
Session ID:

Session Classification:

Alan H. Karp
Hewlett-Packard Laboratories

ASEC-T17

Advanced

Writing Applications that are
Easier to Defend than Attack

Marc Stiegler
Hewlett-Packard Laboratories

Most Common Security Patches

► 75% of Microsoft security bulletins are for applications

► Year, after year, after year

“If what we were doing was effective, wouldn’t you expect

things to be getting better?”

 -- Marcus Ranum

We Know Why

Anderson’s Economic Analysis

► Defender’s cost

► 1,000,000 line program

► 1 exploitable bug/10,000 lines

► 100 hour/bug

► 10,000 hours

► Attacker’s cost

► 1.000 hours/bug

► Need to exploit 1 bug

► 1000 hours

► Defender’s cost/Attacker’s cost >> 1

What does the attacker win?

► A clue for finding an answer

 “Users whose accounts are configured to have fewer

user rights on the system could be less impacted than

users who operate with administrative user rights.”

 -- Microsoft Security Bulletins

Principle of Least Privilege

“Every program and every privileged user of the system
should operate using the least amount of privilege
necessary to complete the job.”

 -- Jerome H. Saltzer
 Michael. D. Schroeder

"Protection and the control of information sharing in
multics“. Communications of the ACM 17 (7): 389, (1974).

Root Cause of the Problem

Every program you run can use all your permissions.

Don’t do that!

A Short Detour

What is a Privilege?

► Saltzer and Schroeder didn’t say precisely

► Principle of Least Authority

► Easier to say (POLA vs POLP)

► Precise meaning

May versus Can

► Permission analysis tells you what may happen.

► Authority analysis tells you what can happen.

► Permission analysis: Put secrets on home page

► Authority analysis tells why you shouldn’t

Apache index.html
(Apache,R; admin,RW)

Random User

Back on the Main
Road

Killer App

► Wonderful spreadsheet

► Important calculation

► May have a virus

► Choice today

► Turn off macros – useless

► Turn on macros – risk my machine

► POLA approach

► Leave macros on

► Virus can do no harm I care about

Current Approach

Where’s my paddle?

It Ate My Desktop

POLA at Application
Granularity

Can’t Hurt Anything I Care About

Polaris Seems Magical

► No change to operating system

► No change to application

► Sandboxed only with standard Windows API

► No need to run in a VM

► No need to intercept system calls

► Use runAs to launch app in a restricted user account

► Write some code to enable SaveAs, etc.

Caveat

► COM communications hole required special handling

A Lot of Protection

► All of the 75% of Microsoft patches

► Zero day attacks against Office

► Drive-by downloads in IE

► Other vulnerabilities

► Adobe Reader

► RealPlayer

► QuickTime

► Malicious email, including malware attachments

The Problem with Polaris

POLA for Application
Instances

The Solution

► Run each instance in a different account

► Surprisingly hard

► Creating accounts is slow

► Common operations fail

► Clipboard is a security problem

► Apps don’t all obey account boundaries (e.g., Firefox)

► Probably need help from software vendors

The Problem with App Instances

Mail Tool (Outlook, Evolution, etc.)

Address
Book

Sender

Rendering
Engine

Power of restricted
user account

Receiver

JPEG attack subverts renderer
Uses addresses and sender

Any Breach == Full Breach

POLA for Modules

Virus versus POLA Client

Main

Address
Book

 Rendering
Engine

Sender

Receiver

JPEG attack subverts renderer.

No access to sender, addresses

Modularize Authority, not just Code

The Problem with Modules

Main

Address
Book

 Rendering
Engine

Sender

Receiver

Attack subverts sender, grants

access to address book

POLA for Objects

Object Graph of Sender

Critical Objects

Vulnerable Objects

Exploited Objects

Revised Economic Analysis

► Defender’s cost

► 1,000,000 line program

► 1 exploitable bug/10,000 lines

► 100 hour/bug

► 10,000 hours

► Attacker’s cost

► 1,000 hours/bug

► Need to exploit k bugs

► Not an arbitrary k, cost α () α (1,000)

► Defender’s cost/Attacker’s cost << 1

(Don’t take math too seriously. It says you are safer with

more bugs, so only applies a small percentage of objects.)

k n
k

Code Examples

► Authority Modularization: How to quantify cost/rewards?

► Security Review: lower cost, equal quality

► Currently, every line of code needs review

► java.io.File passFile = new java.io.File(“password”);

► Basic Principle: Objects/Modules without strong powers

do not need review (Defend Calais, not Brittany)

► If only 2 in 10 modules have risky powers, reduce review

cost by 80%

Through the (Cost) Looking Glass

POLArized Modules

“Main” =>
Powerbox

Address
Book

 Rendering
Engine

Sender

Receiver

Strict Isolation + Explicit Delegation of Least Powers == Authority Modularization

3 Threats:
► SpamBot

► Address Book

► Sender

► Private Data Theft

► Receiver

► Sender

► SMTP Password Theft

1 Special Vulnerability:

 Rendering Engine

What Modules

Need Review?

POLArized Modules

Main =>
Powerbox

Address
Book

 Rendering
Engine

Sender

Receiver

Strict Isolation + Explicit Delegation of Least Powers

3 Threats:
► SpamBot

► Address Book

► Sender

► Private Data Theft

► Receiver

► Sender

► SMTP Password Theft

1 Special Vulnerability:

 Rendering Engine

Powerbox

A reusable pattern at many coding levels

Enables incremental retrofit of legacy apps, submodule by submodule

Main

Module

Module

Module

Module

SubModule

SubModule

Overhauled
SubModule
(Powerbox)

Isolated
SubSubModule

Isolated
SubSubModule

Isolated
SubSubModule

POLArized Modules
Part 2

► Small code change, big review

payoff?

► Must have the send authority: this

is its purpose!

► Does it need the smtp password?

If so, must review in detail

► Does it need full access to the

address book? If so, must review

in detail

► If we can eliminate password and

limit address book, no review

needed

Must We Review the Sender?

Encapsulate Password in SMTPLogin

Sender no longer has access

to password

Protect Address Book Behind Facet

Grant Violates Threat Model

Grant Required for Operation

Least Privilege Grant

POLA-rized Sender

Object-POLArized Modules

Main =>
Powerbox

Address
Book

 Rendering
Engine

Sender

Receiver

Provide Authority-Limited Arguments to Sender

Achieve Closer Approximation to Perfect Least Privilege

Result: Simple

Architecture Analysis

Demonstrates Only

“Main” Module Has Risk

Facet

► Java Protection Domains useless

► No delegation: new File creation indistinguishable from explicitly

granted File authority, disallows both or neither

► Yet another complicated, confusing mechanism outside the flow

of program operation.

► Tenuous relationship to POLA: No Control on Address Book

► 2 Solutions to verify object isolation:

► Joe-E Verifier

► Adrian Mettler/David Wagner at UCB

► Coding Standards to support Visual Inspection

► Understand basic rules by looking at simple violations

Sounds Good. Strict Isolation?!

Breaking All the Rules

Backdoor Access to

Powerful Authority, breaks

isolation

Excess Power Grant To

Sender Clients

Unneeded Privilege Required, easily

avoided with mere laziness
Authority String,

Hard to track on

way to accidental

exposure

Mutable Ambient Authority, Powerful Ambient Authority,

isolation broken for rest of system

Excess Privilege Package Import, must inspect for Socket, URL, etc.

Unneeded Powerful Import: Why does Sender need this?

Inline powerful authority creation,

requires line-by-line scrutiny to

detect isolation break

Code that makes Visual Verification Too Hard: Bad Class Sender

► Rules

► Explicitly list each imported class in each source header

► Only powerboxes create new java.io.File, java.net.URL,

java.net.Socket, etc.

► Only powerboxes use java.lang.Runtime.exec, etc.

► Files, sockets, etc., explicitly granted as object references

► No powerful or mutable statics

► No strings carrying authority (encapsulate immediately)

► Powerbox architecture

► Reviews:

► Checkin: Quick checkin scan confirm isolation, coding standards

► Security review only of threat-model-risk classes

Basic Java Coding Standards

Revised Economic Analysis II

► Defender’s cost

► 1,000,000 line program

► 1 exploitable bug/10,000 line module

► 2 powerful modules requiring review per 10 modules

► 100 hour/bug

► 2,000 hours (not 10,000)

► Attacker’s cost

► 1,000 hours/bug

► Need to exploit k bugs

► Not an arbitrary k, cost α () α (1000)

► Defender’s cost/Attacker’s cost << 1

(Don’t take math too seriously!)

k n
k

The Secret Sauce

► OO design taken seriously

► Which is better?

► public void setFile(String path) {this.file = new File(path);}

► public void setFile(File file) {this.file = file;}

► The preferred OO choice is the crucially required securely

isolated, authority-modularizing choice

► Authority Modularization == OO modularization …on steroids

► Strong security properties: inexpensive lunch

(TANSTAAFL)

► Strong security policy is still hard. But it should not be

impossible.

Examples of Where It
Works

We Can’t Find Any

► Few widely-used applications follow the rules

► C/C++ so not memory safe

► Java but use mutable global state

► One or two hops between any pair of objects

► One possibility – Cajoled apps

► Rewritten by Google’s Caja to a “safe” javascript

► Widgets on a page isolated by virtualizing global “this”

► Rules in the Secret Sauce enforced

► Caja vulnerability list

► Examined ~200 entries

► All were against the runtime platform (TCB)

► None were against cajoled apps

Conclusions

Finer-grained POLA is Safer

Granularity of POLA Example

Machine DOS, Windows XP

User Windows Vista UAC, MacOS, Linux

Application Polaris, Android, MacOS Lion

Application Instance Bromium

Module Chrome Browser, Mashups with ES 5

Object Waterken, CapDesk

► Immediately, for Java Applications

► Coding Standard Upgrade as described earlier

► Checkin Review procedure as described earlier

► New and overhauled subsystems, powerbox architecture:

► no whole system rewrite required to start benefitting

► Investigate Joe-E automated isolation verifier

► Immediately for JavaScript Applications

► Use Caja to ensure isolation for new code at checkin

► Or use EcmaScript 5 and “use strict” and visual verification

► Both Java and JavaScript

► For isolation-verified subsystems

► Security review only threat-model-risk components

Take Homes

What’s With the
Bear?

The POLA Bear

Questions

http://www.hpl.hp.com/personal/Alan_Karp/

