \cdots HW(r_{t-1} \cdot m_{t-1})$		
$ \longrightarrow \rho(\ell(r_i \cdot x_j), HW(r_i \cdot m_j)) \longleftarrow $			

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Justine Wild

Introduction	Clavier et al.'s Paper	This Paper	Conclusion
	0000000		
Countermeasures against Horizo	ntal Attacks		

- Actual Countermeasures Analysis
 - ► Single curve ⇒ Exposant/Message randomisation ineffective
- Clavier et al.'s countermeasures

Blind the $r_i \cdot x_i$

Replace $r_i \cdot x_j$ by $(r_i - a_1)(x_j - a_2)$

Blind the x_j , permute the r_i Replace $r_i \cdot x_j$ by $r_{\alpha[i]} \cdot (x_j - a_2)$

Permute the r_i and the x_j Replace $r_i \cdot x_j$ by $r_{\alpha[i]} \cdot x_{\beta[j]}$

$$\begin{array}{cccc} \ell(\widetilde{r}_{0} \cdot \widetilde{x}_{0}) & \dots & \ell(\widetilde{r}_{0} \cdot \widetilde{x}_{t-1}) \\ \ell(\widetilde{r}_{1} \cdot \widetilde{x}_{0}) & \dots & \ell(\widetilde{r}_{1} \cdot \widetilde{x}_{t-1}) \\ \vdots & \ddots & \vdots \\ \ell(\widetilde{r}_{t-1} \cdot \widetilde{x}_{0}) & \dots & \ell(\widetilde{r}_{t-1} \cdot \widetilde{x}_{t-1}) \end{array}$$

ANSSI 9 / 17

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion
	0000000	000000	
Countermeasures against Horizontal Attacks			

- Actual Countermeasures Analysis
 - ► Single curve ⇒ Exposant/Message randomisation ineffective
- Clavier et al.'s countermeasures

Blind the $r_i \cdot x_j$ Replace $r_i \cdot x_j$ by $(r_i - a_1)(x_j - a_2)$

Blind the x_j , permute the r_i Replace $r_i \cdot x_j$ by $s_{\alpha[i]} \cdot (x_j - a_2)$

Permute the r_i and the x_j Replace $r_i \cdot x_j$ by $r_{\alpha[i]} \cdot x_{\beta[j]}$

$$\begin{array}{cccc} \ell(r_{\alpha[0]} \cdot \widetilde{x}_{0}) & \dots & \ell(r_{\alpha[0]} \cdot \widetilde{x}_{t-1}) \\ \ell(r_{\alpha[1]} \cdot \widetilde{x}_{0}) & \dots & \ell(r_{\alpha[1]} \cdot \widetilde{x}_{t-1}) \\ \vdots & \ddots & \vdots \\ \ell(r_{\alpha[t-1]} \cdot \widetilde{x}_{0}) & \dots & \ell(r_{\alpha[t-1]} \cdot \widetilde{x}_{t-1}) \end{array}$$

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion
	000000	000000	
Countermeasures against Horizontal Attacks			

- Actual Countermeasures Analysis
 - ► Single curve ⇒ Exposant/Message randomisation ineffective
- Clavier et al.'s countermeasures

Blind the $r_i \cdot x_j$ Replace $r_i \cdot x_j$ by $(r_i - a_1)(x_j - a_2)$ Blind the x_j , permute the r_i Replace $r_i \cdot x_j$ by $s_{\alpha[i]} \cdot (x_j - a_2)$ Permute the r_i and the x_j

Aurélie E	Bauer,	Éliane	Jaulmes,	Emmanuel	Prouff,	Justine	Wild	

Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations

ANSSI 9 / 17

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion
0000	0000000	000000	000

1 Introduction

2 Clavier et al.'s Paper

- Attack: Horizontal Correlation Analysis
- Countermeasures against Horizontal Attacks

3 This Paper

- Attacks on Clavier et al. Countermeasures
- New Countermeasure against Horizontal Attacks
- Simulation Results of Our Attacks

4 Conclusion

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	ANSSI
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	10/17

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion
		00000	
Attacks on Clavier et al	Countermeasures		

Attacks on the Clavier et al.'s countermeasures

Blind the $r_i \cdot x_j$ (Replace $r_i \cdot x_j$ by $(r_i - a_1)(x_j - a_2)$)

ANSSI

10/17

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Justine Wild

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion
		00000	
Attacks on Clavier et al	Countermeasures		

Attacks on the Clavier et al.'s countermeasures

Blind the $r_i \cdot x_j$ (Replace $r_i \cdot x_j$ by $(r_i - a_1)(x_j - a_2)$)

- **Correlation** between the $\overline{\widetilde{r_i}} \cdot \widetilde{x_j}$ and the $\overline{r_i} \cdot m_j$
- When *t* increases, $\overline{R} = \overline{\widetilde{R}}$

ANSSI

10/17

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion	
Attacks on Clavier et al. Counts		000000	000	
Attacks on Clavier et al. Countermeasures				

Attacks on the Clavier et al.'s countermeasures

• Weakness: α and β are independent

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Justine Wild	ANSSI
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	11 / 17

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion	
		000000		
New Countermeasure against Horizontal Attacks				

New Countermeasure

Permute **simultaneously** the r_i and the x_i

Use a t^2 -size permutation in order to randomize simultaneously the r_i and the x_j

Leak modelisation:

$$\begin{array}{l} \ell(r_1 \cdot x_2) \quad \ell(r_1 \cdot x_0) \quad \ell(r_2 \cdot x_0) \\ \ell(r_0 \cdot x_2) \quad \ell(r_2 \cdot x_2) \quad \ell(r_1 \cdot x_1) \\ \ell(r_2 \cdot x_1) \quad \ell(r_0 \cdot x_1) \quad \ell(r_0 \cdot x_0) \end{array}$$

- Find the permutation: t^2 ! possibilities
- Third countermeasure of Clavier et al.: t! possibilities

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	ANSSI
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	12 / 17

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion	
0000	000000	000000	000	
Simulation Results of Our Attacks				

Attack on Architecture 8 bits

Ø

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	ANSSI
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	13 / 17

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusior	
		00000		
Simulation Results of Our Attacks				

Architecture 32 bits

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, Justine Wild

Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations

ANSSI 14 / 17

0.025

0.025 0.02 0.020

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion

1 Introduction

2 Clavier et al.'s Paper

- Attack: Horizontal Correlation Analysis
- Countermeasures against Horizontal Attacks

3 This Paper

- Attacks on Clavier et al. Countermeasures
- New Countermeasure against Horizontal Attacks
- Simulation Results of Our Attacks

4 Conclusion

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	ANSSI
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	15 / 17

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	ANSS
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	15 / 17

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	ANSSI
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	15 / 17

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion
0000	0000000	000000	○●○

And more in our paper ...

- Framework: model both Horizontal and Vertical Attacks
- Attacks on Square and Multiply Always
- More Simulations:
 - Attacks on variant Clavier et al. first countermeasure
 - Variant of our attack (no average)
 - ► Test the **robustness** of our countermeasure

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u>	ANSSI
Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations	16 / 17

Introduction	Clavier <i>et al.'s</i> Paper	This Paper	Conclusion
			000

Thank you for your attention. Questions ?

Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, <u>Justine Wild</u> Horizontal and Vertical Side-Channel Attacks against Secure RSA Implementations ANSSI 17 / 17

Timing Attack against protected RSA-CRT implementation used in PolarSSL

Cyril Arnaud and Pierre-Alain Fouque

Defense Ministry and Rennes 1 University

February 26, 2013

Detecting a Timing Bias on RSA implementation of POLARSSL Our timing attack Countermeasure Conclusion

Overview

Detecting a Timing Bias on RSA implementation of POLARSSL

- Introduction
- Finding a bias
- is the set of extra bit observable?

Our timing attack

- Cryptographic Analysis
- Statistical Tools
- Results against PolarSSL 1.1.4

3 Countermeasure

- State of the Art
- Alternatives to blinding

4 Conclusion

Detecting a Timing Bias on RSA implementation of POLARSSL

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

Overview

Detecting a Timing Bias on RSA implementation of POLARSSL

- Introduction
- Finding a bias
- is the set of extra bit observable?

Our timing attack

- Cryptographic Analysis
- Statistical Tools
- Results against PolarSSL 1.1.4

3 Countermeasure

- State of the Art
- Alternatives to blinding

4 Conclusion
Introduction Finding a bias is the set of extra bit observable ?

State of the Art

Related Work

- 1996 : Timing Attacks on Implementations of Diffie-Hellman,RSA, DSS, and Other Systems [Kocher] at CRYPTO '96
- 2000 : Timing attack on RSA-CRT [Schindler] at CHES '00

Our timing attack

Countermeasure

Conclusion

- 2003 : Remote timing attacks are practical [Brumley et Boneh] at Usenix '03
- 2005 : Improving Brumley and Boneh timing attack on unprotected SSL implementation [O. Aciiçmez, et al.] at CCS '05

Attacks

- Countermeasures of OPENSSL avoided
- Exploit timing bias induced by RSA optimizations
- Old monocore processors

Introduction Finding a bias is the set of extra bit observable?

State of the Art

Related Work

- 1996 : Timing Attacks on Implementations of Diffie-Hellman,RSA, DSS, and Other Systems [Kocher] at CRYPTO '96
- 2000 : Timing attack on RSA-CRT [Schindler] at CHES '00

Our timing attack

Countermeasure

Conclusion

- 2003 : Remote timing attacks are practical [Brumley et Boneh] at Usenix '03
- 2005 : Improving Brumley and Boneh timing attack on unprotected SSL implementation [O. Aciiçmez, et al.] at CCS '05

Attacks

- Countermeasures of OPENSSL avoided
- Exploit timing bias induced by RSA optimizations
- Old monocore processors

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

Why using a Timing Attack?

Side-Channel Cryptanalysis

- Electromagnetic emanation and power consumption hard to apply on a computer
- Computation Time :
 - cannot be detected
 - allows to factor RSA modulus by measuring the time to decrypt
 - possible on network
 - Timing measurement : 2 instructions

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

Measurement of computation time

Time Stamp Counter (TSC)

- 64-bit counter that records cycle of the FSB bus
- Common to each CPU core
- Use of *RDTSC* instruction : do not use any privilege

Performance Counter (PMC)

- Counter used in the CPU microarchitecture
- Allow to measure each tick of a core
- Reading using the *RDMSR* instruction : require privilege
- Require a specific kernel module

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

Target choice

RSA of POLARSSL 1.1.4

- Opensource library developed in C
- Operational version (Adobe flash player, ...)
- Use countermeasures suggested by Boneh and Brumley and Schindler (One subroutine for multiplication and a dummy substraction)
- RSA decryption in constant time
- Protected against timing attacks

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

Goals and Results

Goals

- Evaluate the countermeasure
- Mount an attack
- Determining efficient countermeasures
- Work on recent processors (Intel Core 2 Duo and Core i7).

Results

- Detection of an unknown bias
- Attack verified on a chosen ciphertext attack for RSA 512, 1024 and 2048 bits
- Propose two countermeasures avoiding this attack

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

Goals and Results

Goals

- Evaluate the countermeasure
- Mount an attack
- Determining efficient countermeasures
- Work on recent processors (Intel Core 2 Duo and Core i7).

Results

- Detection of an unknown bias
- Attack verified on a chosen ciphertext attack for RSA 512, 1024 and 2048 bits
- Propose two countermeasures avoiding this attack

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

RSA Implementation of POLARSSL

RSA Decryption

To decrypt $c \in (\mathbb{Z}/n\mathbb{Z})$: modular exponentiation using the private exponent :

 $m = c^d \mod n$

RSA decryption optimizations of POLARSSL

- Chinese Remainder Theorem using Garner recombination
- Montgomery Multiplication using one countermeasure
- Modular Exponentiation using the sliding window method

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

Multiprecision Montgomery Modular Multiplication

Number representations

$$A = \sum_{i=0}^{i=s-1} a_i r^i,$$

- size of words is denoted by w
- s represents the number of required words of size w

•
$$r = 2^w$$

•
$$R = r^s$$

function MULTIMONTMUL(A, B, P) $Z = (z_s, ..., z_0)_r \leftarrow 0$ for i = 0 to s - 1 do $u \leftarrow ((z_0 + a_i \times b_0) \times \mu_0) \mod r$ $Z \leftarrow (Z + a_i \otimes_w B)$ $Z \leftarrow (Z + u \otimes_w P)$ div rif Z > P then $Z \leftarrow Z - P$

return $Z \ (= ABR^{-1} \mod P)$

 \otimes_{W}

w-bit multiplication to multiply a word with a large integer

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

Schindler's observation

Extra reduction - Time variance in MULTIMONTMUL

- Montgomery representation $\bar{A} = AR \mod P$
- Suppose *B* is uniformly distributed in \mathbb{Z}_P
- *P* (extra-reduction in MULTIMONTMUL (\bar{X}, B, P)) = $\frac{\bar{X} \mod P}{2B}$
- *P* (extra-reduction in MULTIMONTMUL(*B*, *B*, *P*)) = $\frac{P}{3R}$

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

PolarSSL's Multiprecision Montgomery multiplication

 $\begin{array}{l} \text{function MULTIMONTMUL}(A, B, P) \\ Z = (z_s, ..., z_0)_r \leftarrow 0 \\ \text{for } i = 0 \text{ to } s - 1 \text{ do} \\ u \leftarrow ((z_0 + a_i \times b_0) \times \mu_0) \text{ mod } r \\ Z \leftarrow (Z + a_i \otimes_w B) \\ Z \leftarrow (Z + u \otimes_w P) \text{ div } r \\ (ABR^{-1} \leq Z < P + ABR^{-1}) \\ \text{if } Z \geq P \text{ then } Z \leftarrow Z - P \\ \text{else dummy subtraction} \\ \text{return } Z (= ABR^{-1} \text{ mod } P) \end{array}$

Running times to execute the branch condition is identical for all inputs

Dummy subtraction used in MULTIMONTMUL(A, B, P) makes the time to perform the multiplication independent on the *A* and *B*

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable ?

Extra bit

- The condition of MULTIMONTMUL is $ABR^{-1} \le Z < P + ABR^{-1}$
- We suppose that $\frac{R}{2} < P < R$ (key lengths multiple of world size)
- Then *Z* < 2*R*.
- Hence, if Z > R then $z_s = 1$, this bit is called extra bit

Extra bit in source code

- in the s^{th} loop of MULTIMONTMUL, if Z > R then the extra bit is set by a carry propagation up to the top most significant word of Z.
- is extra bit imply a timing variance?

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

An attacker can observe a timing difference

Methodology

We generate :

- Random numbers *A*, *B* with known size, converted in Montgomery representation
- a prime number Q where $\frac{R}{2} < Q < R$.

We sort :

- the time in CPU's clock ticks to perform MULTIMONTMUL(*A*, *B*, *Q*) according to the size numbers
- if an extra bit, an extra-reduction without extra bit or neither of them is carried out

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

Results

FIGURE: |Q| = 512 FIGURE: |Q| = 1024

- A timing difference is observable when Z > R
- Extra-reduction ($Q \le Z < R$) : masked by dummy subtraction
- Bias is proportional to the bitsize of Q

Our timing attack Countermeasure Conclusion Introduction Finding a bias is the set of extra bit observable?

Results of timing attacks against POLARSSL

Kocher Attack (1996)

does not apply to RSA-CRT

Schindler's Attack (2000)

works only with the square-&-multiply algorithm

Schindler's Attack (2005)

does not work due to the window in the sliding windows exponentiation

Brumley-Boneh Attacks (2003)

can work

Our timing attack Countermeasure Conclusion Cryptographic Analysis Statistical Tools Results against PolarSSL 1.1.4

Overview

Detecting a Timing Bias on RSA implementation of POLARSSL

- Introduction
- Finding a bias
- is the set of extra bit observable ?

Our timing attack

- Cryptographic Analysis
- Statistical Tools
- Results against PolarSSL 1.1.4

3 Countermeasure

- State of the Art
- Alternatives to blinding

Our timing attack Countermeasure Conclusion Cryptographic Analysis Statistical Tools Results against PolarSSL 1.1.4

Probability of an extra bit

$\texttt{MULTIMONTMUL}(A,B,\mathsf{P}), \, 0 \leq A, B < P$

The probability of an extra bit is not null **iff** $P > \frac{\sqrt{5}-1}{2} \times R$

Probability of an extra bit

B is uniformly distributed and C is a fixed value :

•
$$P_{\text{MULTIMONTMUL}(B,B,P)} = \frac{P}{3R} + \frac{2(R-P)\sqrt{(R-P)R}}{3P^2} - \frac{(R-P)}{R}$$

• $P_C = P_{\text{MULTIMONTMUL}(C,B,P)} = \frac{C}{2R} + \frac{(R-P)^2R}{2CP^2} - \frac{(R-P)}{R}$

For
$$P > \frac{\sqrt{5}-1}{2} \times R$$
 and $X, Y \in \left(\frac{(R-P)R}{P}, P\right)$, if $X > Y$ then $P_X > P_Y$

Attack Characteristics

• Allows to recover the $\frac{|p|}{2}$ most significant bits of p or q

Conclusion

- Search each bit gradually using an approximation of p or q
- Use Coppersmith algorithm to complete the attack

Recovering a 1024 key size with RDMSR instruction in inter-process

- Around ten minutes.
- 215200 queries.

Attack Characteristics

• Allows to recover the $\frac{|p|}{2}$ most significant bits of p or q

Conclusion

- Search each bit gradually using an approximation of p or q
- Use Coppersmith algorithm to complete the attack

Recovering a 1024 key size with RDMSR instruction in inter-process

- Around ten minutes.
- 215200 queries.

Searching the p_k bit

Assume the adversary knows the *k* most significant bits of *p*. He can generate the integers c_1 and c_2 :

Countermeasure

•
$$c'_1 = (p_0, p_1, ..., p_{k-1}, 0, 0, ..., 0)_2$$

•
$$c'_2 = (p_0, p_1, ..., p_{k-1}, 1, 0, ..., 0)_2$$

Searching the p_k bit

Assume the adversary knows the *k* most significant bits of *p*. He can generate the integers c_1 and c_2 :

Countermeasure

•
$$c'_1 = (p_0, p_1, ..., p_{k-1}, 0, 0, ..., 0)_2$$

•
$$c'_2 = (p_0, p_1, ..., p_{k-1}, 1, 0, ..., 0)_2$$

Searching the p_k bit

Assume the adversary knows the *k* most significant bits of *p*. He can generate the integers c_1 and c_2 :

Countermeasure

•
$$c'_1 = (p_0, p_1, ..., p_{k-1}, 0, 0, ..., 0)_2$$

•
$$c'_2 = (p_0, p_1, ..., p_{k-1}, 1, 0, ..., 0)_2$$

Searching the p_k bit

Assume the adversary knows the *k* most significant bits of *p*. He can generate the integers c_1 and c_2 :

Countermeasure

•
$$c'_1 = (p_0, p_1, ..., p_{k-1}, 0, 0, ..., 0)_2$$

•
$$c'_2 = (p_0, p_1, ..., p_{k-1}, 1, 0, ..., 0)_2$$

Cryptographic Analysis Statistical Tools Results against PolarSSL 1.1.4

Searching the p_k bit

Assume the adversary knows the *k* most significant bits of *p*. He can generate the integers c_1 and c_2 :

Countermeasure Conclusion

•
$$c'_1 = (p_0, p_1, ..., p_{k-1}, 0, 0, ..., 0)_2$$

•
$$c'_2 = (p_0, p_1, ..., p_{k-1}, 1, 0, ..., 0)_2$$

Two timing samples for values close to $c_1 + \varepsilon_1$ and $c_2 + \varepsilon_2 : \zeta_{c_1}$ and ζ_{c_2}

Our timing attack Countermeasure

Conclusion

Cryptographic Analysis Statistical Tools Results against PolarSSL 1.1.4

How can we quantify the difference between the two samples ζ_{c_1} and ζ_{c_2} ?

Our timing attack Countermeasure Conclusion Cryptographic Analysis Statistical Tools Results against PolarSSL 1.1.4

How can we check that the measure of the two samples ζ_{c_1} and ζ_{c_2} is correct?

Our timing attack Countermeasure Conclusion Cryptographic Analysis Statistical Tools Results against PolarSSL 1.1.4

Statistical Tests

T-test

- Allow to compare the means of two samples generated by 2 populations with equal variance
- If $t_{\text{observed}} > t_{\text{threshold}}$, $p_k = 0$ otherwise $p_k = 1$.

Fisher-Snedecor Test

- Allows to compare the variances of two samples generated from 2 populations
- If F_{observed} > F_{threshold} : replay otherwise the value of t_{observed} allows to determine p_k

In practice

Search the intervalle I or Fobserved is maximal then compute t-test on I

Our timing attack Countermeasure Conclusion Cryptographic Analysis Statistical Tools Results against PolarSSL 1.1.4

Same process

Modulus size	#query/bit	ratio of replay	# query
512 bits	600	2%	78600
1024 bits	800	18%	241600
2048 bits	1000	50%	768000

TABLE: RDTSC instruction

Modulus size	#query/bit	ratio of replay	# query
512 bits	600	2%	78600
1024 bits	800	10%	225600
2048 bits	1000	15%	589000

TABLE: RDMSR instruction

Our timing attack Countermeasure Conclusion Cryptographic Analysis Statistical Tools Results against PolarSSL 1.1.4

Inter-process via TCP IP

Modulus size	#query/bit	ratio of replay	# query
512 bits	1000	2%	131000
1024 bits	1100	21%	341000
2048 bits	1200	55%	952800

TABLE: RDTSC instruction

Modulus size	#query/bit	ratio of replay	# query
512 bits	1000	0%	128000
1024 bits	1100	5%	295900
2048 bits	1200	10%	675600

TABLE: RDMSR instruction

Cryptographic Analysis Statistical Tools Results against PolarSSL 1.1.4

Amplifying the bias by repetiting

The bias in our case is very small and is consequently hard to detect

Countermeasure

Conclusion

Sliding Exponentiation

PolarSSL uses a CLNW (Constant Length Non-Zero Window) method whereas OpenSSL uses a VLNW method (Variable)

Precomputation phase

- As in the CCS '05 paper, we use the precomputation phase
- many multiplications are used with the same value c₁ or c₂ to compute the precomputation table
- 31 multiplications with the same value if the window length is 5

Cryptographic Analysis Statistical Tools Results against PolarSSL 1.1.4

Distribution of modulus

We generated randomly keys with PolarSSL's key generation routine (p > q)

Conclusion

	$]0.5R; \frac{\sqrt{5}-1}{2}R]$	$]\frac{\sqrt{5}-1}{2}R, 0.7R]$]0.7 <i>R</i> ;0.8 <i>R</i>]]0.8 <i>R</i> ; <i>R</i>]
Distribution of p size	0%	0.011%	13.33%	86.66%
Distribution of q size	18.78%	24.46%	31.32%	25.44%

TABLE: Distribution of modulus.

Our attack is always feasible in practice

State of the Art Alternatives to blinding

Overview

Detecting a Timing Bias on RSA implementation of POLARSSL

Conclusion

- Introduction
- Finding a bias
- is the set of extra bit observable ?

2 Our timing attack

- Cryptographic Analysis
- Statistical Tools
- Results against PolarSSL 1.1.4

3 Countermeasure

- State of the Art
- Alternatives to blinding

State of the Art Alternatives to blinding

Conclusion

OPENSSL Countermeasure

Blinding

- Use a random before each decryption
- Efficient for all parameter size
- Slow down performance by a factor between 10 to 25%

State of the Art Alternatives to blinding

Conclusion

Cancelling out extra bit

Use particular modulus size

if $|\mathbf{Q}| \neq kw$, extra-bit is cancelling out

Modify PolarSSL's key generation routine

Generate keys where prime factors are less than

$$rac{\sqrt{5}-1}{2} imes R$$

Overview

Detecting a Timing Bias on RSA implementation of POLARSSL

- Introduction
- Finding a bias
- is the set of extra bit observable?

2 Our timing attack

- Cryptographic Analysis
- Statistical Tools
- Results against PolarSSL 1.1.4

3 Countermeasure

- State of the Art
- Alternatives to blinding

Conclusion

Conclusions

- Constant time cryptographic implementations are hard to achieve
- Known attacks exploit the bias of the extra-reduction due to an extra bit

Our contributions

- Practical Timing Attack against a protected implementation
- Use statistical tests to reduce the number of chosen ciphertexts
- Introduce a new bias
- Propose 2 countermeasures for specific key sizes