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Setting

©

Industry commonly manages keys with special purpose hardware:
@ Hardware Security Module (HSM).

HSMs store keys which should not be exposed outside the module.
Keys used via an API call to the HSM.

9 e.g. Provides an API call for CBC Mode.
o Input: plaintext and the name of a key.
@ HSM recovers key and applies CBC-Mode.

¢ ©

©

Whole process is expensive.

©

Minimizing calls to the HSM is important.
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What are our options?

Constructions which provide authenticated encryption:
@ Encrypt-then-MAC
@ Dedicated AE scheme: OCB, EAX, CCM etc.

Why not use one of these well studied schemes?
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@ HSMs designed before need for AE was understood.
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@ HSMs designed before need for AE was understood.

@ More modern modes are not supported.

Solution:

Use a generic construction such as Encrypt-then-MAC.

Solution Problem:

@ This uses two keys.

@ Meaning two HSM calls.
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Basic requirements:
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Design criteria

Basic requirements:
@ All secret keys should reside on the HSM.
@ Only one call to the HSM is allowed, i.e. single key.
@ Such a call should be to a CBC-Encrypt.
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Encryption with redundancy

Studied formally by An and Bellare.
Two types of redundancy function; secret key and public key.
IND-CPA encryption scheme + secret/public redundancy function # AE.

¢ &6 ¢ ¢

An and Bellare define a scheme with a secret key redundancy function,
Nested CBC (NCBC).

NCBC uses a different key to encrypt the last block.

(]
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Relating to our scheme

@ Our scheme uses secret redundancy,
where the redundancy function uses a different “key” each time.

@ In general any IND-CPA scheme plus one time redundancy function # AE.
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Managed Encryption Format

@ The API call is CBC-mode with all-zero IV.

@ Need randomness for security.
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Managed Encryption Format

@ The API call is CBC-mode with all-zero V.
@ Need randomness for security.

@ Use HSMs ability to generate random numbers.
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Managed Encryption Format

The API call is CBC-mode with all-zero 1V.
Need randomness for security.

Use HSMs ability to generate random numbers.

¢ ¢ ¢ ¢

Implementation note — to avoid making an extra HSM call for every
encryption, we maintain a cache of randomness.

We assume this cache to be secure.

[
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Managed Encryption Format

| M[1] | | M2] | Min]
R
hash(R, A, M)
¥ S¥) —D
m m F,\
Cl0] = Fi(R) C[1] | C[2] | C[3] |— Cln+1]
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Managed Encryption Format

Encrypt(K, A, M) Decrypt(K, A, C)
RZ (0.1) RIH[M < D-CBCFI(K, C)
H + hash(R, A, M) M « dpad(M’)

C + E-CBC[F](K, R||H||pad(M)) if M #1 then
return C h < hash(R, A, M)
if h# hthen M =1
return M
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Managed Encryption Format

Encrypt(K, A, M) Decrypt(K, A, C)
RZ (0.1) RIH[M < D-CBCFI(K, C)
H + hash(R, A, M) M « dpad(M’)

C + E-CBC[F](K, R||H||pad(M)) if M #1 then
return C h < hash(R, A, M)
if h# hthen M =1
return M

Points to note:
@ Padding (uniform error reporting)
@ “MAC-then-encrypt”
o IV
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Security model — Privacy

Let M = (KeyGen, Encrypt, Decrypt) be a symmetric encryption scheme.

EHC(A, Mo, Ml)

Co + Encrypt(K, A, M)
C;1 < Encrypt(K, A, My)
Cc<G

return C,

PRIVA(TT)

K + KeyGen; b <~ {0,1}
b <_~AEnc

return (b’ = b)

AdvP™(A) = 2Pr[PRIVA(M) = true] — 1,
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PRIV

This can be proved by relating to the security of CBC mode proved by Bellare et
al. [BDJR].
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PRIV

This can be proved by relating to the security of CBC mode proved by Bellare et

al. [BDJR].

hash(R, A, M)

M1

D

o

C[O] =Fk(R)

onj
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Privacy

@ Let F={Fk: K € {0,1}*} be a permutation family.
o Let MN[F] be the managed encryption format using permutation family F.

@ Let A be an adversary against Privacy which runs in time t; making ge
encryption queries totalling at most p. bits.
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Privacy

@ Let F={Fk: K € {0,1}*} be a permutation family.
o Let MN[F] be the managed encryption format using permutation family F.

@ Let A be an adversary against Privacy which runs in time t; making ge
encryption queries totalling at most p. bits.

Then there exists adversary B such that:

2
AdviY (A) < 2AdvEP(B) + % 1 ((

2
2l T2 ue+2qe>_(ue+2qe>>

/ /

where B runs in time t 4 O(ue) asking at most gr = 5¢ 4 29 queries.
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Security model — AUTH

Let M = (KeyGen, Encrypt, Decrypt) be a symmetric encryption scheme.

Enc(A, M) Test(A*, C¥)
C « Encrypt(K, A, M) M* < Decrypt(K, A*, C*)
C < (A Q) if M*#1 and (A*, C*) & C then
return C win < true
return (M* #£1)

AUTHA(M)

K < KeyGen

win < false

(A* C*) <;.AEnc,Test
return win

Advi™(A) = PrIAUTHA(MN) = true]
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AUTH

I |

| M1 | | M(2] | Min)
R
hash(R, A, M)
¥ Y
Cl0] = Fx(R) | cnj | cp | cpl |—

To forge a ciphertext the adversary must forge the hash.
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Case 1: Hash not queried

Pr[(hash(R*, A*, M*) = h*) A ((R*, A*, M*, h*) ¢ H)|r < Perm| < %

@ Not previously queried.

@ Random chance on verification.
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Case 2: Hash already queried

dhlle

Pri(hash(R", A", M*) = h*) A ((R*, A", M*, ") € M) | < Perm] < T

@ Previous call to random oracle.
@ If call made by encryption query then invalid forgery.

@ So independent call to hash.

M. Bond, G. French, N.P. Smart, G.J. Watson Low-call diet: AE for call counting HSM users CT-RSA — March 1st 2013 22 /26



Case 2: Hash already queried

dhlle

Pri(hash(R", A", M*) = h*) A ((R*, A", M*, ") € M) | < Perm] < T

@ Previous call to random oracle.
@ If call made by encryption query then invalid forgery.
@ So independent call to hash.

@ Analysis is then based on the collision event that for some i, J,

Gll® Milj] = h* @ =(R").
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AUTH

@ Let F={Fk: K € {0,1}*} be a permutation family.
o Let MN[F] be the managed encryption format using permutation family F.

@ Let A be an adversary against the AUTH security which runs in time t;
making g. encryption queries totalling at most e bits, g; test queries
totalling at must u; bits and g random oracle queries.
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AUTH

@ Let F={Fk: K € {0,1}*} be a permutation family.
o Let MN[F] be the managed encryption format using permutation family F.

@ Let A be an adversary against the AUTH security which runs in time t;
making g. encryption queries totalling at most e bits, g; test queries
totalling at must u; bits and g random oracle queries.

Then there exists adversary B3 such that:

AV (A) < AdvPP(B) + % T q;’zlfe

where B makes gr = 5 4 2ge + & queries and runs in time t + O(ue + fit).
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Summary

Summary

@ We have discussed the Managed Encryption Format
@ Despite its limitation we were still able to prove it secure.
@ With several important implementation caveats.

9 Care needs to be taken with implementation to ensure security.
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Summary

Questions
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1. Introduction

1.1 Block Cipher

1.2 A Cryptanalytic Attack

1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

1.1 Block C

@ An important primitive in symmetric-key cryptography.
* Main purpose: provide confidentiality — A most fundamental security goal.

@ An algorithm that transforms a fixed-length data block into another
data block of the same length under a secret user key.
* Input: plaintext.

* Output: ciphertext.
* Three sub-algorithms: encryption, decryption, key schedule.

@ Constructed by repeating a simple function many times, known as
the iterated method.

An iteration: a round.

The repeated function: the round function.

The key used in a round: a round subkey.

The number of iterations: the number of rounds.

The round subkeys are generated from the user key under a key schedule algorithm.

* X X X ¥
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1. Introduction

1 Block Cipher

2 A Cryptanalytic Attack

3 Related-Key (Differential) Cryptanalysis
4

il
1.
i,
1.4 The MISTY1 Block Cipher

@ An algorithm that distinguishes a cryptosystem from a random
function.

@ Usually measured using the following three metrics:
* Data complexity

— The numbers of plaintexts and/or ciphertexts required.

* Memory (storage) complexity

— The amount of memory required.

* Time (computational) complexity
— The amount of computation or time required, how many
encryptions/decryptions or memory accesses.

e Goals:

* Break a cryptosystem (ideally, in a practical complexity).
* Enable more secure cryptosystems to be designed.

Weak Keys of the Full MISTY1 Block Cipher for Related-Key Differential C



1. Introduction

1.1 Block Cipher

1.2 A Cryptanalytic Attack

1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

@ Independently introduced by Knudsen in 1992 and Biham in 1993.

o Different from differential cryptanalysis: The pair of ciphertexts are
obtained by encrypting the pair of plaintexts using two different keys
with a particular relationship, e.g. certain difference.

@ Probability of a related-key differential:

Pre, k., (Aa — AB) = Peﬁ)rl}n(EK(P) D Ex(P®a)=p).

e For a random function, the expected probability of any related-key
differential is 27",

If Prg, g, (Aa — AB) > 27", we can use the related-key differential to
distinguish E from a random function.
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1. Introduction

1.1 Block Cipher

1.2 A Cryptanalytic Attack
1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

@ Designed by Mitsubishi (Matsui et al.), published in 1995.

@ A 64-bit block cipher, a user key of 128 bits, and a recommended
number of 8 rounds, with a total of 10 key-dependent logical
functions FL:

* two FL functions at the beginning;
* two FL functions inserted after every two rounds.

@ A Japanese CRYPTREC-recommended e-government cipher, an
European NESSIE selected cipher, an ISO international standard.

@ Widely used in Mitsubishi products as well as in Japanese military.
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1. Introduction

1.1 Block Cipher

1.2 A Cryptanalytic Attack

1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

1.4.2 Struct

KL, ‘

KL;o

(a) : FL1 (b) : FI”

KO;q

‘
(d) : MISTY1
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1. Introduction

1.1 Block Cipher

1.2 A Cryptanalytic Attack
1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

1. Represent a user key K as eight 16-bit words K = (K1, Ko, -+ , Kg).

2. Generate a different set of eight 16-bit words K|, KJ,--- , K§ by
K/ = FI(K:, Kis1), fori=1,2,--- 8.
3. Subkeys:

KOj1, = Ki, KOj» = Ki2, KOj3 = Kiy7, KOis = Kija;
Kl = K'/+5> Klp = ,'/+1, Kliz = i/+3;

KL; = K%HK% for i =1,3,5,7,9; otherwise, KL; = Kg+2||K£+4.

+6°
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1. Introduction

1.1 Block Cipher

1.2 A Cryptanalytic Attack

1.3 Related-Key (Differential) Cryptanalysis
1.4 The MISTY1 Block Cipher

1.4.4 Securi

@ Has been extensively analysed against a variety of cryptanalytic
methods.

@ No whatever cryptanalytic attack on the full version.
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2. Related Work

2. Related

Dai and Chen’s related-key differential attack on 8-round MISTY1 with
only the last 8 FL functions (INSCRYPT 2011).

o A class of 219 weak keys.

* A weak key is a user key under which a cipher is more vulnerable to be attacked.
@ A 7-round related-key differential characteristic with probability 27°.

o Attacking the 8-round reduced version under weak keys.
* Attack procedure is straightforward, by conducting a key recovery on FO; in a way
similar to the early abort technique for impossible differential cryptanalysis.
Data complexity: 2% chosen ciphertexts.
Memory complexity: 2% bytes.

Time complexity: 286-6 encryptions.
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2.1 A Class

2. Related Work

Three binary constants:
* 7-bit a = 0010000;
* 16-bit b = 0010000000010000;
* 16-bit ¢ = 0010000000000000.

Let Ka, Kg be two 128-bit user keys:
Ka = (K1, K2, K3, Ka, Ks, K, K7, Ks),
Kp = (K1, K2, K3, Ka, Ks, K¢, K7, Kg).

Let K4, K5 be the corresponding 128-bit words generated by the key schedule:

Kh = (K{, K, K3, Ky, Kg, Kg, K7, K,
Ky = (KL K K K KL KL KL ).
The class of weak keys is defined to be the set of all possible (Ka, Kg) satisfying the following 10
conditions:
Ke®Ks=c, KeDK*=b, KOBOK" =c, Ke12=0 Kr3=1,
K7,12 =0, Ks3 =1, Kis=1, Kin=1, K;3=0.

The number:
[Ki| = 2%, |[Ko| = 2, |Ks| = 2'°, |(Ka, K5)| = 2%, |(Ks, K7, Ks)| = 27.

2105

Therefore, a total of weak keys.
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2. Related Work




3. A Class of 2102-57 Wweak Keys

3. A Class

Focus on the 7-round related-key differential characteristic.

pr=278

K, AKIyg = (02]]a)

. »

0?|a

Round 2

AKlyg) =a

Not all the 2% possible K7 (i.e. KTy ) defined by the weak key class make Prpy,, (Ab = Ac) > 0!
The number of K7 defined by the weak key class is 2", the number of K} satisfying Prey,, (Ab — Ac) > 0 s about 257,
The number of K7 defined by the weak key class & satisfying Prey,, (Ab— Ac) > 0 is about 2",

Prer, (Ab—= Ac) = 2710271 jg B2
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3. A Class of 2102-57 Wweak Keys

Round 7

Not all the 2'6 possible K} (i.e. KIy;) defined by the weak key class make Preg,,(Ac = Ac) > 0!
The number of K} defined by the weak key class is 2'°, the number of Kj satisfying Prgy,, (Ab — Ac) > 0 is 2%5.
The number of K} defined by the weak key class & satisfying Pryy., (Ac — Ac) > 0 is 21,

Prpp,,(Ac—= Ac) = 2715

Weak Keys of the Full MISTY1 Block Cipher for Related-Key Differential C



1. Introduction

2. Related Work

3. A Class of 2102-57 Wweak Keys
- X

e Full MISTY1 un
6. Another Class of 21V

As a result, a class of 210257 weak keys:

|K1| = 2167 |(K27 K3)| = 2317 |(K47 K5)| = 2307 |(K67 K7a K8)‘ ~ 225'57'

*|Ks| =29, |Ks| = 21°.
* Ky | =285, Ky, 3212 (K, Ks).

8 6 8
* |K2/,3715‘ =27 ‘Ksl‘ =2 ' |K4/,8—16‘ =2
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4. A 7-Round Related-Key Differential with Prob. 258

A 7-round related-key differential with probability 2.

(bl[0%[[c) — (0%2[|c][0™®).

Weak Keys of the Full MISTY1 Block Cipher for Related-Key Differential C



5. Attacking the Full MISTY1 under Weak Keys

Hash table 77:

(x,z ®n): The left halves of a plaintext pair 39 bits

Only three possible input differences 1 = 0070000000000000||0070000000000000
X: output difference of FI;5
Store satisfying (K, K3, K4 1) into Table 77 indexed by (z,n, X)

Round 1

019]|c

blj0te

Memory complexity: 27°9! bytes; Time complexity: 273%? FI computations.

For every (x,1, X ), there are 2% satisfying (K, K3, K54 14) on average.
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5. Attacking the Full MISTY1 under Weak Keys

Hash table 75:

Y: output difference of FI;3
Store satisfying (K, K7, K3) into Table T3 indexed by (z,1,Y, K1, K| 14)

Round 1 AKIn2/Kgg 1

i
b[[016 09)c

Memory complexity: 2847 bytes; Time complexity: 25416 FI computations.
9.57

For every (x,n,Y, K1, K} 4_5), there are 2°°7 satisfying (K¢, K7, Ks) on average.

iang Lu Weak Keys of the Full MISTY1 Block Cipher for Related-Key Differential C



5. Attacking the Full MISTY1 under Weak Keys

5.2 Attack

2 (X )| (X+) @ (0%a))

Round 1 - ) ) XY a7

Nty

\
b)|0%6 0'[c

Step 1: Choose 2% ciphertext pairs with difference (0%2||c|[0'°).

Step 2: Keep plaintext pairs with difference (1||?)

Step 3: Focus on FL,. Guess (K3, K5), compute X, Y.

Step 4: Focus on FL; and FI;5. Obtain satisfying (Ky, K3, Kb s_4) from Table 7y.

Step 5: Retrieve K from K} = FI(K3, Ky), compute Kj = FI(Ky, K).

Step 6: Focus on FLy, FI;; and FlI;3. Obtain satisfying (Kg, K7, Kg) from Table Ts.

Step 7: Increase 1 to counters for (Ky, Ky g 15, K3, Ky, K5, K¢, K7, Kg).

Step 8: For a subkey guess whose counter number is larger than or equal to 3, exhaustively search the remaining 7 key bits.
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5. Attacking the Full MISTY1 under Weak Keys

5.3 Attack (

Data complexity: 2% chosen ciphertexts.

e Memory complexity: 2992 bytes.

e Time complexity: 287-%* encryptions.

Success probability: 76%.
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6. Another Class of 2102-57 Weak Keys

6. Another

Focus on the 7-round related-key differential characteristic:

bl|016

Round 2

c|[0'6

—a-s
o Pr—2

Round 8

AKIgz = (02]]a)|
1

I

AKIg, = a

LEKi3=1A=cc
3=1,K;3=0.A=09c
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7. Conclusi

Have presented a related-key differential attack on the full MISTY1
algorithm under certain weak key assumptions.

* Have described 21957 weak keys for a related-key differential attack on the full MISTY1.

* Quite theoretical, for the attack works under the assumptions of weak-key and related-key
scenarios and its complexity is very high.

The MISTY1 cipher does not behave like a random function (in the
related-key model), and cannot be regarded to be an ideal cipher.

Weak Keys of the Full MISTY1 Block Cipher for Related-Key Differential C
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3. A Class of !
4. A 7-Round Related-Key Differential with

5. Attacking the Full MISTY1 unde
6. Another Class of 2102-5
7. Conclusions

Thank you!
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Homomorphic Encryption

» Set of plaintexts P, set of ciphertexts C, set of keys K
» For all keys k € KC, encryption ek, decryption dx

&3
—_—

P C

-

dy

» Goal: Calculations on P ~ calculations on C
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Homomorphic Encryption

» Set of plaintexts P, set of ciphertexts C, set of keys K
» For all keys k € K, encryption e, decryption di

=3
_— =

P C

-

dy

» Goal: Calculations on P ~ calculations on C
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Homomorphic Encryption

» Set of plaintexts P, set of ciphertexts C, set of keys K
» For all keys k € I, encryption e, decryption d

=3
_— =

P C

-

dy

» Goal: Calculations on P ~ calculations on C

f(my, my, m3)
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Homomorphic Encryption

» Set of plaintexts P, set of ciphertexts C, set of keys K
» For all keys k € I, encryption e, decryption d

=3
_— =

P C

-

dy

» Goal: Calculations on P ~ calculations on C

m

my mo M3 C1 Co C3
. . .
M

f(mh ma, ms)
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Homomorphic Encryption

» Set of plaintexts P, set of ciphertexts C, set of keys K
» For all keys k € I, encryption e, decryption d

=3
B

P C

-

dy

» Goal: Calculations on P ~ calculations on C

m

my mo M3 @] C2 C3
o . o . . o

e —
f(mh ma, m3) f(Ch C2, 03)
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Homomorphic Encryption

» Set of plaintexts P, set of ciphertexts C, set of keys K
» For all keys k € I, encryption e, decryption d

=3
B

P C

-

dy

» Goal: Calculations on P ~ calculations on C

m

my mo M3 @] C2 C3
\K/ \KJ
f(mh ma, m3) f(Ch C2, 03)
W
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Homomorphic Encryption cont.

v

Endow P, C with operations: (P,-), (C,®)

v

Cryptosystem is homomorphic if and only if:
dk : (C,®) — (P,-) is a homomorphism
dx "preserves operation”: d(c1 @ ¢2) = dk(c1) - dk(C2)

v

ex may be non-deterministic

v

Example - Plain RSA: (P,:) = (C,-) = (Zn, ")
(c1-c2)? mod N=(c{ mod N)-(c mod N) mod N

— Plain RSA is multiplicatively homomorphic

v

Other examples: Goldwasser-Micali, Benaloh: (P, +), (C,-)

RSACONFERENCE2013
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Fully Homomorphic Encryption

» One operation — limited applications
» Need more operations on P and C
» Fully Homomorphic Cryptosystem: (P, +,), (C,®,®) rings
di : (C,®,®) = (P, +,) is a ring homomorphism
» E.g. for P = GF(2") and (C,®,®) a ring
— Homomorphic evaluation of any circuit (Boolean function)

f(my,...,my) = dk (f(ex(m),..., ex(m)))

RSACONFERENCE2013
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Fully Homomorphic Encryption cont.

» Many practical applications

» Qutsourcing computations on confidential data
— “encrypted cloud computing”

Various constructions:
» Gentry 2009, lattice-based cryptography with Bootstrapping
» DGHV 2009, modular arithmetic with Bootstrapping
» AAPS 2011, coding theory with limited multiplication

» Fellows, Koblitz 1994, ideal membership problem, Polly Cracker

RSACONFERENCE2013
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Polly Cracker

» Probabilistic public-key cryptosystem
P=GF(Q)=TF,C=F[x1,...,X]
Private key s € F"

Public key PK = {f,....f,} cC, Vi £(§) =0

v

v

v

» Encryption of m € F: choose J C {1,..., r} uniformly at random
c=e(m=m+> f
jed

v

Decryption of ¢ € C — evaluation of ¢ at s:

d(c)=c(§) =m+> (8 =m
jed

RSACONFERENCE2013
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Polly Cracker cont.

» Fully homomorphic
» Polynomial evaluation is a ring homomorphism
» Leter =m+3 . fi, .= m2+2j6,1}

iel jed

d(ci+e) = (ci1+6) (8) = (m1+zf;+ me+>» 15-) (8) = m+mp

d(ci - c2) = (ci - c2) (S) = ((mﬁ-z f)(me+) fi)) (8) = mimy

iel jed

» Attack by calculation of Grébner basis of the ideal (PK) - G

» Decryption of ¢ equals ¢ mod (G)

RSACONFERENCE2013
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Symmetric Polly Cracker (SymPC)

v

v

v

v

v

Probabilistic symmetric-key cryptosystem

Secretkey S € F", F = GF(q)

Multiplicative key G = {g1,...,9n} C F[x1, ..., Xn]

used in calculations with ciphertexts (not a public key)
P=F, C=F[xi,...,X]/(G)

G has special properties (G is the reduced Grobrer basis)

— Easily algorithmized multiplicative structure on C
— Reduces complexity and size of ciphertexts

RSACONFERENCE2013
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Symmetric Polly Cracker (SymPC) cont.

» P=F, C=F[xi,...,xn]/(G)
» Encryption of m € P: choose f € C uniformly at random
es(m)=f—1(S)+m
» Decryption of ¢ € C — evaluation of ¢ at s:
ds(c) =c(8) = (f = f(S§) + m)(S) =m
» Fully homomorphic

» Complexity analysis in the paper

RSACONFERENCE2013
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Security of SymPC

Approximate perfect secrecy:
» For all probability distributions on P and for all m € P
t—o0
Pr[P=m|C=c] —— Pr[P =m]

for almost all ¢ € C (security parameter t)

» Assuming an attacker with unbounded computational power

» Probabilistic information theoretical security

RSACONFERENCE2013
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Security of SymPC cont.

» Approximate perfect secrecy in bounded CPA model
» k-bounded CPA: an attacker can obtain at most k pair (m, ¢)
» Not CCA secure:

Ask for decryption of ¢y = X1, = X2,...,Ch = X

— obtain the secret key (si,S2,...,8,) =S as ¢i(S) = xi(5)

» KPA security ~ CPA security:
For a given (m,c) € P xCs.t. ¢(S§)=mandany m’ € P
The pair (m', ¢’ = ¢ — m+ m') is valid:

RSACONFERENCE2013
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SymPC downsides

» Proof of k-bounded CPA security only for small k
» Ciphertext size

» Complexity: (n ~ key size, v = deg(g;) < |F|)
Encrypt, decrypt O (n- (v + 1)™") operations in F
Add O((v + 1)"), multiply O ((v + 1)2") operations in F

Sparse SymPC:

» Choose sparse polynomials in encryption
(limit the number of non-zero coefficients)

» Ciphertext size grows with multiplication

RSACONFERENCE2013
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Conclusions

v

Proposed a new fully homomorphic cryptosystem SymPC

v

Upgraded symmetric version of Polly Cracker

Utilized Grébner basis in the construction

v

v

Proved security in the information theoretical settings
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Thank you for your attention!
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