
Session ID:

Session Classification:

Jacob West
CTO, Fortify Products

HP Enterprise Security

ASEC-R31

Intermediate

Who, What, Where,

How: Five Big

Questions in Mobile

Security

Why is mobile security an imperative?

Who will be held accountable?

What platform strategy makes sense?

Where are mobile apps developed?

How do we build secure mobile apps?

Why is mobile
security an
imperative?

Mobile Devices are Taking

Over

12/12 KPCB Trend Report

With Lots More to Come

12/12 KPCB Trend Report

Mobile Internet Usage

Surpassing Desktop

12/12 KPCB Trend Report

Smartphone Users are

Shopping

► Security is #2 reason to avoid purchases

Why Mobile Users Don’t Buy

► By 2016, > 50 percent of

enterprise email users will rely

primarily web or mobile.

 –

Gartner 12/11

► Smartphones and tablets are

more than 90 percent of the

new device adoption.

 –

Gartner 12/11

Not Just for Consumers

0

10

20

30

40

50

60

% of Workforce with
Smartphones

2011

2012

2013

Who will be held

accountable?

What is Mobile?

server
network

device

os

apps

Who Cares?

App
Owners

Device
Builders

Network
Providers

App
Developers

OS
Authors

Who Will Users Hold Accountable?

Device Builders

- Big price tag

- Infrequent purchase

- Brand loyalty

Lots to Lose

Network Providers

- Big price tag

- Monthly fee

- Brand loyalty

App Developers

- No brand impact

- No compliance

- Ever more contracts

Blame Game

App Owners

- Big brand impact

- Compliance

- Maintenance costs

OS Authors
- Big risk, big reward

- Tied to delivery

- Developers versus users

Decisions to Make

What platform
strategy makes
sense?

► Web, native, hybrid

► Operating systems

► Developer support

► Application delivery

► Programming language

Platform Tradeoffs

► Native mobile applications

► Persistent on phone

► Deeper hardware support

► More flexlble user experience

► Mobile-optimized web apps

► Lightweight footprint

► Easy cross-platform model

► Easy migration from legacy apps

► Hybrid?

► Native container for web content

► Cross-compiled native apps

Web Versus Native

80% by 2015

 – Gartner 11/12

Working with Mobile Operating

Systems  Benefit of hindsight

 Security features
- Read-only stack
- Data encryption
- Permissions

 Confusing

- Wait, permissions?

Mobile OS Features: Can’t We

All Get Along?
 Formal communication

- Inter-application
- Intra-application
- With the OS

 Platform differentiator
 A new trust boundary

► Open app store model (Google Marketplace)

► Enterprises stand-up their own app stores

► Security can become an app-store differentiator

► Researchers have better access

► Closed app store model (Apple App Store)

► App store owner has much greater control

► Victim exposure minimized with revocation capability

► Compromise: Apple's iOS Developer Enterprise Program

Application Delivery

► Objective-C

► Little-known until iOS

► ‘Unsafe’ language makes buffer overflows a big problem

► Limited tool support

► Java

► Widely-known by enterprise developers

► ‘Safe’ means no more buffer overflows

► Better tool support

Native Programming

Languages

Where are mobile

apps developed?

► In-house

► Traditional outsourcers

► Boutique mobile development firms

Mobile Development

Pros

► Leverage existing

security investment

► Easier integration with

legacy systems

► Control over full SDLC

and artifacts

In-House Development

Cons

► Must train resources on

new technology

► Building onto old apps

may add risk

► Difficult to outsource

security responsibility

Pros

► Working with well-

known expectations

► Expand on experience

from past contracts

► Influence over SDLC

and deliverables

(vs. boutique firms)

Traditional Outsourcers

Cons

► Harder to find deeply

specialized skillsets

► Building onto old apps

may add risk

► Outsourcing security,

but not accountability

Pros

► Highly-specialized

skillsets for mobile

► Opportunity to

accelerate delivery

► Low-investment for

high-quality result

Boutique Mobile Development

Firms
Cons

► Lack of security and

engineering maturity

► Difficulty integrating

with legacy systems

► Little influence over

SDLC and artifacts

How do we build
secure mobile
apps?

Familiar Model

server

device

browser

Same Ol’ Server

Operations Software

Information

Old

► Handling sensitive

user and app data

► Environment and

configuration

► Standbys like XSS

and SQL injection

Evolving Threats

New

► Local storage

(e.g. SD card)

► Communication

(SMS, MMS, GPS)

► Security features

(Privileges, crypto)

 Description: Unencrypted channels can be intercepted by attackers sniffing network

 Cause: Non-HTTPS WebView connections

 Fix: Send sensitive data only over encrypted channels

Google Android App

Vulnerabilities Intent Spoofing

Sticky

Broadcast

Tampering

Insecure

Storage

Insecure

Network

Communication

SQL Injection
Promiscuous

Privileges
Intent Hijacking

Facebook: Despite ‘fully encrypted’ option on

 the Web, mobile app sends in the

clear

Google Android App

Vulnerabilities Intent Spoofing

Sticky

Broadcast

Tampering

Insecure

Storage

Insecure

Network

Communication

SQL Injection
Promiscuous

Privileges
Intent Hijacking

Challenges for Organizations

Systemic
Make sure that security is built

into tomorrow’s software

Immediate – Find & Fix
Find and Fix today’s software

vulnerabilities putting us at risk

1 2

In-house Outsourced Commercial Open Source

Compliance

Network

Custom
Software

Platform (.NET/Java) Middleware-DBMS

Hosts/OS Files

COTS

Threats

$
We convince and pay
developers to fix it

4 $
$

Today: Expensive and Reactive

Breach or pen test
proves our code is
bad

3

Somebody builds
bad software

1

In-house Outsourced Commercial Open source

IT deploys the bad
software

2

Existing and newly
developed software

1
Good code

A Safer, More Effective Approach

Bad code

This is the start of Software
Security Assurance (SSA)

In-house Outsourced Commercial Open Source

Security gate: determine
resiliency before
production

2

Work with the
developer to
locate and fix
vulnerabilities

3

Explore Accelerate Optimize

Software Security Assurance

Journey

Reactive – Assessing and
remediating code

• Security team alone
responsible for security

• Small set of programs

• Addressing software
security after-the-fact

• High IT value

In Place – Software security
required before production

• Security team works with
Development on security

• All critical software secure

• Solving software security
during development

•High business value

Proactive – Instilling best
practices into future code

• Development takes over
responsibility for security

• All enterprise software
embedding security into
software development
lifecycle (SDLC)

• High strategic value

► Real data from (51) real initiatives

► 95 measurements

► 13 repeat measurements

► McGraw, Migues, & West

www.bsimm.com

Inspiration from the Industry:

BSIMM4

BSIMM4: Participants

Intel

Plus 17 firms
that remain
anonymous

• Identify gates

• Know PII obligations

• Awareness training

• Data classification

• Identify features

• Security standards

• Review security features

• Static analysis tool

• QA boundary testing

• External pen testers

• Good network security

• Close ops bugs loop

Common Activities

► ISV (19) results are similar
to financial services (19)

► Do the same things

► Can demand the same results

► Measurement works for all

No Special Snowflakes

Parting Thoughts

► What do your apps do and for whom?

► What platform(s) do your apps support and

how?

► Who develops your apps and where?

► Is there an existing SDL for other development?

► Do you rely on platform providers or app

distributors for any security assurance?

► Are mobile apps prompting back-end changes?

► Are your apps appropriately permissioned?

What Questions to Ask?

