The low-call diet: Authenticated Encryption for call counting HSM users

Mike Bond¹ George French² Nigel P. Smart³ Gaven J. Watson³

 1 Cryptomathic 2 Barclays Bank Plc. 3 University of Bristol

CT-RSA - March 1st 2013

- Motivation
- Encryption with redundancy
- Managed Encryption Format
- 4 Analysis
- Summary

- Motivation
- Encryption with redundancy
- Managed Encryption Format
- 4 Analysis
- Summary

• Industry commonly manages keys with special purpose hardware:

- Industry commonly manages keys with special purpose hardware:
 - Hardware Security Module (HSM).

- Industry commonly manages keys with special purpose hardware:
 - Hardware Security Module (HSM).
- HSMs store keys which should not be exposed outside the module.

- Industry commonly manages keys with special purpose hardware:
 - Hardware Security Module (HSM).
- HSMs store keys which should not be exposed outside the module.
- Keys used via an API call to the HSM.

- Industry commonly manages keys with special purpose hardware:
 - Hardware Security Module (HSM).
- HSMs store keys which should not be exposed outside the module.
- Keys used via an API call to the HSM.
 - e.g. Provides an API call for CBC Mode.
 - Input: plaintext and the name of a key.
 - HSM recovers key and applies CBC-Mode.

- Industry commonly manages keys with special purpose hardware:
 - Hardware Security Module (HSM).
- HSMs store keys which should not be exposed outside the module.
- Keys used via an API call to the HSM.
 - e.g. Provides an API call for CBC Mode.
 - Input: plaintext and the name of a key.
 - HSM recovers key and applies CBC-Mode.
- Whole process is expensive.

- Industry commonly manages keys with special purpose hardware:
 - Hardware Security Module (HSM).
- HSMs store keys which should not be exposed outside the module.
- Keys used via an API call to the HSM.
 - e.g. Provides an API call for CBC Mode.
 - Input: plaintext and the name of a key.
 - HSM recovers key and applies CBC-Mode.
- Whole process is expensive.
- Minimizing calls to the HSM is important.

Constructions which provide authenticated encryption:

Constructions which provide authenticated encryption:

Encrypt-then-MAC

Constructions which provide authenticated encryption:

- Encrypt-then-MAC
- Dedicated AE scheme: OCB, EAX, CCM etc.

Constructions which provide authenticated encryption:

- Encrypt-then-MAC
- Dedicated AE scheme: OCB, EAX, CCM etc.

Why not use one of these well studied schemes?

• HSMs designed before need for AE was understood.

- HSMs designed before need for AE was understood.
- More modern modes are not supported.

- HSMs designed before need for AE was understood.
- More modern modes are not supported.

Solution:

Use a generic construction such as Encrypt-then-MAC.

- HSMs designed before need for AE was understood.
- More modern modes are not supported.

Solution:

Use a generic construction such as Encrypt-then-MAC.

Solution Problem:

- This uses two keys.
- Meaning two HSM calls.

Design criteria

Basic requirements:

Design criteria

Basic requirements:

- All secret keys should reside on the HSM.
- Only one call to the HSM is allowed, i.e. single key.
- Such a call should be to a CBC-Encrypt.

- Motivation
- 2 Encryption with redundancy
- Managed Encryption Format
- 4 Analysis
- Summary

Studied formally by An and Bellare.

- Studied formally by An and Bellare.
- Two types of redundancy function; secret key and public key.

- Studied formally by An and Bellare.
- Two types of redundancy function; secret key and public key.
- IND-CPA encryption scheme + secret/public redundancy function \Rightarrow AE.

- Studied formally by An and Bellare.
- Two types of redundancy function; secret key and public key.
- IND-CPA encryption scheme + secret/public redundancy function \neq AE.
- An and Bellare define a scheme with a secret key redundancy function, Nested CBC (NCBC).
- NCBC uses a different key to encrypt the last block.

9 / 26

Relating to our scheme

• Our scheme uses secret redundancy,

Relating to our scheme

Our scheme uses secret redundancy,
 where the redundancy function uses a different "key" each time.

Relating to our scheme

- Our scheme uses secret redundancy, where the redundancy function uses a different "key" each time.
- In general any IND-CPA scheme plus one time redundancy function \neq AE.

- Motivation
- 2 Encryption with redundancy
- Managed Encryption Format
- 4 Analysis
- Summary

• The API call is CBC-mode

• The API call is CBC-mode with all-zero IV.

- The API call is CBC-mode with all-zero IV.
- Need randomness for security.

- The API call is CBC-mode with all-zero IV.
- Need randomness for security.
- Use HSMs ability to generate random numbers.

- The API call is CBC-mode with all-zero IV.
- Need randomness for security.
- Use HSMs ability to generate random numbers.
- Implementation note to avoid making an extra HSM call for every encryption, we maintain a cache of randomness.

- The API call is CBC-mode with all-zero IV.
- Need randomness for security.
- Use HSMs ability to generate random numbers.
- Implementation note to avoid making an extra HSM call for every encryption, we maintain a cache of randomness.
- We assume this cache to be secure.

Managed Encryption Format

Encrypt(K, A, M)
$R \stackrel{r}{\leftarrow} \{0,1\}'$
$H \leftarrow hash(R, A, M)$
$C \leftarrow \text{E-CBC}[F](K, R H \text{pad}(M))$
return C

$$\frac{\mathsf{Decrypt}(K,A,C)}{R\|H\|M'\leftarrow \mathsf{D-CBC}[F](K,C)}{M\leftarrow \mathsf{dpad}(M')}$$
if $M\neq \perp$ then
$$\overline{h}\leftarrow \mathsf{hash}(R,A,M)$$
if $\overline{h}\neq h$ then $M=\perp$
return M

Encrypt(K, A, M)
$R \stackrel{r}{\leftarrow} \{0,1\}'$
$H \leftarrow hash(R, A, M)$
$C \leftarrow \text{E-CBC}[F](K, R H \text{pad}(M))$
return C

$$\frac{\mathsf{Decrypt}(K,A,C)}{R\|H\|M'\leftarrow\mathsf{D-CBC}[F](K,C)}\\ M\leftarrow\mathsf{dpad}(M')\\ \text{if } M\neq\bot \text{ then }\\ \overline{h}\leftarrow\mathsf{hash}(R,A,M)\\ \text{if } \overline{h}\neq h \text{ then } M=\bot\\ \text{return } M$$

Points to note:

- Padding (uniform error reporting)
- "MAC-then-encrypt"
- IV

- Motivation
- 2 Encryption with redundancy
- Managed Encryption Format
- 4 Analysis
- Summary

Security model – Privacy

Let $\Pi = (KeyGen, Encrypt, Decrypt)$ be a symmetric encryption scheme.

$$\begin{aligned} & \underline{\mathsf{Enc}}(A, M_0, M_1) \\ & \overline{C_0} \leftarrow \mathsf{Encrypt}(K, A, M_0) \\ & C_1 \leftarrow \mathsf{Encrypt}(K, A, M_1) \\ & \mathcal{C} \overset{\cup}{\leftarrow} C_b \\ & \underline{\mathsf{return}} \ \ C_b \end{aligned}$$

$$\frac{\mathsf{PRIV}^{\mathcal{A}}(\Pi)}{\mathcal{K} \leftarrow \mathsf{KeyGen}; b \overset{r}{\leftarrow} \{0,1\}}\\ b' \leftarrow \mathcal{A}^{\mathsf{Enc}}\\ \mathsf{return}\ (b' = b)$$

$$\mathbf{Adv}^{\mathrm{priv}}_\Pi(\mathcal{A}) = 2\,\mathsf{Pr}[\textbf{PRIV}^\mathcal{A}(\Pi) \Rightarrow \mathsf{true}] - 1,$$

PRIV

This can be proved by relating to the security of CBC mode proved by Bellare et al. [BDJR].

PRIV

This can be proved by relating to the security of CBC mode proved by Bellare et al. [BDJR].

Privacy

- Let $F = \{F_K : K \in \{0,1\}^k\}$ be a permutation family.
- Let $\Pi[F]$ be the managed encryption format using permutation family F.
- Let A be an adversary against Privacy which runs in time t; making q_e encryption queries totalling at most μ_e bits.

Privacy

- Let $F = \{F_K : K \in \{0,1\}^k\}$ be a permutation family.
- Let $\Pi[F]$ be the managed encryption format using permutation family F.
- Let A be an adversary against Privacy which runs in time t; making q_e encryption queries totalling at most μ_e bits.

Then there exists adversary \mathcal{B} such that:

$$\mathbf{Adv}^{\mathrm{PRIV}}_{\Pi[F]}(\mathcal{A}) \leq 2\mathbf{Adv}^{\mathrm{prp}}_F(\mathcal{B}) + \frac{q_f^2}{2^I} + \frac{1}{2^I} \left(\left(\frac{\mu_e}{I} + 2q_e \right)^2 - \left(\frac{\mu_e}{I} + 2q_e \right) \right)$$

where \mathcal{B} runs in time $t + O(\mu_e)$ asking at most $q_f = \frac{\mu_e}{l} + 2q_e$ queries.

Security model – AUTH

Let $\Pi = (KeyGen, Encrypt, Decrypt)$ be a symmetric encryption scheme.

Enc(A, M)	$Test(A^*,C^*)$
$\overline{C} \leftarrow Encrypt(K, A, M)$	$\overline{M^* \leftarrow Decrypt}(K, A^*, C^*)$
$\mathcal{C} \stackrel{\cup}{\leftarrow} (A, C)$	if $M^* \neq \perp$ and $(A^*, C^*) \notin \mathcal{C}$ then
return C	win ← true
	return $(M^* \neq \perp)$

$$\label{eq:authors} \begin{split} & \underline{\mathbf{AUTH}}^{\mathcal{A}}(\Pi) \\ & \overline{K} \leftarrow \mathsf{KeyGen} \\ & \mathsf{win} \leftarrow \mathsf{false} \\ & (A^*, C^*) \leftarrow \mathcal{A}^{\mathsf{Enc},\mathsf{Test}} \\ & \mathbf{return} \ \mathsf{win} \end{split}$$

$$\mathbf{Adv}^{\mathrm{auth}}_\Pi(\mathcal{A}) = \mathsf{Pr}[\mathbf{AUTH}^\mathcal{A}(\Pi) \Rightarrow \mathsf{true}]$$

AUTH

To forge a ciphertext the adversary must forge the hash.

Case 1: Hash not queried

$$\Pr[(\mathsf{hash}(R^*,A^*,M^*)=h^*) \land ((R^*,A^*,M^*,h^*) \notin \mathcal{H}) | \pi \overset{\mathsf{r}}{\leftarrow} \mathrm{Perm}] \leq \frac{q_t}{2^l}$$

- Not previously queried.
- Random chance on verification.

Case 2: Hash already queried

$$\Pr[(\mathsf{hash}(R^*,A^*,M^*)=h^*) \wedge ((R^*,A^*,M^*,h^*) \in \mathcal{H}) | \pi \xleftarrow{r} \operatorname{Perm}] \leq \frac{q_h \mu_e}{l2^l}.$$

- Previous call to random oracle.
- If call made by encryption query then invalid forgery.
- So independent call to hash.

Case 2: Hash already queried

$$\Pr[(\mathsf{hash}(R^*,A^*,M^*)=h^*) \wedge ((R^*,A^*,M^*,h^*) \in \mathcal{H}) | \pi \xleftarrow{r} \operatorname{Perm}] \leq \frac{q_h \mu_e}{l2^l}.$$

- Previous call to random oracle.
- If call made by encryption query then invalid forgery.
- So independent call to hash.
- Analysis is then based on the collision event that for some i, j,

$$C_i[j] \oplus M_i[j] = h^* \oplus \pi(R^*).$$

AUTH

- Let $F = \{F_K : K \in \{0,1\}^k\}$ be a permutation family.
- Let $\Pi[F]$ be the managed encryption format using permutation family F.
- Let A be an adversary against the AUTH security which runs in time t; making q_e encryption queries totalling at most μ_e bits, q_t test queries totalling at must μ_t bits and q_h random oracle queries.

AUTH

- Let $F = \{F_K : K \in \{0,1\}^k\}$ be a permutation family.
- Let $\Pi[F]$ be the managed encryption format using permutation family F.
- Let \mathcal{A} be an adversary against the AUTH security which runs in time t; making q_e encryption queries totalling at most μ_e bits, q_t test queries totalling at must μ_t bits and q_h random oracle queries.

Then there exists adversary ${\cal B}$ such that:

$$\mathbf{Adv}^{\mathrm{AUTH}}_{\Pi[F]}(\mathcal{A}) \leq \mathbf{Adv}^{\mathrm{sprp}}_F(\mathcal{B}) + \frac{q_t}{2^l} + \frac{q_h \mu_e}{l 2^l}$$

where \mathcal{B} makes $q_f = \frac{\mu_e}{I} + 2q_e + \frac{\mu_t}{I}$ queries and runs in time $t + O(\mu_e + \mu_t)$.

- Motivation
- 2 Encryption with redundancy
- Managed Encryption Format
- 4 Analysis
- Summary

• We have discussed the Managed Encryption Format

- We have discussed the Managed Encryption Format
- Despite its limitation we were still able to prove it secure.

- We have discussed the Managed Encryption Format
- Despite its limitation we were still able to prove it secure.
- With several important implementation caveats.

- We have discussed the Managed Encryption Format
- Despite its limitation we were still able to prove it secure.
- With several important implementation caveats.
- Care needs to be taken with implementation to ensure security.

Questions

Weak Keys of the Full MISTY1 Block Cipher for Related-Key Differential Cryptanalysis

Jiqiang Lu

Institute for Infocomm Research, Agency for Science, Technology and Research, 1 Fusionopolis Way, Singapore 138632 jlu@i2r.a-star.edu.sg, lvjiqiang@hotmail.com

 $\label{thm:continuous} \mbox{Joint work with Wun-She Yap and Yongzhuang Wei.}$

CT-RSA 2013

Outline:

- Introduction
- Related Work
- 3 A Class of 2^{102.57} Weak Keys
- 4 A 7-Round Related-Key Differential with Prob. 2⁻⁵⁸
- Attacking the Full MISTY1 under the Weak Keys
- Another Class of 2^{102.57} Weak Keys
- Conclusions

1.1 Block Cipher

- 1.2 A Cryptanalytic Attack
- 1.3 Related-Key (Differential) Cryptanalysis
- 1.4 The MISTY1 Block Cipher

1.1 Block Cipher

- An important primitive in symmetric-key cryptography.
 - * Main purpose: provide confidentiality A most fundamental security goal.
- An algorithm that transforms a fixed-length data block into another data block of the same length under a secret user key.
 - * Input: plaintext.
 - * Output: ciphertext.
 - * Three sub-algorithms: encryption, decryption, key schedule.
- Constructed by repeating a simple function many times, known as the iterated method.
 - * An iteration: a round.
 - * The repeated function: the round function.
 - * The key used in a round: a round subkey.
 - * The number of iterations: the number of rounds.
 - * The round subkeys are generated from the user key under a key schedule algorithm.

1.1 Block Cipher

1.2 A Cryptanalytic Attack

1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

1.2 A Cryptanalytic Attack

- An algorithm that distinguishes a cryptosystem from a random function.
- Usually measured using the following three metrics:

7. Conclusions

- Data complexity
 - The numbers of plaintexts and/or ciphertexts required.
- * Memory (storage) complexity
 - The amount of memory required.
- * Time (computational) complexity
 - The amount of computation or time required, how many encryptions/decryptions or memory accesses.
- Goals:
 - * Break a cryptosystem (ideally, in a practical complexity).
 - * Enable more secure cryptosystems to be designed.

1.1 Block Cipher 1.2 A Cryptanalytic Attack

1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

1.3 Related-Key (Differential) Cryptanalysis

- Independently introduced by Knudsen in 1992 and Biham in 1993.
- Different from differential cryptanalysis: The pair of ciphertexts are obtained by encrypting the pair of plaintexts using two different keys with a particular relationship, e.g. certain difference.
- Probability of a related-key differential:

$$\mathsf{Pr}_{\mathbb{E}_{\mathsf{K}},\mathbb{E}_{\mathsf{K}'}}(\Delta\alpha \to \Delta\beta) = \Pr_{P \in \{0,1\}^n}(\mathbb{E}_{\mathsf{K}}(P) \oplus \mathbb{E}_{\mathsf{K}'}(P \oplus \alpha) = \beta).$$

• For a random function, the expected probability of any related-key differential is 2^{-n} .

If $\Pr_{\mathbb{E}_{K},\mathbb{E}_{K'}}(\Delta \alpha \to \Delta \beta) > 2^{-n}$, we can use the related-key differential to distinguish \mathbb{E} from a random function.

1.1 Block Cipher

1.2 A Cryptanalytic Attack

1.3 Related-Key (Differential) Cryptanalysis

1.4 The MISTY1 Block Cipher

1.4.1 Introduction

- Designed by Mitsubishi (Matsui et al.), published in 1995.
- A 64-bit block cipher, a user key of 128 bits, and a recommended number of 8 rounds, with a total of 10 key-dependent logical functions FL:
 - * two FL functions at the beginning;
 - * two FL functions inserted after every two rounds.
- A Japanese CRYPTREC-recommended e-government cipher, an European NESSIE selected cipher, an ISO international standard.
- Widely used in Mitsubishi products as well as in Japanese military.

1. Introduction
 3. A Class of 2^{102.5} Weak Keys
 4. A 7-Round Related-Key Differential with Prob. 2⁻⁵⁸
 5. Attacking the Full MISTY1 under Weak Keys
 6. Another Class of 2^{102.5} Weak Keys

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Related-Key (Differential) Cryptanalysis
- 1.4 The MISTY1 Block Cipher

1.4.2 Structure

7. Conclusions

6. Another Class of 2^{102.57} Weak Keys

7. Conclusions

- 1.1 Block Cipher
- 1.2 A Cryptanalytic Attack
- 1.3 Related-Key (Differential) Cryptanalysis
- 1.4 The MISTY1 Block Cipher

1.4.3 Key Schedule

- 1. Represent a user key K as eight 16-bit words $K = (K_1, K_2, \dots, K_8)$.
- 2. Generate a different set of eight 16-bit words K_1', K_2', \cdots, K_8' by

$$K'_i = \mathbf{FI}(K_i, K_{i+1}), \text{ for } i = 1, 2, \dots, 8.$$

3. Subkeys:

$$KO_{i1} = K_i, KO_{i2} = K_{i+2}, KO_{i3} = K_{i+7}, KO_{i4} = K_{i+4};$$
 $KI_{i1} = K'_{i+5}, KI_{i2} = K'_{i+1}, KI_{i3} = K'_{i+3};$
 $KL_i = K_{\frac{i+1}{2}} ||K'_{\frac{i+1}{2}+6}, \text{ for } i = 1, 3, 5, 7, 9; \text{ otherwise, } KL_i = K'_{\frac{i}{2}+2} ||K'_{\frac{i}{2}+4}.$

1.1 Block Cipher
1.2 A Cryptanalytic Attack
1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

1.4.4 Security

- Has been extensively analysed against a variety of cryptanalytic methods.
- No whatever cryptanalytic attack on the full version.

7. Conclusions

2. Related Work

Dai and Chen's related-key differential attack on 8-round MISTY1 with only the last 8 **FL** functions (INSCRYPT 2011).

- A class of 2¹⁰⁵ weak keys.
 - * A weak key is a user key under which a cipher is more vulnerable to be attacked.
- A 7-round related-key differential characteristic with probability 2⁻⁶⁰.
- Attacking the 8-round reduced version under weak keys.
 - Attack procedure is straightforward, by conducting a key recovery on FO₁ in a way similar to the early abort technique for impossible differential cryptanalysis.
 - * Data complexity: 2⁶³ chosen ciphertexts.
 - * Memory complexity: 2³⁵ bytes.
 - * Time complexity: 286.6 encryptions.

2.1 A Class of 2¹⁰⁵ Weak Keys

Three binary constants:

- * 7-bit a = 0010000;
- * 16-bit *b* = 001000000010000;
- * 16-bit c = 0010000000000000

Let K_A , K_B be two 128-bit user keys:

$$K_A = (K_1, K_2, K_3, K_4, K_5, K_6, K_7, K_8),$$

 $K_B = (K_1, K_2, K_3, K_4, K_5, K_6^*, K_7, K_8).$

Let K'_A, K'_B be the corresponding 128-bit words generated by the key schedule:

$$K'_{A} = (K'_{1}, K'_{2}, K'_{3}, K'_{4}, K'_{5}, K'_{6}, K'_{7}, K'_{8}),$$

$$K'_{B} = (K'_{1}, K'_{2}, K'_{3}, K'_{4}, K'_{5}^{**}, K'_{6}^{**}, K'_{7}, K'_{8}).$$

The class of weak keys is defined to be the set of all possible (K_A, K_B) satisfying the following 10 conditions:

The number:

$$|\mathit{K}_{1}|=2^{16},|\mathit{K}_{2}|=2^{16},|\mathit{K}_{3}|=2^{16},|(\mathit{K}_{4},\mathit{K}_{5})|=2^{30},|(\mathit{K}_{6},\mathit{K}_{7},\mathit{K}_{8})|=2^{27}.$$

Therefore, a total of 2¹⁰⁵ weak keys.

2.2 A 7-Round Related-Key Differential Characteristic

3. A Class of 2^{102.57} Weak Keys

Focus on the 7-round related-key differential characteristic.

Not all the 2^{15} possible K'_7 (i.e. KI_{21}) defined by the weak key class make $\Pr_{\mathbf{FI}_{21}}(\Delta b \to \Delta c) > 0!$

The number of K_7' defined by the weak key class is 2^{15} , the number of K_7' satisfying $\Pr_{\mathbf{FL}_2}(\Delta b \to \Delta c) > 0$ is about $2^{14.57}$.

The number of K_7' defined by the weak key class & satisfying $\Pr_{\mathbf{FI}_{21}}(\Delta b \to \Delta c) > 0$ is about $2^{13.57}$.

$$Pr_{\mathbf{FI}_{21}}(\Delta b \to \Delta c) = 2^{-15}/2^{-14}/2^{-13.42}$$

Not all the 2^{16} possible K_2' (i.e. KI_{73}) defined by the weak key class make $\Pr_{\mathbf{FI}_{73}}(\Delta c \to \Delta c) > 0$! The number of K_2' defined by the weak key class is 2^{16} , the number of K_2' satisfying $\Pr_{\mathbf{FI}_{73}}(\Delta b \to \Delta c) > 0$ is 2^{15} . The number of K_2' defined by the weak key class & satisfying $\Pr_{\mathbf{FI}_{73}}(\Delta c \to \Delta c) > 0$ is 2^{15} .

$$\Pr_{\mathbf{FI}_{73}}(\Delta c \to \Delta c) = 2^{-15}.$$

As a result, a class of 2^{102.57} weak keys:

$$|K_1|=2^{16}, |(K_2,K_3)|=2^{31}, |(K_4,K_5)|=2^{30}, |(K_6,K_7,K_8)|\approx 2^{25.57}.$$

*
$$|K_3| = 2^{16}$$
, $|K_5| = 2^{16}$.

*
$$|K_7'| = 2^{13.57}$$
; $\forall K_7'$, $\exists 2^{12} (K_6', K_8)$.

*
$$|K_{2,8-16}'| = 2^8$$
, $|K_3'| = 2^{16}$, $|K_{4,8-16}'| = 2^8$.

4. A 7-Round Related-Key Differential with Prob. 2^{-58}

A 7-round related-key differential with probability 2^{-58} .

$$(b||0^{32}||c) \rightarrow (0^{32}||c||0^{16}).$$

5.1 Precomputation

Hash table \mathcal{T}_1 :

```
(x, x \oplus \eta): The left halves of a plaintext pair
```

32 bits

Store satisfying $(K_1, K_3, K'_{2,8-16})$ into Table \mathcal{T}_1 indexed by (x, η, X)

Memory complexity: $2^{75.91}$ bytes; Time complexity: $2^{73.59}$ **FI** computations. For every (x, η, X) , there are 2^{23} satisfying $(K_1, K_3, K'_{2.8-16})$ on average.

Hash table \mathcal{T}_2 :

Y: output difference of \mathbf{FI}_{13} Store satisfying (K_6, K_7, K_8) into Table \mathcal{T}_2 indexed by $(x, \eta, Y, K_1, K'_{4.8-16})$

Memory complexity: $2^{84.74}$ bytes; Time complexity: $2^{84.16}$ FI computations. For every $(x, \eta, Y, K_1, K'_{4.8-16})$, there are $2^{9.57}$ satisfying (K_6, K_7, K_8) on average.

5.2 Attack Outline

- Step 1: Choose 2^{60} ciphertext pairs with difference $(0^{32}||c||0^{16})$.
- Step 2: Keep plaintext pairs with difference $(\eta || ?)$ Step 3: Focus on FL_2 . Guess (K'_3, K_5) , compute X, Y.
- Step 4: Focus on FL₁ and FI₁₂. Obtain satisfying (K₁, K₃, K'_{2,8-16}) from Table T₁.
- Step 5: Retrieve K_4 from $K'_3 = FI(K_3, K_4)$, compute $K'_4 = FI(K_4, K_5)$.
- Step 6: Focus on \mathbf{FL}_1 , \mathbf{FI}_{11} and \mathbf{FI}_{13} . Obtain satisfying (K_6, K_7, K_8) from Table \mathcal{T}_2 .
- Step 7: Increase 1 to counters for $(K_1, K'_{2,8-16}, K_3, K_4, K_5, K_6, K_7, K_8)$. Step 8: For a subkey guess whose counter number is larger than or equal to 3, exhaustively search the remaining 7 key bits.

5.3 Attack Complexity

- Data complexity: 2⁶¹ chosen ciphertexts.
- Memory complexity: 299.2 bytes.
- Time complexity: 287.94 encryptions.
- Success probability: 76%.

6. Another Class of 2^{102.57} Weak Keys

Focus on the 7-round related-key differential characteristic:

7. Conclusions

Have presented a related-key differential attack on the full MISTY1 algorithm under certain weak key assumptions.

- * Have described 2^{103.57} weak keys for a related-key differential attack on the full MISTY1.
- Quite theoretical, for the attack works under the assumptions of weak-key and related-key scenarios and its complexity is very high.

The MISTY1 cipher does not behave like a random function (in the related-key model), and cannot be regarded to be an ideal cipher.

Introduction
 A Class of 2¹⁰²⁻¹⁵ Weak Keys
 A 7-Round Related-Key Differential with Prob. 2⁻⁵⁸
 Attacking the Full MISTY1 under Weak Keys
 6. Another Class of 2¹⁰²⁻¹⁷ Weak Keys
 7. Conclusions

Thank you!

RSACONFERENCE 2013

A Fully Homomorphic Cryptosystem with Approximate Perfect Secrecy

Michal Hojsík, Veronika Půlpánová

Department of Algebra Charles University in Prague

Session ID: CRYP-F42

Session Classification: Advanced

Security in knowledge

Outline

- ▶ (Fully) Homomorphic Encryption
- Polly Cracker
- Symmetric Polly Cracker
- Security of SymPC
- Conclusions

- ▶ Set of plaintexts P, set of ciphertexts C, set of keys K
- ▶ For all keys $k \in \mathcal{K}$, encryption e_k , decryption d_k

$$\mathcal{P} \xrightarrow{e_k} \mathcal{C}$$

▶ Goal: Calculations on P ~ calculations on C

- ▶ Set of plaintexts P, set of ciphertexts C, set of keys K
- ▶ For all keys $k \in \mathcal{K}$, encryption e_k , decryption d_k

$$\mathcal{P} \stackrel{e_k}{=\!\!\!\!=\!\!\!\!=} \mathcal{C}$$

▶ Goal: Calculations on \mathcal{P} ~ calculations on \mathcal{C}

$$m_1$$
 m_2 m_3

- ▶ Set of plaintexts P, set of ciphertexts C, set of keys K
- ▶ For all keys $k \in \mathcal{K}$, encryption e_k , decryption d_k

$$\mathcal{P} \xrightarrow{e_k} \mathcal{C}$$

▶ Goal: Calculations on \mathcal{P} ~ calculations on \mathcal{C}

- ▶ Set of plaintexts P, set of ciphertexts C, set of keys K
- ▶ For all keys $k \in \mathcal{K}$, encryption e_k , decryption d_k

Goal: Calculations on $\mathcal{P} \sim$ calculations on \mathcal{C}

- ▶ Set of plaintexts P, set of ciphertexts C, set of keys K
- ▶ For all keys $k \in \mathcal{K}$, encryption e_k , decryption d_k

Goal: Calculations on $\mathcal{P} \sim$ calculations on \mathcal{C}

- ▶ Set of plaintexts P, set of ciphertexts C, set of keys K
- ▶ For all keys $k \in \mathcal{K}$, encryption e_k , decryption d_k

Goal: Calculations on $\mathcal{P} \sim$ calculations on \mathcal{C}

Homomorphic Encryption cont.

- ▶ Endow \mathcal{P}, \mathcal{C} with operations: $(\mathcal{P}, \cdot), (\mathcal{C}, \odot)$
- Cryptosystem is homomorphic if and only if:

$$d_k:(\mathcal{C},\odot) o (\mathcal{P},\cdot)$$
 is a homomorphism d_k "preserves operation": $d_k(c_1\odot c_2)=d_k(c_1)\cdot d_k(c_2)$

- e_k may be non-deterministic
- Example Plain RSA: $(\mathcal{P}, \cdot) = (\mathcal{C}, \cdot) = (\mathbb{Z}_N, \cdot)$ $(c_1 \cdot c_2)^d \mod N = (c_1^d \mod N) \cdot (c_2^d \mod N) \mod N$
 - → Plain RSA is multiplicatively homomorphic
- ▶ Other examples: Goldwasser-Micali, Benaloh: $(\mathcal{P}, +)$, (\mathcal{C}, \cdot)

Fully Homomorphic Encryption

- ▶ One operation → limited applications
- ▶ Need more operations on \mathcal{P} and \mathcal{C}
- ▶ Fully Homomorphic Cryptosystem: $(\mathcal{P}, +, \cdot)$, $(\mathcal{C}, \oplus, \odot)$ rings $d_k : (\mathcal{C}, \oplus, \odot) \to (\mathcal{P}, +, \cdot)$ is a ring homomorphism
- ▶ E.g. for $\mathcal{P} = GF(2^n)$ and $(\mathcal{C}, \oplus, \odot)$ a ring
 - ightarrow Homomorphic evaluation of any circuit (Boolean function)

$$f(m_1,\ldots,m_r)=d_k\left(f\left(e_k(m_1),\ldots,e_k(m_r)\right)\right)$$

Fully Homomorphic Encryption cont.

- Many practical applications
- Outsourcing computations on confidential data
 - → "encrypted cloud computing"

Various constructions:

- Gentry 2009, lattice-based cryptography with Bootstrapping
- DGHV 2009, modular arithmetic with Bootstrapping
- AAPS 2011, coding theory with limited multiplication
- Fellows, Koblitz 1994, ideal membership problem, Polly Cracker

Polly Cracker

- Probabilistic public-key cryptosystem
- $ightharpoonup \mathcal{P} = GF(q) = \mathbb{F}, \, \mathcal{C} = \mathbb{F}[x_1, \ldots, x_n]$
- ▶ Private key $\vec{s} \in \mathbb{F}^n$
- ▶ Public key $PK = \{f_1, \ldots, f_r\} \subset C, \forall i \ f_i(\vec{s}) = 0$
- ▶ Encryption of $m \in \mathbb{F}$: choose $J \subset \{1, ..., r\}$ uniformly at random

$$c = e(m) = m + \sum_{j \in J} f_j$$

▶ Decryption of $c \in C$ – evaluation of c at \vec{s} :

$$d_{\vec{s}}(c) = c(\vec{s}) = m + \sum_{j \in J} f_j(\vec{s}) = m$$

Polly Cracker cont.

- Fully homomorphic
- Polynomial evaluation is a ring homomorphism
- ▶ Let $c_1 = m_1 + \sum_{i \in I} f_i$, $c_2 = m_2 + \sum_{i \in J} f_i$

$$d(c_1+c_2) = (c_1+c_2)(\vec{s}) = \left(m_1 + \sum_{i \in I} f_i + m_2 + \sum_{j \in J} f_j\right)(\vec{s}) = m_1 + m_2$$
$$d(c_1 \cdot c_2) = (c_1 \cdot c_2)(\vec{s}) = \left((m_1 + \sum_{i \in I} f_i)(m_2 + \sum_{j \in J} f_j)\right)(\vec{s}) = m_1 m_2$$

- Attack by calculation of Gröbner basis of the ideal (PK) G
- Decryption of c equals c mod (G)

Symmetric Polly Cracker (SymPC)

- Probabilistic symmetric-key cryptosystem
- ▶ Secret key $\vec{s} \in \mathbb{F}^n$, $\mathbb{F} = GF(q)$
- ▶ Multiplicative key $G = \{g_1, ..., g_n\} \subset \mathbb{F}[x_1, ..., x_n]$ used in calculations with ciphertexts (not a public key)
- $P = \mathbb{F}, \ \mathcal{C} = \mathbb{F}[x_1, \ldots, x_n]/\langle G \rangle$
- ► *G* has special properties (*G* is the reduced Gröbrer basis)
 - ightarrow Easily algorithmized multiplicative structure on $\mathcal C$
 - → Reduces complexity and size of ciphertexts

Symmetric Polly Cracker (SymPC) cont.

- $\mathcal{P} = \mathbb{F}, \ \mathcal{C} = \mathbb{F}[x_1, \ldots, x_n]/\langle \mathbf{G} \rangle$
- ▶ Encryption of $m \in \mathcal{P}$: choose $f \in \mathcal{C}$ uniformly at random

$$e_{\vec{s}}(m) = f - f(\vec{s}) + m$$

▶ Decryption of $c \in C$ – evaluation of c at \vec{s} :

$$d_{\vec{s}}(c) = c(\vec{s}) = (f - f(\vec{s}) + m)(\vec{s}) = m$$

- Fully homomorphic
- Complexity analysis in the paper

Security of SymPC

Approximate perfect secrecy:

▶ For all probability distributions on \mathcal{P} and for all $m \in \mathcal{P}$

$$Pr[P = m \mid C = c] \xrightarrow{t \to \infty} Pr[P = m]$$

for almost all $c \in C$ (security parameter t)

- Assuming an attacker with unbounded computational power
- Probabilistic information theoretical security

Security of SymPC cont.

- Approximate perfect secrecy in bounded CPA model
- k-bounded CPA: an attacker can obtain at most k pair (m, c)
- Not CCA secure:

Ask for decryption of
$$c_1 = x_1, c_2 = x_2, \dots, c_n = x_n$$

 \rightarrow obtain the secret key $(s_1, s_2, \dots, s_n) = \vec{s}$ as $c_i(\vec{s}) = x_i(\vec{s})$

► KPA security \sim CPA security: For a given $(m, c) \in \mathcal{P} \times \mathcal{C}$ s.t. $c(\vec{s}) = m$ and any $m' \in \mathcal{P}$ The pair (m', c' = c - m + m') is valid:

$$d_{\vec{s}}(c')=c'(\vec{s})=c(\vec{s})-m+m'=m'$$

SymPC downsides

- Proof of k-bounded CPA security only for small k
- Ciphertext size
- ► Complexity: $(n \sim \text{key size}, \nu = \deg(g_i) \leq |\mathbb{F}|)$ Encrypt, decrypt $O\left(n \cdot (\nu + 1)^{n+1}\right)$ operations in \mathbb{F} Add $O((\nu + 1)^n)$, multiply $O\left((\nu + 1)^{2n}\right)$ operations in \mathbb{F}

Sparse SymPC:

- Choose sparse polynomials in encryption (limit the number of non-zero coefficients)
- Ciphertext size grows with multiplication

Conclusions

- Proposed a new fully homomorphic cryptosystem SymPC
- Upgraded symmetric version of Polly Cracker
- Utilized Gröbner basis in the construction
- Proved security in the information theoretical settings

Thank you for your attention!