

Security in knowledge

Applying Remote Side-Channel Analysis Attacks on a Security-enabled NFC Tag

Thomas Korak

Thomas Plos

Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Austria.

RSACONFERENCE2013

Session ID: CRYP-R32 Session Classification: Advanced

Outline

- Near Field Communication (NFC)
- Side-Channel Analysis (SCA) Attacks
- Remote SCA Attacks
- Experimental Setup
- Achieved Results
- Discussion of ResultsConclusion

Basics

Security in knowledge

Near Field Communication (NFC)

- Contactless (short range) communication technology
- NFC functionality in many smartphones
- (Active) reader communicates with (passive) tag
- Prerequisites for (passive) tags
 - Small chip size, low cost, low power consumption
 - Adequate level of security (using cryptographic primitives (e.g. AES))

http://www.nfcworld.com

Side-Channel Analysis (SCA) Attacks

- Powerful attacks against cryptographic primitives
- Measure side-channel information in order to reveal (parts of) a secret
- What are popular side channels?
- Small number of attacks on contactless devices in literature
 - Most of them in close proximity
- Our work: Remote SCA attack on an NFC device

Remote SCA Attacks

Measure EM emanation of the chip

- Distance between chip and measurement probe
- Reader signal is much stronger than side-channel signal

Known solutions

- Separate chip from antenna (Carluccio et al. [1])
- Use analogue demodulation (Kasper et al. [2])

Our approach

- Strong reader field = carrier for data-dependent signal
- Parasitic load modulation

Security in knowledge

Main parts

Main parts

NFC reader, NFC tag (AES with secret key)

- NFC reader, NFC tag (AES with secret key)
- Trigger probe

- NFC reader, NFC tag (AES with secret key)
- Trigger probe
- Measurement antenna (self-made, 8cm diameter, 5 windings)

- NFC reader, NFC tag (AES with secret key)
- Trigger probe
- Measurement antenna (self-made, 8cm diameter, 5 windings)
- Amplifier

- NFC reader, NFC tag (AES with secret key, key known by us)
- Trigger probe
- Measurement antenna (self-made, 8cm diameter, 5 windings)
- Amplifier

Experimental Setup cont.

Trace recording

- Increase resolution
- Only measure peaks of the signal
- Decrease trace size using downsampling
- **Zoom factor** (f_{zoom})

Samples

x 10⁴

Achieved Results

Security in knowledge

Achieved Results

> Influence of distance on peak-to-peak voltage (U_{pp})

Graz

> Influence of angular offset on peak-to-peak voltage (U_{pp})

- Verification of the parasitic load modulation
 - Two scenarios: Opened and closed chip housing
 - 20 sets each containing 5000 traces at 7 cm distance
 - Calculate mean and standard deviation of correlation values

▶ Find best *f*_{zoom}

Relationship between correlation coefficient and distance

Graz

Discussion & Conclusion

Security in knowledge

Discussion

- Successful remote SCA attacks between 25 cm and 100 cm
 - > 25 cm 3,000 traces required
 - 100 cm 30,000 traces required
- For distances exceeding 80 cm amplifier gain increased
 - ln order to achieve desired f_{zoom} values
- Reader and tag in close proximity
 - Power tag from distance
 - Literature available (Kfir et al. [3])

Conclusion

- Performed remote SCA attacks on an NFC prototype tag
- No special equipment required
- Examined different distances up to 1 m
 - Reading range only a few centimeters
 - Parasitic load modulation
- Only record peaks of the signal and perform downsampling
 - Increase resolution
 - Decrease trace size
- Tackle attack
 - Introduce countermeasures (e.g., random delays)
 - Limit number of cryptographic operations

Thank you for your attention!

Questions?

Security in knowledge

References

 Carluccio, D., Lemke, K., Paar, C.: Electromagnetic Side Channel Analysis of a Contactless Smart Card: First Results. In: Oswald, E. (ed.) RFIDSec 2005, Graz, Austria, July 13-15, pp. 44–51 (2005)
Kasper, T., Oswald, D., Paar, C.: EM Side-Channel Attacks on Commercial Contactless Smartcards Using Low-Cost Equipment. In: Youm, H.Y., Yung, M. (eds.)
WISA 2009. LNCS, vol. 5932, pp. 79–93. Springer, Heidelberg (2009)
Kfir, Z., Wool, A.: Picking Virtual Pockets using Relay Attacks on Contactless Smartcard Systems. In: Proceedings SecureComm 2005, Athens, Greece, September 5-9, pp. 47–58. IEEE Computer Society (2005)

RSACONFERENCE2013

Security in PRACTICAL LEAKGE-RESILINET PSEUDO-RANDOM OBJECTS WITH MINIMUM PUBLIC RANDOMNESS

Yu Yu Tsinghua University and East China Normal University

Francois-Xavier Standaert UCL Crypto Group

Session ID: CRYP-R32 Session Classification: Advanced

Outline of the talk

Side-channel Attacks and Countermeasures

Leakage-Resilient Stream Ciphers

- FOCS 2008 / Eurocrypt 2009 Constructions
- CCS 2010 / CHES 2012 Constructions
- Our Construction
 - Overview
 - Security Analysis

How cryptography works?

Typical Assumptions:

- (1) A computational hard problem (RSA, DLP, AES).
- (2) Black-box: attacker ONLY sees input-output and follows the protocol.
- Provable Security: Under assumptions #1 and #2, if one breaks the crypto-system (in polynomial-time), then it leads to efficient solution to the underlying hard problem, and hence acontradiction.
- Security guarantee voided if either assumption is not met.

Are these assumptions safe?

Typical Assumptions:

- A commonly believed computational hard problem (RSA, DLP, AES), where the secret key is randomly chosen from the key space.
- Black-box: attacker ONLY sees its input-output behavior and follows the protocols.
- Assumption #1 is ok, or otherwise a breakthrough.
- Assumption #2 not always respected.
- The implementation of a cryptographic algorithm (e.g. a security chip) might be leaking in many forms.

input

output

Side-channel attacks and beyond

Definition: Any attack based on information gained from the physical implementation of a cryptosystem, rather than brute force or theoretical weaknesses in the algorithms.

It takes many forms:

- Timing Attacks
- Power Analysis (PA)
- Electro-Magnetic Analysis (EM)
- Acoustic Analysis
- etc.
- More invasive physical attacks: fault injections attacks.

Countermeasures against SCA

Implementation level .

- Software countermeasures: Masking, Hiding, etc.
- Hardware countermeasures: dual-rail pre-charge logic styles (e.g. SABL ,WDDL).
- Design (algorithmic) level.
 - Leakage-Resilient Cryptography: design of cryptographic protocols that remain secure in the presence of arbitrary, yet bounded, leakage about the secret key.

Leakage-Resilient Stream Ciphers

What is a stream cipher?

- A symmetric key cipher where plaintext digits are combined with a pseudorandom key-stream.
- In practice, a stream cipher can be based on a block cipher (or PRG), and operate in iterations.

ANSI X9.17 PRG

Forward secure PRG [BM82,Koc03]

How to model the leakages?

- We admit arbitrary but restricted leakages.
- Let L on n-bit input K be the leakage function.
- L is subject to the following restrictions.
 - Arbitrary.
 - L is any efficiently computable function.
 - Bounded leakage [DP08,Pie09].
 - For each i-th iteration, L_i has bounded range,

i.e., $L_i: \{0,1\}^n \rightarrow \{0,1\}^{\lambda}$ for $\lambda < n$.

Is bounded leakage sufficient?

Forward secure PRG [BM82,Koc03]

- Without side-channels, it is a secure stream cipher.
- Is it leakage-resilient in the bounded leakage model?

No. Future computation attacks, let each L_i(k_i) be the i-th bit of some future state, say k₁₀₀. Note a realistic attack, but sufficient to show the SC is not provably leakage-resilient.

Leakage-Resilient Stream Ciphers in the Bounded Leakage Model

In FOCS 2008, Dziembowski and Pietrzak presented a SC based on "alternating extraction".

The FOCS 2008 Construction

- Key in two halves (k_0, k_1) , public random value x_0 .
- Function F is instantiated by a randomness extractor Ext and a pseudo-random generator G, i.e., F(k_i,x_i)=G(Ext(k_i,x_i)).
- Technical Ingredients: the output of an ε-secure PRG G:{0,1}ⁿ→{0,1}²ⁿ, when leaking about any λ ∈O(log(1/ ε)) bits, will be having 2n − λ bit of pseudo-entropy.

The FOCS 2008 Construction

Security (informal): even if the SC continuously leak λ bits (per iteration) of adaptively chosen leakages, for as many as iterations, the final output (in absence of corresponding leakage) will be pseudo-random.

The Eurocrypt 2009 Construction

- Pietrzak simplified the FOCS 2008 construction: replacing the extractor+PRG with a weak PRF.
- Technical lemma: weak PRF is a computational extractor.

Pros and Cons of the FOCS 2008/ Eurocrypt 2009 Constructions

Advantage: strong security.

I.e., prior to each iteration, the adversary can adaptively chosen the leakage function he wants to subscribe. Is this necessary ?

- Disadvantage:
 - a bit complicated (artificial ?) construction.
 - Efficiency issue: 2n bits of secret key only guarantees n bits of security.
- Question: can we construct something more practical?
 - Hint: use the tradeoff between the above advantage and disadvantage.

The CCS 2010 Construction

> Yu et al. proposed a more practical construction.

The idea: use alternating public values p_0 and p_1 , and only allow non-adaptive (prefixed)) leakages.

The CHES 2012 Construction

- Faust et al. pointed out that the CCS 2010 SC needs more public values than 2 in the standard model.
- Thus, not randomness efficient.

Our motivation

- Can we reprove the CHES 2012 construction with much less public randomness (ideally one string)?
- The main contribution of our paper.

Overview of our construction

Use a public seed s to generate all public random strings p_0 , p_1 , p_2 ,..., where G is a pseudo-random function, e.g., $p_i=G(s, i) = AES_s(i)$.

The upper part is running in public.

The lower part follows bounded leakage, i.e., each L_i leaks λ bits.

How can we prove this?

- Trivial (due to CHES 2012) if s is kept secret and only p₀,p₁, ..., are given to the adversary.
- The goal: showing that the security holds even if the adversary sees seed s.

CHES 2012 Construction

Theorem (CHES 2012,informal). For any $I \in poly(n)$, every adversary predicts b_B with probability $\frac{1}{2}$ +negl(n).

Al	ice Eve	Bob
$s \leftarrow$	$U_n \qquad p_0, \cdots, p_{\ell-1}$	$k_0 \leftarrow U_n$
$p_0, \cdots, p_{\ell-1} \leftarrow G(s)$	$(s,0),\cdots,G(s,\ell-1)$	Evaluate SC on $k_0, p_0, \cdots, p_{\ell-1}$
		to get $view_\ell \setminus s$ and x_ℓ
	r viewa \ e	$b_{B} \leftarrow U_1$
	\leftarrow	if $b_{B} = 0$ then $r := x_{\ell}$
		else if $b_{B} = 1$ then $r \leftarrow U_n$

 $\mathsf{view}_{\ell} \stackrel{\mathsf{def}}{=} (S, X_1, \cdots, X_{\ell-1}, \mathsf{L}_1(K_0, P_0), \cdots, \mathsf{L}_{\ell-1}(K_{\ell-2}, P_{\ell-2}))$

Proof sketch.

- If by contradiction that when additionally given S, there exists efficient D and constant c such that Pr[D(R,view_I)=b_B] >=½+n^{-c}. Then, it implies the following 2-pass key agreement protocol.
- The protocol extends to public key encryption by parallel repetition, which is a contradiction to the known separation that no black-box construction of PKE from PRG [Impagliazzo and Rudich, STOC 89].

The contradiction also implies an OT protocol.

$$\begin{array}{cccc} \text{Alice} & \text{Eve} & \text{Bob} \\ s \leftarrow U_n & p_0, \cdots, p_{\ell-1} & k_0 \leftarrow U_n \\ p_0, \cdots, p_{\ell-1} \leftarrow \mathsf{G}(s, 0), \cdots, \mathsf{G}(s, \ell-1) & \text{Evaluate } \mathsf{SC} \text{ on } k_0, p_0, \cdots, p_{\ell-1} \\ & \text{to get view}_{\ell} \setminus s \text{ and } x_{\ell} \\ & b_{\mathsf{B}} \leftarrow U_1 \\ b_{\mathsf{A}} \leftarrow \mathsf{D}(r, \mathsf{view}_{\ell}) & & \text{if } b_{\mathsf{B}} = 0 \text{ then } r := x_{\ell} \\ & \text{else if } b_{\mathsf{B}} = 1 \text{ then } r \leftarrow U_n \end{array}$$

Conclusion

- Practical leakage-resilient stream ciphers in the standard model with simple construction and minimal public randomness.
- One can also use the technique to construct leakageresilient (GGM based) pseudo-random function (against non-adaptive inputs and leakages).

RSACONFERENCE2013

Questions.

Thanks!