
Session ID:

Session Classification:

Romain Gaucher
Coverity

ASEC-F42

Intermediate

Why Haven’t We Stamped Out SQL Injection
and XSS Yet?

► Lead security researcher at Coverity

► Have spent a fair amount of time on automated analysis of

sanitizers, framework analysis, precise remediation advices,

context-aware static analysis, etc.

► Officer at WASC, contributed to several community

projects (Script Mapping, Threat Classification 2,

CAPEC, etc.)

► Previously at Cigital and NIST

► On the web:

Twitter: @rgaucher

Coverity SRL blog: https://communities.coverity.com/blogs/security

About me

► This talk is not about

► what XSS or SQL injection are

► how to exploit XSS or SQLi

► static analysis heuristics to find these issues

► etc.

► This talk is about

► what developers need to do when they write a web application

► importance of understanding SQL and HTML contexts

► how these contexts relates to XSS and SQLi

► remediation advices we usually hear from security professionals

Agenda

► We analyzed 28 Java web applications and 154 versions

over time. Most were open source projects. That’s

6MLOC Java and JSP code.

► For SQL injection:

► focus on queries embedded in applications

► we did not analyze the code of stored procedures

► For XSS:

► focus on server-side pages

► most pages have JavaScript but we did not try to understand the

impact of JavaScript code (i.e., after it executes)

What we studied (and what we didn’t)

► These applications used several different control

frameworks, such as Spring MVC, Struts, etc.

► ORMs such as JPA or Hibernate are used in two-thirds

of the applications

► All projects had JSP files, but its use is quite different:

► One project has 24 lines of JSP, another 84,000

Analyzed projects

Jira Tatami Memoire	M2 jforum3 Ecuries	du	Loup
Cosmo Nuxeo OpenMRS psi-probe Liferay

Scrumter Jackrabbit dotCMS ala-portal Jahia
Trading	System	Aid Pebble Pyramus WiseMapping jforum2

Nacre Threadfix YouWho JSPwiki Roller
Master	MusicStudio Ubanist Connect

► This research relies heavily on the ability to statically

compute contexts for HTML and SQL

► We reported the contexts every time some dynamic data is

inserted in HTML or SQL (injection site). We do not report the

number of possible paths, just injection sites.

► Contexts computations

► HTML contexts are derived from a HTML5 based parser [1], and

simple CSS/JavaScript parsers

► SQL contexts are derived from a parser that handles generically

SQL, HQL, and JPQL

► Limitations

► The contexts are computed in the Java program, we do not try to

understand how JavaScript impacts the HTML contexts at

runtime

Analysis

► The injection site is our unit for measuring the implicit or

explicit string concatenations in a program

► We only care and report injection sites that are related to

a sub-language we want to analyze: SQL, JPQL, HQL,

HTML, JavaScript, and CSS

► Example of injection sites related to SQL:

 String sql = "select id from users where 1=1";
 if (condition1)

 sql += " and name='" + user_name + "'";

 if (condition2)

 sql += " and password=?";

Concept of “injection site”

2 injection sites in one

SQL query

SQL Injection

► When parameterized queries are used correctly there

are no real opportunities for SQL injection

► The root of SQL injection therefore is string concatenation of a

query string with tainted data

► Bright idea: If we could eliminate the habit of developers using

string concatenation for queries, we could eliminate SQL

injection

► Let's examine the "common" security advice given to

developers:

► “Use an ORM”

► “Use parameterized queries”

The root of all evil

"Use an ORM"

► ORMs are

not typically

vulnerable to

SQLi

► Most

projects use

both ORM

and non-

ORM

Project ID

SQL 2 4 6 7 9 10 11 13 17 18 20 22 23 24 27

JDBC API ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hibernate
ORM

✓ ✓ ✓

Hibernate
Non-
ORM

✓ ✓ ✓ ✓ ✓ ✓ ✓

JPA ORM ✓ ✓ ✓ ✓ ✓ ✓ ✓

JPA Non-
ORM

✓

► Overall combination of ORM and non-ORM SQL access

► Non-ORM: JDBC, Hibernate SQL / HQL, and JPA JPQL queries

► ORM: EntityManager.find(), EntityManager.persist(),

Hibernate Criteria, etc.

► ORMs are common in our dataset (67%)

► Most use JPA, some use Hibernate exclusively

► Use of a query language (HQL, SQL, etc.) is common to

all projects

► SQL accounts for 63% of actual queries

► HQL is second, with 31% queries

► Conclusion: string-based query construction is still very

common in our dataset, even in applications using

ORMs.

ORM versus Non-ORM

► “Use an ORM”

► Projects use a mixture of ORM and query languages. There is a

need for query languages!

► “Use parameterized queries”

Eliminate String Concatenation

► Analysis of 985 injection sites, and 545 unique queries

(including JDBC, JPA, and Hibernate)

► There is an average of 1.8 injection sites per query with a

maximum of 22 injection sites in one query.

► We identified 10 different SQL contexts

► Good: 85% of the injection sites are associated to a SQL context

that can be parameterized

► Problem: 15% of the queries cannot be parameterized

SQL Contexts and Parameterization

Parameterizable vs. Not parameterizable

“Use parameterized queries”

► Out of the 833 parameterizable contexts, 94% are

parameterized

► It’s still not perfect; here's the breakdown of the

remaining 6% that could be parameterized

Parameterizable Contexts

► Constants: 19%

► Constant identifiers

► Class names

► Strings: 34%

► Good ol' strings

► Safe types: 47%

► Numeric, Date, etc.

► SQL_FULL_STATEMENT (5.8%): the entire SQL query

is not resolvable statically (DB, SQL file, configuration

files, user, etc.)

► It’s not a “real” context and most likely a design decision

► For web requests, they should have anti-CSRF and access

controls in place

► SQL_TABLE (4.1%): table name

► SQL_IDENTIFIER (1.4%): column name or a variable

► SQL_GENERIC (4.2%): keyword, etc.

Non-Parameterizable Contexts

► Table name:
stmt1= c.createStatement();

stmt1.execute("TRUNCATE TABLE `"+ table + "`");

► Trigger name:
Statement st = conn.createStatement();

schema = StringUtils.quoteIdentifier(schema);

String trigger = schema + '.'

 + StringUtils.quoteIdentifier(PREFIX + table);

st.execute("DROP TRIGGER IF EXISTS " + trigger);

► Conclusion: developers still need to concatenate in some

queries.

Parameterize This!

► “Use an ORM”

► Projects use a mixture of ORM and non-ORM SQL technologies.

There is a need for query languages.

► “Use parameterized queries”

► 15% of injection sites cannot be parameterized

► There's hope, most parameterizable ones are parameterized

(94%)!

► 2% of parameterizable injection sites use dynamic strings that

aren't parameterized; opportunity for SQL injection

Eliminate String Concatenation

► String concatenation cannot easily be eliminated

► How can its effects be mitigated?

► Let's examine some other "common" security advice:

► “Do input validation”

► “Escape special characters”

Now What?

► Input validation = “Security through serendipity”

► Does the domain of valid input values happens to

preclude security problems for all contexts where the

data is used? Not necessarily.

► The input validation of data should be dictated by the

functional requirements of the application, not by the

security obligations of SQL contexts.

► “Why can’t my password contain % ?”

► “Why can’t Miles O’Brien create a profile?”

► Conclusion: you happen to be safe sometimes, you just

cannot guarantee it throughout the application.

“Do Input Validation”

► “Do input validation”

► Different contexts have different security obligations

► Functional requirements should drive input validation

► “Sanitize special characters”

Mitigate String Concatenation

► What's a special character? Different dialects have

different requirements.

► Does \ escaping work for default PostgreSQL >= 9.1?

► What needs escaping in a quoted identifier?

► Escapers might be useful in a special case where the

application is doing a lot of dynamic queries and

parameterization would require large scale refactoring.

► Not all contexts can use an escaper. Some characters

just need to be filtered out.

Sanitize special characters

► “Do input validation”

► Different contexts have different security obligations

► Application requirements should drive input validation

► “Sanitize special characters”

► Different dialects have different requirements

► Can be applied incorrectly

Mitigate String Concatenation

► String concatenation cannot be eradicated from SQL

queries.

► Input validation may not be adequate, sanitizers can help

but can also hinder.

► Security ought to provide developers helpful advice:

► Code, code, code…

► Specific to a technology (JDBC, Hibernate HQL, etc.)

► And specific to a context (table name, IN clause, etc.)

► Working with developers to build this kind of

documentation for your organization’s specific use of

technologies and query styles will help reduce SQL

injection defects.

SQL Conclusions

Cross-Site Scripting

► From a code perspective, XSS isn’t a single vulnerability.

It’s a group of vulnerabilities that mostly involve injection

of tainted data into various HTML contexts.

► There is no one way to fix all XSS vulnerabilities with

one magic “cleansing function”. Developers really need

to understand this.

► Let's examine the "common" security advices given to

developers:

► “Use HTML escaping”

► “Don’t insert user data in <random HTML location here>”

► “Use auto-escaping template engines”

XSS is confusing

► HTML entity escaping can be used in several locations in

an HTML document

► It can be used when the web browser will be able to

process the HTML entities. For example, it is correct for

the value of a <div> or an HTML attribute.

► However, HTML escaping cannot be used in in all cases:

you wouldn’t escape an attribute name, or the content of

a <style>

► To better understand when we can use this HTML

escaper and when we cannot, we need to talk about

HTML contexts

“Use HTML escaping”

► No documentation really describes what HTML contexts

are or gives an good list of them

► Practically, many places in an HTML page (inc. CSS, JS,

etc.) have the same security obligation. These are the

HTML contexts.

► Simple example, double quoted HTML attribute value

 <div id="${inj_var}">…
 <pre class="${inj_var}">…

► Some of the contexts:

► JavaScript string, HTML tag name, HTML attribute name, CSS

string, CSS code, JavaScript code, HTML RCDATA, HTML
PCDATA, HTML script tag body, URL, etc.

HTML Contexts?

The joy of nested contexts

HTML Contexts Stack

Single quoted
JavaScript string

JavaScript code

URI

Double quoted HTML
attribute value

Single Quoted JavaScript String

URI

Double Quoted HTML Attribute Value

JavaScript Code

► Simplified: Our data is inserted inside a JavaScript String

inside a URI inside an HTML attribute

► We’ll note: HTML Attribute -> URI -> JS String

 stack := {HTML Attribute -> URI -> JS String}

► The web browser will:

► Take the content of the attribute href and HTML decode it

► Analyze the URI and recognize the javascript: scheme

► Take the content of the URI (i.e., after the scheme) and URL

decode it

► Since it’s supposed to be JavaScript, the extracted content

hello('${inj_var}') is sent to the JS engine for rendering

► The JS engine will parse the program and especially the string

that contains our ${inj_var} by doing a JS string decoding

► Based on this flow we know what needs to be done to

make a safe insertion for ${inj_var} in this context

The joy of nested contexts

Well put grand’ma!

Distribution of HTML contexts

HTML contexts matters more now!

► “Use HTML escaping”

► Projects are using a lot of different HTML contexts, and it’s not

getting better

► “Don’t insert user data in <insert HTML location here>”

► “Use auto-escaping template engines”

Fix XSS

► HTML escaping is important and can be correctly used in

50% of the injection sites

► In addition, it makes safe 70% of them when implemented

correctly (but makes the data incorrect)

► However, let’s look at the different implementations of

HTML escapers

Focusing on the HTML escaping…

Dive into HTML escapers…

► HTML escaping should be

simple

► We found 76 different HTML

escapers in our dataset

► Most of them belong to a

framework/library used by

the application

► In average, a project has

5.7 HTML escapers

► All HTML escapers are

not equivalent…

► “Use HTML escaping”

► Projects are using a lot of different HTML contexts, and it’s not

getting better

► HTML escaping seems to mean a lot of different things… Only

41% of the implementations seems sufficient

► “Don’t insert user data in <insert HTML location here>”

► “Use auto-escaping template engines”

Fix XSS

► We found that many security guidances just say “don’t

do this”

► OWASP XSS cheat sheet [2] has the following rule:

“Don’t insert data into <?>”

Never put data HERE “Context” name

<script>...HERE...</script> Directly in script

<!--...HERE...--> HTML comment

<div ...HERE...=test /> Attribute name

<HERE... href="/test" /> Tag name

<style>...HERE...</style> Directly in CSS

Observed HTML contexts and nesting

Observed HTML contexts and nesting

► “Use HTML escaping”

► Projects are using a many different HTML contexts, and it’s not

getting better

► HTML escaping seems to mean a lot of different things… Only

41% of the implementations seems sufficient

► “Don’t insert user data in <insert HTML location here>”

► Developers need to add data into many HTML contexts

► “Use auto-escaping template engines”

Fix XSS

► A good trend with template engines is to provide auto-

escaping.

► Auto-escaping means that the engine will take the

dynamic data and escape it without any directive from

the developer.

► Such reasoning is great and clearly makes a typical web

application more secure.

► However, do they understand the contexts and provide

the required escaping/filtering to be safe for XSS?

Auto-escaping template libraries

Auto-escaping template libraries

 Engine Contextual	Autoescaping HTML	Autoescaping On	By	Default Manual	escaping Escapes	'

GCT Yes N/A Yes N/A Yes

.NET	Razor No Yes Yes Yes Yes
Ruby	on	Rails No Yes Yes Yes No

HAML No Yes Yes Yes No

NHAML No Yes Yes Yes No
Facelets No Yes Yes Yes N/A

Mustache No Yes Yes Yes No

Twig No Yes No Yes Yes
Smarty No Yes No Yes Yes

Spring No No N/A Yes N/A

.NET	WebForms No No N/A No N/A

JSP No No N/A Yes N/A

► Some don’t even escape ‘ properly

► Only GCT provides a fairly good context aware auto-

escaping, others essentially perform HTML escaping all

the time

► “Use HTML escaping”

► Projects are using a lot of different HTML contexts, and it’s not

getting better

► HTML escaping seems to mean a lot of different things… Only

41% of the implementations we saw seems sufficient

► “Don’t insert user data in <insert HTML location here>”

► Developers need to add data into many HTML contexts

► “Use auto-escaping template engines”

► Sometimes a false sense of security

Fix XSS

► I’m not saying that we have been all wrong until now. We

just need to come up with a more complete solution for

XSS:

► Sadly, there is no one silver bullet for XSS

► We cannot rely on one escaping function or filter

► We cannot rely yet only on most auto-escaping template engines

► For the time being, we need:

► Libraries that allow developer to escape the data properly for

many contexts, and filter the data when an escaper cannot be

used

► Give actionable guidance to the developers

Sad truth about XSS

► List of required escapers based on our dataset:

► HTML escaping (^85%)

► URI encoding (^30%)

► JavaScript string escaping (^13%)

► CSS string escaping (^0.16%)

► JavaScript regex escaping (^0.01%)

► Libraries like OWASP ESAPI [3] or Coverity Security

Library [4] already have these escapers; promote them!

Escapers should be available

► HTML contexts that require a filter based on our dataset:

► HTML Attribute -> URI (^30%)

► HTML Attribute -> JS code (0.2%)

► HTML Attribute -> CSS (0.3%)

► Etc.

► How to handle URIs?

► Filter the scheme to make sure you allow it (http, https, etc.)

► Make sure the authority makes sense for your application

► URI encode each element of the path

► URI encode query string parameter names and values

► ESAPI has a isValidURL which seems very restrictive, and

CSL asUrl rewrites the URL to make it safe (but you need

to manually encode the params & paths)

Filters should be available

► XSS is complex because it can happen in many different

locations in the HTML pages (HTML contexts).

► Input validation may not be adequate

► Sanitizers can help but it’s very difficult to find a

complete library for XSS

► OWASP XSS cheat sheet is a good start, but I believe

we should do more:

► We started blogging [5] about these kind of issues and will

continue doing it as we improve our technologies or just come

across “interesting stuff”

► We will also continue to improve CSL [4] by adding filters, etc.

► We need to be more serious about raising awareness of HTML

contexts

XSS Conclusions

Developers need
some <3

► It’s getting better. More and more developers have a

basic understanding of security issues like XSS and

SQLi.

► For SQL, developers parameterized 94% of the time when

possible

► For HTML, we see many places where HTML escaping is used

► But it’s just too complex and convoluted for them to

understand everything

► Security obligations of each context

► Nested contexts and ordering of escapers

► There are gaps in the way security information is

presented online; StackOverflow is a scary place.

However, if you don't give them advice, who will?

What’s up with developers?!

► Focus developer communication on the code point of

view, as opposed to the attacker’s point of view:

► Attacks and threats are the "why" we need to fix

► Developers need the "how" and "where" to fix

► Provide helpful advice:

► Actionable (i.e. code, code, and more code)

► To a specific technology (JSTL, Hibernate HQL, jQuery, etc.)

► In a specific context or contexts (IN clause, URI, CSS string,

etc.)

► What does helpful advice look like?

► Not this: "Parameterized all SQL statements."

► How about this?

Ways forward

How to Parameterize Data Values
Example: "SELECT * FROM table WHERE name = '" + userName + "'"

JDBC
String paramQuery = "SELECT * FROM table WHERE name = ?";
PreparedStatement prepStmt = connection.prepareStatement(paramQuery);
prepStmt.setString(1, userName);

Hibernate
Native
Query

String paramQuery = "SELECT * FROM table WHERE name = :username";
SQLQuery query = session.createSQLQuery(paramQuery);
query.setParameter("username", userName);

JPA Native
Query

String paramQuery = "SELECT * FROM table WHERE name = :username";
Query query = entityManager.createNativeQuery(paramQuery);
query.setParameter("username", userName);

Helpful Advice

How to add data in a CSS string within a CSS block using CSL.
Provide several examples that show the common usages for different HTML

contexts, and technologies your developers are using

Expression
Language

<style>
a[href *= "${cov:cssStringEscape(param.foobar)}"] {
 background-color: pink!important;
}
</style>

Java
or

JSP Scriptlet

<style>
<%
 String parm = request.getParameter("foobar");
 String cssEscaped = Escape.cssString(parm);
%>
a[href *= "<%= cssEscaped %>"] {
 background-color: pink!important;
}
</style>

Helpful Advice

► XSS and SQLi can be nuanced and complex. XSS is

actually becoming more and more complex over time as

the number of contexts and nesting increases.

► Current advices we saw are either:

► Generic remediation

► Precisely how to perform the attack

► Guidance needs to be both more specific and technical,

yet also simpler and shorter. The only way to get that is

to take tailored, detailed advice and crop it down for the

development team’s needs.

► Remember: your developers need some <3

Conclusions

Questions?

► [1] HTML 5 tokenizer specification

► [2] OWASP XSS Cheat Sheet

► [3] OWASP ESAPI Java

► [4] Coverity Security Library Java

► [5] Coverity Security Research Blog

► [6] OWASP SQLi Prevention Cheat Sheet

References

http://www.whatwg.org/specs/web-apps/current-work/multipage/tokenization.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/tokenization.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/tokenization.html
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://code.google.com/p/owasp-esapi-java/
https://github.com/coverity/coverity-security-library
https://communities.coverity.com/blogs/security
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

