The low-call diet:
 Authenticated Encryption for call counting HSM users

Mike Bond ${ }^{1} \quad$ George French $^{2} \quad$ Nigel P. Smart ${ }^{3} \quad$ Gaven J. Watson ${ }^{3}$
${ }^{1}$ Cryptomathic $\quad{ }^{2}$ Barclays Bank Plc. $\quad{ }^{3}$ University of Bristol

CT-RSA - March 1st 2013

(1) Motivation

(2) Encryption with redundancy
(3) Managed Encryption Format
(4) Analysis
(5) Summary

(1) Motivation

(2) Encryption with redundancy

(3) Managed Encryption Format

4. Analysis
(5) Summary

Setting

- Industry commonly manages keys with special purpose hardware:

Setting

- Industry commonly manages keys with special purpose hardware:
- Hardware Security Module (HSM).

Setting

- Industry commonly manages keys with special purpose hardware:
- Hardware Security Module (HSM).
- HSMs store keys which should not be exposed outside the module.

Setting

- Industry commonly manages keys with special purpose hardware:
- Hardware Security Module (HSM).
- HSMs store keys which should not be exposed outside the module.
- Keys used via an API call to the HSM.

Setting

- Industry commonly manages keys with special purpose hardware:
- Hardware Security Module (HSM).
- HSMs store keys which should not be exposed outside the module.
- Keys used via an API call to the HSM.
- e.g. Provides an API call for CBC Mode.
- Input: plaintext and the name of a key.
- HSM recovers key and applies CBC-Mode.

Setting

- Industry commonly manages keys with special purpose hardware:
- Hardware Security Module (HSM).
- HSMs store keys which should not be exposed outside the module.
- Keys used via an API call to the HSM.
- e.g. Provides an API call for CBC Mode.
- Input: plaintext and the name of a key.
- HSM recovers key and applies CBC-Mode.
- Whole process is expensive.

Setting

- Industry commonly manages keys with special purpose hardware:
- Hardware Security Module (HSM).
- HSMs store keys which should not be exposed outside the module.
- Keys used via an API call to the HSM.
- e.g. Provides an API call for CBC Mode.
- Input: plaintext and the name of a key.
- HSM recovers key and applies CBC-Mode.
- Whole process is expensive.
- Minimizing calls to the HSM is important.

What are our options?

Constructions which provide authenticated encryption:

What are our options?

Constructions which provide authenticated encryption:

- Encrypt-then-MAC

What are our options?

Constructions which provide authenticated encryption:

- Encrypt-then-MAC
- Dedicated AE scheme: OCB, EAX, CCM etc.

What are our options?

Constructions which provide authenticated encryption:

- Encrypt-then-MAC
- Dedicated AE scheme: OCB, EAX, CCM etc.

Why not use one of these well studied schemes?

- HSMs designed before need for AE was understood.
- HSMs designed before need for AE was understood.
- More modern modes are not supported.
- HSMs designed before need for AE was understood.
- More modern modes are not supported.

Solution:

Use a generic construction such as Encrypt-then-MAC.

- HSMs designed before need for AE was understood.
- More modern modes are not supported.

Solution:
Use a generic construction such as Encrypt-then-MAC.

Solution Problem:

- This uses two keys.
- Meaning two HSM calls.

Design criteria

Basic requirements:

Design criteria

Basic requirements:

- All secret keys should reside on the HSM.
- Only one call to the HSM is allowed, i.e. single key.
- Such a call should be to a CBC-Encrypt.

(1) Motivation

(2) Encryption with redundancy

(3) Managed Encryption Format

(4) Analysis
(5) Summary

Encryption with redundancy

- Studied formally by An and Bellare.

Encryption with redundancy

- Studied formally by An and Bellare.
- Two types of redundancy function; secret key and public key.

Encryption with redundancy

- Studied formally by An and Bellare.
- Two types of redundancy function; secret key and public key.
- IND-CPA encryption scheme + secret/public redundancy function $\nRightarrow A E$.

Encryption with redundancy

- Studied formally by An and Bellare.
- Two types of redundancy function; secret key and public key.
- IND-CPA encryption scheme + secret/public redundancy function $\nRightarrow A E$.
- An and Bellare define a scheme with a secret key redundancy function, Nested CBC (NCBC).
- NCBC uses a different key to encrypt the last block.

Relating to our scheme

- Our scheme uses secret redundancy,

Relating to our scheme

- Our scheme uses secret redundancy, where the redundancy function uses a different "key" each time.

Relating to our scheme

- Our scheme uses secret redundancy, where the redundancy function uses a different "key" each time.
- In general any IND-CPA scheme plus one time redundancy function $\nRightarrow A E$.

2 Encryption with redundancy

(3) Managed Encryption Format

(4) Analysis
(5) Summary

API call

- The API call is CBC-mode

API call

- The API call is CBC-mode with all-zero IV.

API call

- The API call is CBC-mode with all-zero IV.
- Need randomness for security.

API call

- The API call is CBC-mode with all-zero IV.
- Need randomness for security.
- Use HSMs ability to generate random numbers.

API call

- The API call is CBC-mode with all-zero IV.
- Need randomness for security.
- Use HSMs ability to generate random numbers.
- Implementation note - to avoid making an extra HSM call for every encryption, we maintain a cache of randomness.

API call

- The API call is CBC-mode with all-zero IV.
- Need randomness for security.
- Use HSMs ability to generate random numbers.
- Implementation note - to avoid making an extra HSM call for every encryption, we maintain a cache of randomness.
- We assume this cache to be secure.

Managed Encryption Format

Encrypt(K, A, M)	Decrypt($K, A, C)$		
$R \stackrel{r}{\leftarrow}\{0,1\}^{\prime}$	$\overline{R\\|H\\|} M^{\prime} \leftarrow \mathrm{D}-\mathrm{CBC}[F](K, C)$		
$H \leftarrow \operatorname{hash}(R, A, M)$	$M \leftarrow \operatorname{dpad}\left(M^{\prime}\right)$		
$C \leftarrow \mathrm{E}-\mathrm{CBC}[F](K, R\\|H\\| \operatorname{pad}(M))$	if $M \neq \perp$ then $\bar{h} \leftarrow \operatorname{hash}(R, A, M)$		
return C	if $\bar{h} \neq h$ then $M=\perp$		
	return M		

```
Encrypt(K,A,M)
R\stackrel{r}{\leftarrow}{0,1\mp@subsup{}}{}{\prime}
H}\leftarrow\operatorname{hash}(R,A,M
C}\leftarrow\textrm{E}-\textrm{CBC}[F](K,R|H|\operatorname{pad}(M)
return C
```

```
Decrypt( \(K, A, C\) )
```

Decrypt(K, A, C)
$\overline{R\|H\| M} \leftarrow \mathrm{D}-\mathrm{CBC}[F](K, C)$
$\overline{R\|H\| M} \leftarrow \mathrm{D}-\mathrm{CBC}[F](K, C)$
$M \leftarrow \operatorname{dpad}\left(M^{\prime}\right)$
$M \leftarrow \operatorname{dpad}\left(M^{\prime}\right)$
if $M \neq \perp$ then
if $M \neq \perp$ then
$\bar{h} \leftarrow \operatorname{hash}(R, A, M)$
$\bar{h} \leftarrow \operatorname{hash}(R, A, M)$
if $\bar{h} \neq h$ then $M=\perp$
if $\bar{h} \neq h$ then $M=\perp$
return M

```
return \(M\)
```

Points to note:

- Padding (uniform error reporting)
- "MAC-then-encrypt"
- IV

(1) Motivation

(2) Encryption with redundancy

(3) Managed Encryption Format

(4) Analysis

(5) Summary

Security model - Privacy

Let $\Pi=($ KeyGen, Encrypt, Decrypt) be a symmetric encryption scheme.

```
Enc}(A,\mp@subsup{M}{0}{},\mp@subsup{M}{1}{}
C
C
C}\leftarrow\mp@subsup{C}{b}{
return Cb
```

$\underline{\operatorname{PRIV}^{\mathcal{A}}(\Pi)}$
$K \leftarrow$ KeyGen; $b \stackrel{r}{\leftarrow}\{0,1\}$
$b^{\prime} \leftarrow \mathcal{A}^{\text {Enc }}$
return ($b^{\prime}=b$)
$\operatorname{Adv}_{\Pi}^{\text {priv }}(\mathcal{A})=2 \operatorname{Pr}\left[\operatorname{PRIV}^{\mathcal{A}}(\Pi) \Rightarrow\right.$ true $]-1$,

PRIV

This can be proved by relating to the security of CBC mode proved by Bellare et al. [BDJR].

PRIV

This can be proved by relating to the security of CBC mode proved by Bellare et al. [BDJR].

Privacy

- Let $F=\left\{F_{K}: K \in\{0,1\}^{k}\right\}$ be a permutation family.
- Let $\Pi[F]$ be the managed encryption format using permutation family F.
- Let \mathcal{A} be an adversary against Privacy which runs in time t; making q_{e} encryption queries totalling at most μ_{e} bits.

Privacy

- Let $F=\left\{F_{K}: K \in\{0,1\}^{K}\right\}$ be a permutation family.
- Let $\Pi[F]$ be the managed encryption format using permutation family F.
- Let \mathcal{A} be an adversary against Privacy which runs in time t; making q_{e} encryption queries totalling at most μ_{e} bits.
Then there exists adversary \mathcal{B} such that:

$$
\operatorname{Adv}_{\Pi[F]}^{\mathrm{PRIV}}(\mathcal{A}) \leq 2 \mathbf{A d v}_{F}^{\mathrm{prp}}(\mathcal{B})+\frac{q_{f}^{2}}{2^{\prime}}+\frac{1}{2^{\prime}}\left(\left(\frac{\mu_{e}}{l}+2 q_{e}\right)^{2}-\left(\frac{\mu_{e}}{l}+2 q_{e}\right)\right)
$$

where \mathcal{B} runs in time $t+O\left(\mu_{e}\right)$ asking at most $q_{f}=\frac{\mu_{e}}{I}+2 q_{e}$ queries.

Security model - AUTH

Let $\Pi=$ (KeyGen, Encrypt, Decrypt) be a symmetric encryption scheme.

$\operatorname{Enc}(A, M)$	
$\bar{C} \leftarrow \operatorname{Encrypt}(K, A, M)$	$\operatorname{Test}\left(A^{*}, C^{*}\right)$
$\mathcal{C} \leftarrow(A, C)$	if $M^{*} \neq \perp$ and $\left(A^{*}, C^{*}\right) \notin \mathcal{C}$ then
return C	win \leftarrow true
	return $\left(M^{*} \neq \perp\right)$

$\frac{\text { AUTH }^{\mathcal{A}}(\Pi)}{\left.K \leftarrow \text { KeyGen }^{(}\right)}$
win \leftarrow false
$\left(A^{*}, C^{*}\right) \leftarrow \mathcal{A}^{\text {Enc, Test }}$
return win

$$
\operatorname{Adv}_{\Pi}^{\text {auth }}(\mathcal{A})=\operatorname{Pr}\left[\mathbf{A U T} \mathbf{H}^{\mathcal{A}}(\Pi) \Rightarrow \text { true }\right]
$$

AUTH

To forge a ciphertext the adversary must forge the hash.

Case 1: Hash not queried

$$
\operatorname{Pr}\left[\left(\text { hash }\left(R^{*}, A^{*}, M^{*}\right)=h^{*}\right) \wedge\left(\left(R^{*}, A^{*}, M^{*}, h^{*}\right) \notin \mathcal{H}\right) \mid \pi \stackrel{r}{\leftarrow} \operatorname{Perm}\right] \leq \frac{q_{t}}{2^{\prime}}
$$

- Not previously queried.
- Random chance on verification.

Case 2: Hash already queried

$$
\operatorname{Pr}\left[\left(\text { hash }\left(R^{*}, A^{*}, M^{*}\right)=h^{*}\right) \wedge\left(\left(R^{*}, A^{*}, M^{*}, h^{*}\right) \in \mathcal{H}\right) \mid \pi \stackrel{r}{\leftarrow} \operatorname{Perm}\right] \leq \frac{q_{h} \mu_{e}}{12^{\prime}} .
$$

- Previous call to random oracle.
- If call made by encryption query then invalid forgery.
- So independent call to hash.

Case 2: Hash already queried

$$
\operatorname{Pr}\left[\left(\operatorname{hash}\left(R^{*}, A^{*}, M^{*}\right)=h^{*}\right) \wedge\left(\left(R^{*}, A^{*}, M^{*}, h^{*}\right) \in \mathcal{H}\right) \mid \pi \stackrel{r}{\leftarrow} \operatorname{Perm}\right] \leq \frac{q_{h} \mu_{e}}{12^{\prime}}
$$

- Previous call to random oracle.
- If call made by encryption query then invalid forgery.
- So independent call to hash.
- Analysis is then based on the collision event that for some i, j,

$$
C_{i}[j] \oplus M_{i}[j]=h^{*} \oplus \pi\left(R^{*}\right)
$$

AUTH

- Let $F=\left\{F_{K}: K \in\{0,1\}^{k}\right\}$ be a permutation family.
- Let $\Pi[F]$ be the managed encryption format using permutation family F.
- Let \mathcal{A} be an adversary against the AUTH security which runs in time t; making q_{e} encryption queries totalling at most μ_{e} bits, q_{t} test queries totalling at must μ_{t} bits and q_{h} random oracle queries.

AUTH

- Let $F=\left\{F_{K}: K \in\{0,1\}^{k}\right\}$ be a permutation family.
- Let $\Pi[F]$ be the managed encryption format using permutation family F.
- Let \mathcal{A} be an adversary against the AUTH security which runs in time t; making q_{e} encryption queries totalling at most μ_{e} bits, q_{t} test queries totalling at must μ_{t} bits and q_{h} random oracle queries.

Then there exists adversary \mathcal{B} such that:

$$
\operatorname{Adv}_{\Pi[F]}^{\mathrm{AUTH}}(\mathcal{A}) \leq \operatorname{Adv}_{F}^{\operatorname{sprp}}(\mathcal{B})+\frac{q_{t}}{2^{\prime}}+\frac{q_{h} \mu_{e}}{12^{\prime}}
$$

where \mathcal{B} makes $q_{f}=\frac{\mu_{e}}{I}+2 q_{e}+\frac{\mu_{t}}{I}$ queries and runs in time $t+O\left(\mu_{e}+\mu_{t}\right)$.

(1) Motivation

(2) Encryption with redundancy

(3) Managed Encryption Format

4. Analysis
(5) Summary

Summary

- We have discussed the Managed Encryption Format

Summary

- We have discussed the Managed Encryption Format
- Despite its limitation we were still able to prove it secure.

Summary

- We have discussed the Managed Encryption Format
- Despite its limitation we were still able to prove it secure.
- With several important implementation caveats.

Summary

- We have discussed the Managed Encryption Format
- Despite its limitation we were still able to prove it secure.
- With several important implementation caveats.
- Care needs to be taken with implementation to ensure security.

Questions

Weak Keys of the Full MISTY1 Block Cipher for Related-Key Differential Cryptanalysis

Jiqiang Lu
Institute for Infocomm Research,
Agency for Science, Technology and Research,
1 Fusionopolis Way, Singapore 138632
jlu@i2r.a-star.edu.sg, lvjiqiang@hotmail.com
Joint work with Wun-She Yap and Yongzhuang Wei.

CT-RSA 2013

Outline:
(1) Introduction
(2) Related Work
(3) A Class of $2^{102.57}$ Weak Keys
(9) A 7-Round Related-Key Differential with Prob. 2^{-58}
(0) Attacking the Full MISTY1 under the Weak Keys
(0) Another Class of $2^{102.57}$ Weak Keys
(1) Conclusions

1. Introduction
2. A Class of $2^{102.57}$ Welated Work

Weak Keys
4. A 7-Round Related-Key Differential with Prob. 2
5. Attacking the Full MISTY1 under Weak Keys
6. Another Class of $2^{102.57}$ Weak Keys
7. Conclusions

1.1 Block Cipher

- An important primitive in symmetric-key cryptography.
* Main purpose: provide confidentiality - A most fundamental security goal.
- An algorithm that transforms a fixed-length data block into another data block of the same length under a secret user key.
* Input: plaintext.
* Output: ciphertext.
* Three sub-algorithms: encryption, decryption, key schedule.
- Constructed by repeating a simple function many times, known as the iterated method.
* An iteration: a round.
* The repeated function: the round function.
* The key used in a round: a round subkey.
* The number of iterations: the number of rounds.
* The round subkeys are generated from the user key under a key schedule algorithm.

1. Introduction

1.2 A Cryptanalytic Attack

- An algorithm that distinguishes a cryptosystem from a random function.
- Usually measured using the following three metrics:
* Data complexity
- The numbers of plaintexts and/or ciphertexts required.
* Memory (storage) complexity
- The amount of memory required.
* Time (computational) complexity
- The amount of computation or time required, how many encryptions/decryptions or memory accesses.
- Goals:
* Break a cryptosystem (ideally, in a practical complexity).
* Enable more secure cryptosystems to be designed.

1.3 Related-Key (Differential) Cryptanalysis

- Independently introduced by Knudsen in 1992 and Biham in 1993.
- Different from differential cryptanalysis: The pair of ciphertexts are obtained by encrypting the pair of plaintexts using two different keys with a particular relationship, e.g. certain difference.
- Probability of a related-key differential:

$$
\operatorname{Pr}_{\mathbb{E}_{K}, \mathbb{E}_{K^{\prime}}}(\Delta \alpha \rightarrow \Delta \beta)=\operatorname{Pr}_{P \in\{0,1\}^{n}}\left(\mathbb{E}_{K}(P) \oplus \mathbb{E}_{K^{\prime}}(P \oplus \alpha)=\beta\right) .
$$

- For a random function, the expected probability of any related-key differential is 2^{-n}.

If $\operatorname{Pr}_{\mathbb{E}_{\kappa}, \mathbb{E}_{K^{\prime}}}(\Delta \alpha \rightarrow \Delta \beta)>2^{-n}$, we can use the related-key differential to distinguish \mathbb{E} from a random function.

1. Introduction

1.4.1 Introduction

- Designed by Mitsubishi (Matsui et al.), published in 1995.
- A 64-bit block cipher, a user key of 128 bits, and a recommended number of 8 rounds, with a total of 10 key-dependent logical functions FL:
* two FL functions at the beginning;
* two FL functions inserted after every two rounds.
- A Japanese CRYPTREC-recommended e-government cipher, an European NESSIE selected cipher, an ISO international standard.
- Widely used in Mitsubishi products as well as in Japanese military.

1. Introduction
2. A 7-Round Related-Key Differential with Prob. 2
3. Attacking the Full MISTY1 under Weak Keys 6. Another Class of $2^{102.57}$ Weak Keys
4. Conclusions

1.4.2 Structure

1. Introduction
2. A Class of $2^{102 .} 5^{\frac{2}{2}}$ Related Weak Kork

Weak Keys
4. A 7-Round Related-Key Differential with Prob. 2
5. Attacking the Full MISTY1 under Weak Keys 6. Another Class of $2^{102.57}$ Weak Keys
7. Conclusions

1.4.3 Key Schedule

1. Represent a user key K as eight 16 -bit words $K=\left(K_{1}, K_{2}, \cdots, K_{8}\right)$.
2. Generate a different set of eight 16 -bit words $K_{1}^{\prime}, K_{2}^{\prime}, \cdots, K_{8}^{\prime}$ by

$$
K_{i}^{\prime}=\mathbf{F l}\left(K_{i}, K_{i+1}\right), \text { for } i=1,2, \cdots, 8 .
$$

3. Subkeys:

$$
\begin{aligned}
& K O_{i 1}=K_{i}, K O_{i 2}=K_{i+2}, K O_{i 3}=K_{i+7}, K O_{i 4}=K_{i+4} ; \\
& K I_{i 1}=K_{i+5}^{\prime}, K I_{i 2}=K_{i+1}^{\prime}, K I_{i 3}=K_{i+3}^{\prime} ; \\
& K L_{i}=K_{\frac{i+1}{2}}^{\prime} \| K_{\frac{i+1}{2}+6}^{\prime}, \text { for } i=1,3,5,7,9 ; \text { otherwise, } K L_{i}=K_{\frac{i}{2}+2}^{\prime} \| K_{\frac{i}{2}+4} .
\end{aligned}
$$

1. Introduction

1.4.4 Security

- Has been extensively analysed against a variety of cryptanalytic methods.
- No whatever cryptanalytic attack on the full version.

2. Related Work

Dai and Chen's related-key differential attack on 8-round MISTY1 with only the last 8 FL functions (INSCRYPT 2011).

- A class of 2^{105} weak keys.
* A weak key is a user key under which a cipher is more vulnerable to be attacked.
- A 7 -round related-key differential characteristic with probability 2^{-60}.
- Attacking the 8 -round reduced version under weak keys.
* Attack procedure is straightforward, by conducting a key recovery on $\mathbf{F O}_{1}$ in a way similar to the early abort technique for impossible differential cryptanalysis.
* Data complexity: 2^{63} chosen ciphertexts.
* Memory complexity: 2^{35} bytes.
* Time complexity: $2^{86.6}$ encryptions.

2.1 A Class of 2^{105} Weak Keys

Three binary constants:

* 7-bit a = 0010000;
* 16-bit $b=0010000000010000$;
* 16-bit $c=0010000000000000$.

Let K_{A}, K_{B} be two 128 -bit user keys:

$$
\begin{aligned}
& K_{A}=\left(K_{1}, K_{2}, K_{3}, K_{4}, K_{5}, K_{6}, K_{7}, K_{8}\right) \\
& K_{B}=\left(K_{1}, K_{2}, K_{3}, K_{4}, K_{5}, K_{6}^{*}, K_{7}, K_{8}\right)
\end{aligned}
$$

Let $K_{A}^{\prime}, K_{B}^{\prime}$ be the corresponding 128 -bit words generated by the key schedule:

$$
\begin{aligned}
& K_{A}^{\prime}=\left(K_{1}^{\prime}, K_{2}^{\prime}, K_{3}^{\prime}, K_{4}^{\prime}, K_{5}^{\prime}, K_{6}^{\prime}, K_{7}^{\prime}, K_{8}^{\prime}\right) \\
& K_{B}^{\prime}=\left(K_{1}^{\prime}, K_{2}^{\prime}, K_{3}^{\prime}, K_{4}^{\prime}, K_{5}^{\prime *}, K_{6}^{\prime *}, K_{7}^{\prime}, K_{8}^{\prime}\right)
\end{aligned}
$$

The class of weak keys is defined to be the set of all possible (K_{A}, K_{B}) satisfying the following 10 conditions:

$$
\begin{array}{lllll}
K_{6} \oplus K_{6}^{*}=c, & K_{5}^{\prime} \oplus K_{5}^{\prime *}=b, & K_{6}^{\prime} \oplus K_{6}^{\prime *}=c, & K_{6,12}=0, & K_{7,3}=1 \\
K_{7,12}=0, & K_{8,3}=1, & K_{4,3}^{\prime}=1, & K_{4,12}^{\prime}=1, & K_{7,3}^{\prime}=0
\end{array}
$$

The number:

$$
\left|K_{1}\right|=2^{16},\left|K_{2}\right|=2^{16},\left|K_{3}\right|=2^{16},\left|\left(K_{4}, K_{5}\right)\right|=2^{30},\left|\left(K_{6}, K_{7}, K_{8}\right)\right|=2^{27} .
$$

Therefore, a total of 2^{105} weak keys.

1. Introduction
2. Related Work
3. A Class of $2^{102.57}$ Weak Keys
4. A 7-Round Related-Key Differential with Prob. 2-58
5. Attacking the Full MISTY1 under Weak Keys
2.2 A 7-Round Related-Key Differential Characteristic

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Round 8

3. A Class of $2^{102.57}$ Weak Keys

Focus on the 7 -round related-key differential characteristic.

Round 2

Not all the 2^{15} possible $K_{7}^{\prime}\left(\right.$ i.e. $\left.K I_{21}\right)$ defined by the weak key class make $\mathrm{Pr}_{\mathrm{FI}_{21}}(\Delta b \rightarrow \Delta c)>0$!
The number of K_{7}^{\prime} defined by the weak key class is 2^{15}, the number of K_{7}^{\prime} satisfying $\operatorname{Pr}_{\mathrm{F}_{21}}(\Delta b \rightarrow \Delta c)>0$ is about $2^{14.57}$.
The number of K_{7}^{\prime} defined by the weak key class \& satisfying $\operatorname{Pr}_{\mathrm{FI}_{21}}(\Delta b \rightarrow \Delta c)>0$ is about $2^{13.57}$.
$\operatorname{Pr}_{\mathrm{FI}_{21}}(\Delta b \rightarrow \Delta c)=2^{-15} / 2^{-14} / 2^{-13.42}$.

Round 7

Not all the 2^{16} possible K_{2}^{\prime} (i.e. $K I_{73}$) defined by the weak key class make $\operatorname{Pr}_{\mathrm{FI}_{73}}(\Delta c \rightarrow \Delta c)>0$!
The number of K_{2}^{\prime} defined by the weak key class is 2^{16}, the number of K_{2}^{\prime} satisfying $\operatorname{Pr}_{\mathrm{FI}_{21}}(\Delta b \rightarrow \Delta c)>0$ is 2^{15}.
The number of K_{2}^{\prime} defined by the weak key class \& satisfying $\operatorname{Pr}_{\mathrm{FI}_{73}}(\Delta c \rightarrow \Delta c)>0$ is 2^{15}.
$\operatorname{Pr}_{\mathrm{FI}_{73}}(\Delta c \rightarrow \Delta c)=2^{-15}$.

As a result, a class of $2^{102.57}$ weak keys:

$$
\left|K_{1}\right|=2^{16},\left|\left(K_{2}, K_{3}\right)\right|=2^{31},\left|\left(K_{4}, K_{5}\right)\right|=2^{30},\left|\left(K_{6}, K_{7}, K_{8}\right)\right| \approx 2^{25.57} .
$$

* $\left|K_{3}\right|=2^{16},\left|K_{5}\right|=2^{16}$.
* $\left|K_{7}^{\prime}\right|=2^{13.57} ; \forall K_{T}^{\prime}, \exists 2^{12}\left(K_{6}^{\prime}, K_{8}\right)$.
* $\left|K_{2,8-16}^{\prime}\right|=2^{8},\left|K_{3}^{\prime}\right|=2^{16},\left|K_{4,8-16}^{\prime}\right|=2^{8}$.

4. A 7-Round Related-Key Differential with Prob

A 7-round related-key differential with probability 2^{-58}.

$$
\left(b\left|\left|0^{32}\right|\right| c\right) \rightarrow\left(0^{32}| | c| | 0^{16}\right) .
$$

5.1 Precomputation

Hash table \mathcal{T}_{1} :
$(x, x \oplus \eta)$: The left halves of a plaintext pair
32 bits
Only three possible input differences $\eta=\overparen{00 ? 0000000000000 \| 00 ? 0000000000000}$
X : output difference of $\mathbf{F I}_{12}$
Store satisfying ($K_{1}, K_{3}, K_{2,8-16}^{\prime}$) into Table \mathcal{T}_{1} indexed by (x, η, X)

Round 1

Memory complexity: $2^{75.91}$ bytes; Time complexity: $2^{73.59}$ FI computations. For every (x, η, X), there are 2^{23} satisfying $\left(K_{1}, K_{3}, K_{2,8}^{\prime}, 16\right)$ on average.

Hash table \mathcal{T}_{2} :

Y : output difference of $\mathbf{F I}_{13}$
Store satisfying $\left(K_{6}, K_{7}, K_{8}\right)$ into Table \mathcal{T}_{2} indexed by $\left(x, \eta, Y, K_{1}, K_{4,8-16}^{\prime}\right)$

Memory complexity: $2^{84.74}$ bytes; Time complexity: $2^{84.16}$ FI computations. For every $\left(x, \eta, Y, K_{1}, K_{4,8-16}^{\prime}\right)$, there are $2^{9.57}$ satisfying $\left(K_{6}, K_{7}, K_{8}\right)$ on average.

5.2 Attack Outline

Step 1: Choose 2^{60} ciphertext pairs with difference $\left(\left.0^{32}\|c\|\right|^{16}\right)$.
Step 2: Keep plaintext pairs with difference ($\eta \|$?)
Step 3: Focus on $\mathbf{F L}_{2}$. Guess (K_{3}^{\prime}, K_{5}), compute X, Y.
Step 4: Focus on $\mathbf{F L}_{1}$ and $\mathbf{F I}_{12}$. Obtain satisfying ($K_{1}, K_{3}, K_{2,8-16}^{\prime}$) from Table \mathcal{T}_{1}.
Step 5: Retrieve K_{4} from $K_{3}^{\prime}=\mathrm{FI}\left(K_{3}, K_{4}\right)$, compute $K_{4}^{\prime}=\mathrm{FI}\left(K_{4}, K_{5}\right)$.
Step 6: Focus on $\mathbf{F L}_{1}, \mathbf{F I}_{11}$ and $\mathbf{F I}_{13}$. Obtain satisfying $\left(K_{6}, K_{7}, K_{8}\right)$ from Table \mathcal{T}_{2}.
Step 7: Increase 1 to counters for ($K_{1}, K_{2,8-16}^{\prime}, K_{3}, K_{4}, K_{5}, K_{6}, K_{7}, K_{8}$).
Step 8: For a subkey guess whose counter number is larger than or equal to 3 , exhaustively search the remaining 7 key bits.

5.3 Attack Complexity

- Data complexity: 2^{61} chosen ciphertexts.
- Memory complexity: $2^{99.2}$ bytes.
- Time complexity: $2^{87.94}$ encryptions.
- Success probability: 76\%.

6. Another Class of $2^{102.57}$ Weak Keys

Focus on the 7 -round related-key differential characteristic:

Consider the other possible value of $K_{7,3}^{\prime}$, further classified by $K_{1,3}$:

$$
\begin{aligned}
& K_{7,3}^{\prime}=1, K_{1,3}=1, \Delta=c \| c \\
& K_{7,3}^{\prime}=1, K_{1,3}=0, \Delta=0_{\square}^{16} \| c
\end{aligned}
$$

7. Conclusions

Have presented a related-key differential attack on the full MISTY1 algorithm under certain weak key assumptions.

* Have described $2^{103.57}$ weak keys for a related-key differential attack on the full MISTY1.
* Quite theoretical, for the attack works under the assumptions of weak-key and related-key scenarios and its complexity is very high.

The MISTY1 cipher does not behave like a random function (in the related-key model), and cannot be regarded to be an ideal cipher.

1. Introduction

Thank you!

\qquad 1

A Fully Homomorphic Cryptosystem
with Approximate Perfect Secrecy
Michal Hojsík, Veronika Púlpánová
Department of Algebra
Charles University in Prague
Session ID: CRYP-F42
A Fully Homomorphic Cryptosystem
with Approximate Perfect Secrecy
Michal Hojsík, Veronika Půlpánová
Charles University in Prague
Session ID: cryp-F42
A Fully Homomorphic Cryptosystem
with Approximate Perfect Secrecy
Michal Hojsík, Veronika Půlpánová
Department of Algebra
Charles University in Prague
Session ID: CRYP-F42
A Fully Holomorphic Cryptosystem
with Approximate Perfect Secrecy
Michal Hojsík, Veronika Půlpánová
Department of Algebra
Charles University in Prague
Session in: cRyp-F42
Session classification: Advanced
A Fully Holomorphic Cryptosystem
with Approximate Perfect Secrecy
Michal Hojsík, Veronika Půlpánová
Department of Algebra
Charles University in Prague
Session in: cRyp-F42
Session classification: Advanced
A Fully Homomorphic Cryptosystem
with Approximate Perfect Secrecy
Michal Hojsík, Veronika Půlpánová
Department of Algebra
Session ID: CRyp-F42
Session Classification: Advanced

RS^CONFERENCE2013

\author{ A Fully Homomorphic with Approximate Perf Michal Hojsík, Veronika Pul Department of Algebra Charles University in Prag Session ID: cRyp-F42 Session Classification: Advanced A Fully Homomorphic Cr with Approximate Perfect Michal Hojsík, Veronika Půlpán Department of Algebra Charles University in Prague Session id: crip-F42 Session Classification: Advanced Min A Fully Homomorphic with Approximate Pert Michal Hojsík, Veronika Pi Department of Algebra Charles University in Prague Session id: cRyp-F42 Session Classification: Advanced Mir

Homomorphic Cr

 }

Cryotosystem
\square
\qquad

A Fully Homomorphic Cryptosystem
With Approximate Perfect Secrecy
Michal Hojsík, Veronika Půlpánová
Department of Algebra
Charles University in Prague
A Fully Homomorphic Cryptosystem
With Approximate Perfect Secrecy
Michal Hojsík, Veronika Půlpánová
Department of Algebra
Charles University in Prague
lith Approximate Perfect Secrecy

Outline

- (Fully) Homomorphic Encryption
- Polly Cracker
- Symmetric Polly Cracker
- Security of SymPC
- Conclusions

RSNCONFERENCE2013

Homomorphic Encryption

- Set of plaintexts \mathcal{P}, set of ciphertexts \mathcal{C}, set of keys \mathcal{K}
- For all keys $k \in \mathcal{K}$, encryption e_{k}, decryption d_{k}

- Goal: Calculations on $\mathcal{P} \sim$ calculations on \mathcal{C}

Homomorphic Encryption

- Set of plaintexts \mathcal{P}, set of ciphertexts \mathcal{C}, set of keys \mathcal{K}
- For all keys $k \in \mathcal{K}$, encryption e_{k}, decryption d_{k}

- Goal: Calculations on $\mathcal{P} \sim$ calculations on \mathcal{C}
$m_{1} \quad m_{2} \quad m_{3}$

RSNCONFERENCE2013

Homomorphic Encryption

- Set of plaintexts \mathcal{P}, set of ciphertexts \mathcal{C}, set of keys \mathcal{K}
- For all keys $k \in \mathcal{K}$, encryption e_{k}, decryption d_{k}

- Goal: Calculations on $\mathcal{P} \sim$ calculations on \mathcal{C}

RSNCONFERENCE2013

Homomorphic Encryption

- Set of plaintexts \mathcal{P}, set of ciphertexts \mathcal{C}, set of keys \mathcal{K}
- For all keys $k \in \mathcal{K}$, encryption e_{k}, decryption d_{k}

- Goal: Calculations on $\mathcal{P} \sim$ calculations on \mathcal{C}

RSNCONFERENCE2013

Homomorphic Encryption

- Set of plaintexts \mathcal{P}, set of ciphertexts \mathcal{C}, set of keys \mathcal{K}
- For all keys $k \in \mathcal{K}$, encryption e_{k}, decryption d_{k}

- Goal: Calculations on $\mathcal{P} \sim$ calculations on \mathcal{C}

RSNCONFERENCE2013

Homomorphic Encryption

- Set of plaintexts \mathcal{P}, set of ciphertexts \mathcal{C}, set of keys \mathcal{K}
- For all keys $k \in \mathcal{K}$, encryption e_{k}, decryption d_{k}

- Goal: Calculations on $\mathcal{P} \sim$ calculations on \mathcal{C}

RSNCONFERENCE2013

Homomorphic Encryption cont.

- Endow \mathcal{P}, \mathcal{C} with operations: $(\mathcal{P}, \cdot),(\mathcal{C}, \odot)$
- Cryptosystem is homomorphic if and only if:

$$
d_{k}:(\mathcal{C}, \odot) \rightarrow(\mathcal{P}, \cdot) \text { is a homomorphism }
$$

d_{k} "preserves operation": $d_{k}\left(c_{1} \odot c_{2}\right)=d_{k}\left(c_{1}\right) \cdot d_{k}\left(c_{2}\right)$

- e_{k} may be non-deterministic
- Example - Plain RSA: $(\mathcal{P}, \cdot)=(\mathcal{C}, \cdot)=\left(\mathbb{Z}_{N}, \cdot\right)$

$$
\left(c_{1} \cdot c_{2}\right)^{d} \bmod N=\left(c_{1}^{d} \bmod N\right) \cdot\left(c_{2}^{d} \bmod N\right) \bmod N
$$

\rightarrow Plain RSA is multiplicatively homomorphic

- Other examples: Goldwasser-Micali, Benaloh: $(\mathcal{P},+),(\mathcal{C}, \cdot)$

Fully Homomorphic Encryption

- One operation \longrightarrow limited applications
- Need more operations on \mathcal{P} and \mathcal{C}
- Fully Homomorphic Cryptosystem: $(\mathcal{P},+, \cdot),(\mathcal{C}, \oplus, \odot)$ rings

$$
d_{k}:(\mathcal{C}, \oplus, \odot) \rightarrow(\mathcal{P},+, \cdot) \text { is a ring homomorphism }
$$

- E.g. for $\mathcal{P}=G F\left(2^{n}\right)$ and $(\mathcal{C}, \oplus, \odot)$ a ring
\rightarrow Homomorphic evaluation of any circuit (Boolean function)

$$
f\left(m_{1}, \ldots, m_{r}\right)=d_{k}\left(f\left(e_{k}\left(m_{1}\right), \ldots, e_{k}\left(m_{r}\right)\right)\right)
$$

Fully Homomorphic Encryption cont.

- Many practical applications
- Outsourcing computations on confidential data \rightarrow "encrypted cloud computing"

Various constructions:

- Gentry 2009, lattice-based cryptography with Bootstrapping
- DGHV 2009, modular arithmetic with Bootstrapping
- AAPS 2011, coding theory with limited multiplication
- Fellows, Koblitz 1994, ideal membership problem, Polly Cracker

Polly Cracker

- Probabilistic public-key cryptosystem
- $\mathcal{P}=G F(q)=\mathbb{F}, \mathcal{C}=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$
- Private key $\vec{s} \in \mathbb{F}^{n}$
- Public key $P K=\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathcal{C}, \forall i f_{i}(\vec{s})=0$
- Encryption of $m \in \mathbb{F}$: choose $J \subset\{1, \ldots, r\}$ uniformly at random

$$
c=e(m)=m+\sum_{j \in J} f_{j}
$$

- Decryption of $c \in \mathcal{C}$ - evaluation of c at \vec{s} :

$$
d_{\vec{s}}(c)=c(\vec{s})=m+\sum_{j \in J} f_{j}(\vec{s})=m
$$

Polly Cracker cont.

- Fully homomorphic
- Polynomial evaluation is a ring homomorphism
- Let $c_{1}=m_{1}+\sum_{i \in I} f_{i}, \quad c_{2}=m_{2}+\sum_{j \in J} f_{j}$

$$
\begin{aligned}
& d\left(c_{1}+c_{2}\right)=\left(c_{1}+c_{2}\right)(\vec{s})=\left(m_{1}+\sum_{i \in I} f_{i}+m_{2}+\sum_{j \in J} f_{j}\right)(\vec{s})=m_{1}+m_{2} \\
& d\left(c_{1} \cdot c_{2}\right)=\left(c_{1} \cdot c_{2}\right)(\vec{s})=\left(\left(m_{1}+\sum_{i \in I} f_{i}\right)\left(m_{2}+\sum_{j \in J} f_{j}\right)\right)(\vec{s})=m_{1} m_{2}
\end{aligned}
$$

- Attack by calculation of Gröbner basis of the ideal $\langle P K\rangle-G$
- Decryption of c equals $c \bmod \langle G\rangle$

RSNCONFERENCE2013

Symmetric Polly Cracker (SymPC)

- Probabilistic symmetric-key cryptosystem
- Secret key $\vec{s} \in \mathbb{F}^{n}, \mathbb{F}=G F(q)$
- Multiplicative key $G=\left\{g_{1}, \ldots, g_{n}\right\} \subset \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ used in calculations with ciphertexts (not a public key)
- $\mathcal{P}=\mathbb{F}, \mathcal{C}=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right] /\langle G\rangle$
- G has special properties (G is the reduced Gröbrer basis)
\rightarrow Easily algorithmized multiplicative structure on \mathcal{C}
\rightarrow Reduces complexity and size of ciphertexts

Symmetric Polly Cracker (SymPC) cont.

- $\mathcal{P}=\mathbb{F}, \mathcal{C}=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right] /\langle G\rangle$
- Encryption of $m \in \mathcal{P}$: choose $f \in \mathcal{C}$ uniformly at random

$$
e_{\vec{s}}(m)=f-f(\vec{s})+m
$$

- Decryption of $c \in \mathcal{C}$ - evaluation of c at \vec{s} :

$$
d_{\vec{s}}(c)=c(\vec{s})=(f-f(\vec{s})+m)(\vec{s})=m
$$

- Fully homomorphic
- Complexity analysis in the paper

Security of SymPC

Approximate perfect secrecy:

- For all probability distributions on \mathcal{P} and for all $m \in \mathcal{P}$

$$
\operatorname{Pr}[P=m \mid C=c] \xrightarrow{t \rightarrow \infty} \operatorname{Pr}[P=m]
$$

for almost all $c \in C$ (security parameter t)

- Assuming an attacker with unbounded computational power
- Probabilistic information theoretical security

RSNCONFERENCE2013

Security of SymPC cont.

- Approximate perfect secrecy in bounded CPA model
- k-bounded CPA: an attacker can obtain at most k pair (m, c)
- Not CCA secure:

Ask for decryption of $c_{1}=x_{1}, c_{2}=x_{2}, \ldots, c_{n}=x_{n}$
\rightarrow obtain the secret key $\left(s_{1}, s_{2}, \ldots, s_{n}\right)=\vec{s}$ as $c_{i}(\vec{s})=x_{i}(\vec{s})$

- KPA security \sim CPA security:

For a given $(m, c) \in \mathcal{P} \times \mathcal{C}$ s.t. $c(\vec{s})=m$ and any $m^{\prime} \in \mathcal{P}$
The pair $\left(m^{\prime}, c^{\prime}=c-m+m^{\prime}\right)$ is valid:

$$
d_{\vec{s}}\left(c^{\prime}\right)=c^{\prime}(\vec{s})=c(\vec{s})-m+m^{\prime}=m^{\prime}
$$

SymPC downsides

- Proof of k-bounded CPA security only for small k
- Ciphertext size
- Complexity: $\left(n \sim\right.$ key size, $\left.\nu=\operatorname{deg}\left(g_{i}\right) \leq|\mathbb{F}|\right)$ Encrypt, decrypt $O\left(n \cdot(\nu+1)^{n+1}\right)$ operations in \mathbb{F} Add $O\left((\nu+1)^{n}\right)$, multiply $O\left((\nu+1)^{2 n}\right)$ operations in \mathbb{F}

Sparse SymPC:

- Choose sparse polynomials in encryption (limit the number of non-zero coefficients)
- Ciphertext size grows with multiplication

RSNCONFERENCE2013

Conclusions

- Proposed a new fully homomorphic cryptosystem SymPC
- Upgraded symmetric version of Polly Cracker
- Utilized Gröbner basis in the construction
- Proved security in the information theoretical settings

Thank you for your attention!

RSNCONFERENCE2013

