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Keys used via an API call to the HSM.

e.g. Provides an API call for CBC Mode.
Input: plaintext and the name of a key.
HSM recovers key and applies CBC-Mode.

Whole process is expensive.

Minimizing calls to the HSM is important.
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Motivation

What are our options?

Constructions which provide authenticated encryption:

Encrypt-then-MAC

Dedicated AE scheme: OCB, EAX, CCM etc.

Why not use one of these well studied schemes?
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Motivation

HSMs designed before need for AE was understood.

More modern modes are not supported.

Solution:

Use a generic construction such as Encrypt-then-MAC.

Solution Problem:

This uses two keys.

Meaning two HSM calls.
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Motivation

Design criteria

Basic requirements:

All secret keys should reside on the HSM.

Only one call to the HSM is allowed, i.e. single key.

Such a call should be to a CBC-Encrypt.
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Encryption with redundancy

Encryption with redundancy

Studied formally by An and Bellare.

Two types of redundancy function; secret key and public key.

IND-CPA encryption scheme + secret/public redundancy function 6⇒ AE.

An and Bellare define a scheme with a secret key redundancy function,
Nested CBC (NCBC).

NCBC uses a different key to encrypt the last block.
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Encryption with redundancy

Relating to our scheme

Our scheme uses secret redundancy,
where the redundancy function uses a different “key” each time.

In general any IND-CPA scheme plus one time redundancy function 6⇒ AE.

M. Bond, G. French, N.P. Smart, G.J. Watson Low-call diet: AE for call counting HSM users CT-RSA – March 1st 2013 10 / 26



Managed Encryption Format

1 Motivation

2 Encryption with redundancy

3 Managed Encryption Format

4 Analysis

5 Summary

M. Bond, G. French, N.P. Smart, G.J. Watson Low-call diet: AE for call counting HSM users CT-RSA – March 1st 2013 11 / 26



Managed Encryption Format

API call

The API call is CBC-mode

M. Bond, G. French, N.P. Smart, G.J. Watson Low-call diet: AE for call counting HSM users CT-RSA – March 1st 2013 12 / 26



Managed Encryption Format

API call

The API call is CBC-mode with all-zero IV.

M. Bond, G. French, N.P. Smart, G.J. Watson Low-call diet: AE for call counting HSM users CT-RSA – March 1st 2013 12 / 26



Managed Encryption Format

API call

The API call is CBC-mode with all-zero IV.

Need randomness for security.

M. Bond, G. French, N.P. Smart, G.J. Watson Low-call diet: AE for call counting HSM users CT-RSA – March 1st 2013 12 / 26



Managed Encryption Format

API call

The API call is CBC-mode with all-zero IV.

Need randomness for security.

Use HSMs ability to generate random numbers.

M. Bond, G. French, N.P. Smart, G.J. Watson Low-call diet: AE for call counting HSM users CT-RSA – March 1st 2013 12 / 26



Managed Encryption Format

API call

The API call is CBC-mode with all-zero IV.

Need randomness for security.

Use HSMs ability to generate random numbers.

Implementation note – to avoid making an extra HSM call for every
encryption, we maintain a cache of randomness.

M. Bond, G. French, N.P. Smart, G.J. Watson Low-call diet: AE for call counting HSM users CT-RSA – March 1st 2013 12 / 26



Managed Encryption Format

API call

The API call is CBC-mode with all-zero IV.

Need randomness for security.

Use HSMs ability to generate random numbers.

Implementation note – to avoid making an extra HSM call for every
encryption, we maintain a cache of randomness.

We assume this cache to be secure.

M. Bond, G. French, N.P. Smart, G.J. Watson Low-call diet: AE for call counting HSM users CT-RSA – March 1st 2013 12 / 26



Managed Encryption Format

Managed Encryption Format

R

C[0] = FK(R)

FK FK FK

hash(R,A,M)

hash

M [1]

C[1] C[2]

A

FK

M [2]

C[3]

FK

M [n]

C[n+ 1]
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Managed Encryption Format

Encrypt(K ,A,M)

R
r
← {0, 1}l

H ← hash(R ,A,M)
C ← E-CBC[F ](K ,R‖H‖pad(M))
return C

Decrypt(K ,A,C )

R‖H‖M ′ ← D-CBC[F ](K ,C )
M ← dpad(M ′)
if M 6=⊥ then

h← hash(R ,A,M)
if h 6= h then M =⊥
return M
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Managed Encryption Format

Encrypt(K ,A,M)

R
r
← {0, 1}l

H ← hash(R ,A,M)
C ← E-CBC[F ](K ,R‖H‖pad(M))
return C

Decrypt(K ,A,C )

R‖H‖M ′ ← D-CBC[F ](K ,C )
M ← dpad(M ′)
if M 6=⊥ then

h← hash(R ,A,M)
if h 6= h then M =⊥
return M

Points to note:

Padding (uniform error reporting)

“MAC-then-encrypt”

IV
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Analysis

Security model – Privacy

Let Π = (KeyGen,Encrypt,Decrypt) be a symmetric encryption scheme.

Enc(A,M0,M1)
C0 ← Encrypt(K ,A,M0)
C1 ← Encrypt(K ,A,M1)

C
∪
← Cb

return Cb

PRIV
A(Π)

K ← KeyGen; b
r
← {0, 1}

b′ ← AEnc

return (b′ = b)

Adv
priv
Π (A) = 2Pr[PRIVA(Π)⇒ true]− 1,
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Analysis

PRIV

This can be proved by relating to the security of CBC mode proved by Bellare et
al. [BDJR].
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Analysis

PRIV

This can be proved by relating to the security of CBC mode proved by Bellare et
al. [BDJR].

hash(R,A,M) M [1]R

C[0] = FK(R)

FK FK FK

C[1] C[2]
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Analysis

Privacy

Let F = {FK : K ∈ {0, 1}k} be a permutation family.

Let Π[F ] be the managed encryption format using permutation family F .

Let A be an adversary against Privacy which runs in time t; making qe
encryption queries totalling at most µe bits.
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Analysis

Privacy

Let F = {FK : K ∈ {0, 1}k} be a permutation family.

Let Π[F ] be the managed encryption format using permutation family F .

Let A be an adversary against Privacy which runs in time t; making qe
encryption queries totalling at most µe bits.

Then there exists adversary B such that:

Adv
PRIV
Π[F ] (A) ≤ 2Adv

prp
F

(B) +
q2
f

2l
+

1

2l

(

(µe

l
+ 2qe

)2

−
(µe

l
+ 2qe

)

)

where B runs in time t + O(µe) asking at most qf =
µe

l
+ 2qe queries.
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Analysis

Security model – AUTH

Let Π = (KeyGen,Encrypt,Decrypt) be a symmetric encryption scheme.

Enc(A,M)
C ← Encrypt(K ,A,M)

C
∪
← (A,C )

return C

Test(A∗,C∗)
M∗ ← Decrypt(K ,A∗,C∗)
if M∗ 6=⊥ and (A∗,C∗) 6∈ C then

win← true
return (M∗ 6=⊥)

AUTH
A(Π)

K ← KeyGen
win← false
(A∗,C∗)← AEnc,Test

return win

Adv
auth
Π (A) = Pr[AUTH

A(Π)⇒ true]
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Analysis

AUTH

R

C[0] = FK(R)

FK FK FK

hash(R,A,M)

hash

M [1]

C[1] C[2]

A

FK

M [2]

C[3]

FK

M [n]

C[n+ 1]

To forge a ciphertext the adversary must forge the hash.
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Analysis

Case 1: Hash not queried

Pr[(hash(R∗,A∗,M∗) = h∗) ∧ ((R∗,A∗,M∗, h∗) /∈ H)|π
r
← Perm] ≤

qt

2l

Not previously queried.

Random chance on verification.
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Analysis

Case 2: Hash already queried

Pr[(hash(R∗,A∗,M∗) = h∗) ∧ ((R∗,A∗,M∗, h∗) ∈ H)|π
r
← Perm] ≤

qhµe

l2l
.

Previous call to random oracle.

If call made by encryption query then invalid forgery.

So independent call to hash.
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Analysis

Case 2: Hash already queried

Pr[(hash(R∗,A∗,M∗) = h∗) ∧ ((R∗,A∗,M∗, h∗) ∈ H)|π
r
← Perm] ≤

qhµe

l2l
.

Previous call to random oracle.

If call made by encryption query then invalid forgery.

So independent call to hash.

Analysis is then based on the collision event that for some i , j ,

Ci [j ]⊕Mi [j ] = h∗ ⊕ π(R∗).
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Analysis

AUTH

Let F = {FK : K ∈ {0, 1}k} be a permutation family.

Let Π[F ] be the managed encryption format using permutation family F .

Let A be an adversary against the AUTH security which runs in time t;
making qe encryption queries totalling at most µe bits, qt test queries
totalling at must µt bits and qh random oracle queries.
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AUTH
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Let Π[F ] be the managed encryption format using permutation family F .

Let A be an adversary against the AUTH security which runs in time t;
making qe encryption queries totalling at most µe bits, qt test queries
totalling at must µt bits and qh random oracle queries.

Then there exists adversary B such that:

Adv
AUTH
Π[F ] (A) ≤ Adv

sprp
F

(B) +
qt

2l
+

qhµe

l2l

where B makes qf =
µe

l
+ 2qe +

µt

l
queries and runs in time t + O(µe + µt).
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Summary

Summary

We have discussed the Managed Encryption Format

Despite its limitation we were still able to prove it secure.

With several important implementation caveats.

Care needs to be taken with implementation to ensure security.
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Summary

Questions
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1.1 Block Cipher

An important primitive in symmetric-key cryptography.
* Main purpose: provide confidentiality — A most fundamental security goal.

An algorithm that transforms a fixed-length data block into another
data block of the same length under a secret user key.

* Input: plaintext.
* Output: ciphertext.
* Three sub-algorithms: encryption, decryption, key schedule.

Constructed by repeating a simple function many times, known as
the iterated method.

* An iteration: a round.
* The repeated function: the round function.
* The key used in a round: a round subkey.
* The number of iterations: the number of rounds.
* The round subkeys are generated from the user key under a key schedule algorithm.
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1.2 A Cryptanalytic Attack

An algorithm that distinguishes a cryptosystem from a random
function.

Usually measured using the following three metrics:

* Data complexity
– The numbers of plaintexts and/or ciphertexts required.

* Memory (storage) complexity
– The amount of memory required.

* Time (computational) complexity
– The amount of computation or time required, how many

encryptions/decryptions or memory accesses.

Goals:

* Break a cryptosystem (ideally, in a practical complexity).

* Enable more secure cryptosystems to be designed.

Jiqiang Lu Weak Keys of the Full MISTY1 Block Cipher for Related-Key Differential Cryptanalysis



1. Introduction
2. Related Work

3. A Class of 2102.57 Weak Keys
4. A 7-Round Related-Key Differential with Prob. 2−58

5. Attacking the Full MISTY1 under Weak Keys
6. Another Class of 2102.57 Weak Keys

7. Conclusions

1.1 Block Cipher
1.2 A Cryptanalytic Attack
1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

1.3 Related-Key (Differential) Cryptanalysis

Independently introduced by Knudsen in 1992 and Biham in 1993.

Different from differential cryptanalysis: The pair of ciphertexts are
obtained by encrypting the pair of plaintexts using two different keys
with a particular relationship, e.g. certain difference.

Probability of a related-key differential:

PrEK ,EK′ (∆α→ ∆β) = Pr
P∈{0,1}n

(EK (P)⊕ EK ′(P ⊕ α) = β).

For a random function, the expected probability of any related-key
differential is 2−n.

If PrEK ,EK′ (∆α→ ∆β) > 2−n, we can use the related-key differential to
distinguish E from a random function.
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1.1 Block Cipher
1.2 A Cryptanalytic Attack
1.3 Related-Key (Differential) Cryptanalysis
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1.4.1 Introduction

Designed by Mitsubishi (Matsui et al.), published in 1995.

A 64-bit block cipher, a user key of 128 bits, and a recommended
number of 8 rounds, with a total of 10 key-dependent logical
functions FL:

* two FL functions at the beginning;
* two FL functions inserted after every two rounds.

A Japanese CRYPTREC-recommended e-government cipher, an
European NESSIE selected cipher, an ISO international standard.

Widely used in Mitsubishi products as well as in Japanese military.
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1.4.2 Structure

S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KIij2

KIij1

⊕
⊕

∩
∪

KLi1

KLi2

⊕ ⊕

KOi1

FIi1 ⊕ ⊕

KOi2

FIi2 ⊕ ⊕

KOi3

FIi3 ⊕

KOi4

(a) : FLi (b) : FIij

(c) : FOi

Extnd Trunc Extnd

FL1 FL2

⊕FO1

⊕FO2

FL3 FL4

⊕FO3

FL9 FL10

...

(d) : MISTY1
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1.1 Block Cipher
1.2 A Cryptanalytic Attack
1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

1.4.3 Key Schedule

1. Represent a user key K as eight 16-bit words K = (K1,K2, · · · ,K8).

2. Generate a different set of eight 16-bit words K ′1,K
′
2, · · · ,K ′8 by

K ′i = FI(Ki ,Ki+1), for i = 1, 2, · · · , 8.

3. Subkeys:

KOi1 = Ki ,KOi2 = Ki+2,KOi3 = Ki+7,KOi4 = Ki+4;

KIi1 = K ′i+5,KIi2 = K ′i+1,KIi3 = K ′i+3;

KLi = K i+1
2
||K ′i+1

2 +6
, for i = 1, 3, 5, 7, 9; otherwise,KLi = K ′i

2 +2
||K i

2 +4.
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7. Conclusions

1.1 Block Cipher
1.2 A Cryptanalytic Attack
1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

1.4.4 Security

Has been extensively analysed against a variety of cryptanalytic
methods.

No whatever cryptanalytic attack on the full version.
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2. Related Work

Dai and Chen’s related-key differential attack on 8-round MISTY1 with
only the last 8 FL functions (INSCRYPT 2011).

A class of 2105 weak keys.
* A weak key is a user key under which a cipher is more vulnerable to be attacked.

A 7-round related-key differential characteristic with probability 2−60.

Attacking the 8-round reduced version under weak keys.
* Attack procedure is straightforward, by conducting a key recovery on FO1 in a way

similar to the early abort technique for impossible differential cryptanalysis.

* Data complexity: 263 chosen ciphertexts.

* Memory complexity: 235 bytes.

* Time complexity: 286.6 encryptions.
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2.1 A Class of 2105 Weak Keys
Three binary constants:

* 7-bit a = 0010000;
* 16-bit b = 0010000000010000;
* 16-bit c = 0010000000000000.

Let KA,KB be two 128-bit user keys:

KA = (K1,K2,K3,K4,K5,K6,K7,K8),

KB = (K1,K2,K3,K4,K5,K
∗
6 ,K7,K8).

Let K ′A,K
′
B be the corresponding 128-bit words generated by the key schedule:

K ′A = (K ′1 ,K
′
2 ,K
′
3 ,K
′
4 ,K
′
5 ,K
′
6 ,K
′
7 ,K
′
8 ),

K ′B = (K ′1 ,K
′
2 ,K
′
3 ,K
′
4 ,K
′∗
5 ,K ′∗6 ,K ′7 ,K

′
8 ).

The class of weak keys is defined to be the set of all possible (KA,KB ) satisfying the following 10
conditions:

K6 ⊕ K∗6 = c, K ′5 ⊕ K ′∗5 = b, K ′6 ⊕ K ′∗6 = c, K6,12 = 0, K7,3 = 1,
K7,12 = 0, K8,3 = 1, K ′4,3 = 1, K ′4,12 = 1, K ′7,3 = 0.

The number:

|K1| = 216
, |K2| = 216

, |K3| = 216
, |(K4,K5)| = 230

, |(K6,K7,K8)| = 227
.

Therefore, a total of 2105 weak keys.
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2.2 A 7-Round Related-Key Differential Characteristic

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI412

KI411

K4

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI422 = (02||a)

∆KI421 = a

∆K6 = c

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI432

KI431

K3

⊕

K8 ⊕

⊕
⊕
∩
∪

K2

K′
8

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI312

KI311

K3

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI322

KI321

K5

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI332 = 0

∆KI331 = a

K2

⊕

K7 ⊕

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI612

KI611

∆K6 = c

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI622

KI621

K8

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI632

KI631

K5

⊕

K2
⊕

⊕
⊕
∩
∪

K3

K′
1

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI512

KI511

K5

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI522 = 0

∆KI521 = a

K7

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI532

KI531

K4

⊕

K1 ⊕

⊕
⊕
∩
∪

∆K′
5

= b

K7

⊕
⊕
∩
∪

K4

K′
2

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI712

KI711

K7

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI722

KI721

K1

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI732

KI731

∆K6 = c

⊕

K3 ⊕

⊕
⊕
∩
∪

∆K′
6

= c

K8

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI212

KI211

K2

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI222

KI221

K4

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI232 = (02||a)

∆KI231 = a

K1

⊕
∆K6 = c

⊕

⊕
⊕
∩
∪

K′
4

∆K6 = c

0

b

0

c

c

c

c

0

Pr = 2−16 Pr = 1 Pr = 2−8

b||016

Pr = 2−1K′
4,3

= 1, K′
4,12

= 1, K6,12 = 0

016||c

Pr = 1

0

0

0

Pr = 1 0

0

Pr = 1 0

0

Pr = 1 b

0

0

0

0

0

0

Pr = 1 0

0

Pr = 2−8 Pr = 1 0

0

02||a

0

0

Pr = 1
Pr = 2−2

09||a||b

R4,3 = 1, R4,12 = 1, K7,3 = 1, K7,12 = 0

0

0

0

0

0

b

b

b

Pr = 1 Pr = 1 Pr = 1

c||016
0

0

0

0

0

0

Pr = 1 Pr = 1 Pr = 1

0

0

Pr = 1 K8,3 = 1

c||c

Pr = 2−1

c

c

0

0

0

0

0

0

0 0

Pr = 1 Pr = 1 Pr = 2−16 c

c||0160

0

⊕
⊕
∩
∪

K5

K′
3

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI812 = (02||a)

∆KI811 = a

K8

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI822

KI821

K2

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI832

KI831

K7

⊕

K4 ⊕

⊕
⊕
∩
∪

K′
7

K1

c||016

Pr = 1 Pr = 1
K′

7,3
= 0

0

0 0

0

Pr = 2−8
Pr = 1

0

0Pr = 10

c

0

0

02||a

016||b

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8
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3. A Class of 2102.57 Weak Keys

Focus on the 7-round related-key differential characteristic.

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI212

KI211

K2

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI222

KI221

K4

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI232 = (02||a)

∆KI231 = a

K1

⊕
∆K6 = c

⊕
0

b

0

c

c

c

c

0

Pr = 2−16 Pr = 1 Pr = 2−8

0

02||a

Round 2

Not all the 215 possible K ′
7 (i.e. KI21) defined by the weak key class make PrFI21(∆b→ ∆c) > 0!

The number of K ′7 defined by the weak key class is 215, the number of K ′7 satisfying PrFI21
(∆b→ ∆c) > 0 is about 214.57.

The number of K ′7 defined by the weak key class & satisfying PrFI21
(∆b→ ∆c) > 0 is about 213.57.

PrFI21
(∆b→ ∆c) = 2−15/2−14/2−13.42.
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⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI712

KI711

K7

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI722

KI721

K1

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI732

KI731

∆K6 = c

⊕

K3 ⊕0

0

0

0

0

0

0 0

Pr = 1 Pr = 1 Pr = 2−16 c

Round 7

Not all the 216 possible K ′
2 (i.e. KI73) defined by the weak key class make PrFI73(∆c→ ∆c) > 0!

The number of K ′2 defined by the weak key class is 216, the number of K ′2 satisfying PrFI21
(∆b→ ∆c) > 0 is 215.

The number of K ′2 defined by the weak key class & satisfying PrFI73
(∆c→ ∆c) > 0 is 215.

PrFI73
(∆c→ ∆c) = 2−15.
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7. Conclusions

As a result, a class of 2102.57 weak keys:

|K1| = 216, |(K2,K3)| = 231, |(K4,K5)| = 230, |(K6,K7,K8)| ≈ 225.57.

* |K3| = 216, |K5| = 216.

* |K ′7 | = 213.57; ∀K ′7 , ∃ 212 (K ′6 ,K8).

* |K ′2,8−16| = 28, |K ′3 | = 216, |K ′4,8−16| = 28.
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4. A 7-Round Related-Key Differential with Prob. 2−58

A 7-round related-key differential with probability 2−58.

(b||032||c)→ (032||c ||016).
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5.1 Precomputation

Hash table T1:

⊕
⊕
∩
∪

K1

K′
7

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI112 = 0

∆KI111 = a

K1

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI122/K′
2,8−16

KI121

K3

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI132

KI131

K8

⊕

K5 ⊕

⊕
⊕
∩
∪

K′
3

K5

Only three possible input differences η =

32 bits︷ ︸︸ ︷
00?0000000000000||00?0000000000000

b

X

c

0

b||016 016||c

09||a

Y

016||c

Round 1

(x, x⊕ η): The left halves of a plaintext pair

Store satisfying (K1, K3, K
′
2,8−16) into Table T1 indexed by (x, η,X)

X: output difference of FI12

Memory complexity: 275.91 bytes; Time complexity: 273.59 FI computations.

For every (x, η,X), there are 223 satisfying (K1, K3, K
′
2,8−16) on average.

(x, x⊕ η)
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Hash table T2:

⊕
⊕
∩
∪

K1

K′
7

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI112/K′
6,8−16

= 0

∆KI111/K′
6,1−7

= a

K1

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI122

KI121

K3

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI132/K′
4,8−16

KI131

K8

⊕

K5 ⊕

⊕
⊕
∩
∪

K′
3

K5

b X

c

0

b||016 016||c

09||a X ⊕ (09||a)

Y

016||c

Round 1

Store satisfying (K6, K7, K8) into Table T2 indexed by (x, η, Y,K1, K
′
4,8−16)

Y : output difference of FI13

Memory complexity: 284.74 bytes; Time complexity: 284.16 FI computations.

For every (x, η, Y,K1, K
′
4,8−16), there are 29.57 satisfying (K6, K7, K8) on average.

(x, x⊕ η)
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5.2 Attack Outline

⊕
⊕
∩
∪

K1

K′
7

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI112 = 0

∆KI111 = a

K1

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI122

KI121

K3

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI132

KI131

K8

⊕

K5 ⊕

⊕
⊕
∩
∪

K′
3

K5

η ?

b

X

c

0

b||016 016||c

09||a X ⊕ (09||a)

Y
X ⊕ (09||a)

X ⊕ Y ⊕ (09||a)

016||c Output difference of FL2: (X ⊕ c)||(X ⊕ Y ⊕ (09||a))

Step 1: Choose 260 ciphertext pairs with difference (032||c||016).
Step 2: Keep plaintext pairs with difference (η||?)

Round 1

Step 4: Focus on FL1 and FI12. Obtain satisfying (K1,K3,K
′
2,8−16) from Table T1.

Step 5: Retrieve K4 from K ′3 = FI(K3,K4), compute K ′4 = FI(K4,K5).

Step 7: Increase 1 to counters for (K1,K
′
2,8−16, K3,K4,K5,K6,K7,K8).

Step 8: For a subkey guess whose counter number is larger than or equal to 3, exhaustively search the remaining 7 key bits.

Step 3: Focus on FL2. Guess (K ′3,K5), compute X,Y .

FL2FL1

Step 6: Focus on FL1, FI11 and FI13. Obtain satisfying (K6,K7,K8) from Table T2.

FI11 FI12 FI13
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5.3 Attack Complexity

Data complexity: 261 chosen ciphertexts.

Memory complexity: 299.2 bytes.

Time complexity: 287.94 encryptions.

Success probability: 76%.
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6. Another Class of 2102.57 Weak Keys

Focus on the 7-round related-key differential characteristic:

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI212

KI211

K2

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI222

KI221

K4

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI232 = (02||a)

∆KI231 = a

K1

⊕
∆K6 = c

⊕
0

b

0

c

c

c

c

0

Pr = 2−16 Pr = 1 Pr = 2−8

b||016 016||c

c||0160

⊕
⊕
∩
∪

K5

K′
3

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

∆KI812 = (02||a)

∆KI811 = a

K8

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI822

KI821

K2

⊕ ⊕
S9 ⊕ S7 ⊕

⊕

⊕ S9 ⊕

KI832

KI831

K7

⊕

K4 ⊕

⊕
⊕
∩
∪

K′
7

K1

c||016

Pr = 1 Pr = 1
K′

7,3
= 0

0

0 0

0

Pr = 2−8
Pr = 1

0

0Pr = 10

c

0

02||a

K ′
7,3 = 1,K1,3 = 1,∆ = c||c

K ′
7,3 = 1,K1,3 = 0,∆ = 016||c

...

Round 2

Round 8

Consider the other possible value of K ′
7,3, further classified by K1,3:

FL10FL9

Thus, a total of 2103.57 weak keys.
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7. Conclusions

Have presented a related-key differential attack on the full MISTY1
algorithm under certain weak key assumptions.

* Have described 2103.57 weak keys for a related-key differential attack on the full MISTY1.

* Quite theoretical, for the attack works under the assumptions of weak-key and related-key
scenarios and its complexity is very high.

The MISTY1 cipher does not behave like a random function (in the
related-key model), and cannot be regarded to be an ideal cipher.
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Thank you!
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Homomorphic Encryption cont.

I Endow P, C with operations: (P, ·), (C,�)

I Cryptosystem is homomorphic if and only if:

dk : (C,�)→ (P, ·) is a homomorphism

dk ”preserves operation”: dk (c1 � c2) = dk (c1) · dk (c2)

I ek may be non-deterministic

I Example - Plain RSA: (P, ·) = (C, ·) = (ZN , ·)
(c1 · c2)

d mod N = (cd
1 mod N) · (cd

2 mod N) mod N

→ Plain RSA is multiplicatively homomorphic

I Other examples: Goldwasser-Micali, Benaloh: (P,+), (C, ·)



Fully Homomorphic Encryption

I One operation −→ limited applications

I Need more operations on P and C

I Fully Homomorphic Cryptosystem: (P,+, ·), (C,⊕,�) rings

dk : (C,⊕,�)→ (P,+, ·) is a ring homomorphism

I E.g. for P = GF (2n) and (C,⊕,�) a ring

→ Homomorphic evaluation of any circuit (Boolean function)

f (m1, . . . ,mr ) = dk (f (ek (m1), . . . ,ek (mr )))



Fully Homomorphic Encryption cont.

I Many practical applications

I Outsourcing computations on confidential data

→ “encrypted cloud computing”

Various constructions:

I Gentry 2009, lattice-based cryptography with Bootstrapping

I DGHV 2009, modular arithmetic with Bootstrapping

I AAPS 2011, coding theory with limited multiplication

I Fellows, Koblitz 1994, ideal membership problem, Polly Cracker



Polly Cracker

I Probabilistic public-key cryptosystem

I P = GF (q) = F, C = F[x1, . . . , xn]

I Private key ~s ∈ Fn

I Public key PK = {f1, . . . , fr} ⊂ C, ∀i fi(~s) = 0

I Encryption of m ∈ F: choose J ⊂ {1, . . . , r} uniformly at random

c = e(m) = m +
∑
j∈J

fj

I Decryption of c ∈ C – evaluation of c at ~s:

d~s(c) = c(~s) = m +
∑
j∈J

fj(~s) = m



Polly Cracker cont.

I Fully homomorphic

I Polynomial evaluation is a ring homomorphism

I Let c1 = m1+
∑

i∈I fi , c2 = m2+
∑

j∈J fj

d(c1+c2) = (c1+c2) (~s) =

m1+
∑
i∈I

fi + m2+
∑
j∈J

fj

 (~s) = m1+m2

d(c1 · c2) = (c1 · c2) (~s) =

(m1+
∑
i∈I

fi)(m2+
∑
j∈J

fj)

 (~s) = m1m2

I Attack by calculation of Gröbner basis of the ideal 〈PK 〉 - G

I Decryption of c equals c mod 〈G〉



Symmetric Polly Cracker (SymPC)

I Probabilistic symmetric-key cryptosystem

I Secret key ~s ∈ Fn, F = GF (q)

I Multiplicative key G = {g1, . . . ,gn} ⊂ F[x1, . . . , xn]

used in calculations with ciphertexts (not a public key)

I P = F, C = F[x1, . . . , xn]/〈G〉
I G has special properties (G is the reduced Gröbrer basis)

→ Easily algorithmized multiplicative structure on C
→ Reduces complexity and size of ciphertexts



Symmetric Polly Cracker (SymPC) cont.

I P = F, C = F[x1, . . . , xn]/〈G〉
I Encryption of m ∈ P: choose f ∈ C uniformly at random

e~s(m) = f − f (~s) + m

I Decryption of c ∈ C – evaluation of c at ~s:

d~s(c) = c(~s) = (f − f (~s) + m)(~s) = m

I Fully homomorphic

I Complexity analysis in the paper



Security of SymPC

Approximate perfect secrecy:

I For all probability distributions on P and for all m ∈ P

Pr[P = m | C = c]
t→∞
−−−−−→ Pr[P = m]

for almost all c ∈ C (security parameter t)

I Assuming an attacker with unbounded computational power

I Probabilistic information theoretical security



Security of SymPC cont.

I Approximate perfect secrecy in bounded CPA model

I k-bounded CPA: an attacker can obtain at most k pair (m, c)

I Not CCA secure:

Ask for decryption of c1 = x1, c2 = x2, . . . , cn = xn

→ obtain the secret key (s1, s2, . . . , sn) = ~s as ci(~s) = xi(~s)

I KPA security ∼ CPA security:

For a given (m, c) ∈ P × C s.t. c(~s) = m and any m′ ∈ P
The pair (m′, c′ = c −m + m′) is valid:

d~s(c
′) = c′(~s) = c(~s)−m + m′ = m′



SymPC downsides

I Proof of k-bounded CPA security only for small k

I Ciphertext size

I Complexity: (n ∼ key size, ν = deg(gi) ≤ |F|)
Encrypt, decrypt O

(
n · (ν + 1)n+1

)
operations in F

Add O ((ν + 1)n), multiply O
(
(ν + 1)2n

)
operations in F

Sparse SymPC:

I Choose sparse polynomials in encryption

(limit the number of non-zero coefficients)

I Ciphertext size grows with multiplication



Conclusions

I Proposed a new fully homomorphic cryptosystem SymPC

I Upgraded symmetric version of Polly Cracker

I Utilized Gröbner basis in the construction

I Proved security in the information theoretical settings



Thank you for your attention!
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