RSACONFERENCE2013

libinjection: New Directions

In SQLI Detection N
729 W
Tl
G/
Nick Galbreath [!
IPONWEB s,

Session ID: ASEC-W23

Session Classification: Advanced

What if we could substantially

reduce the SQLI at 'ck surface

——without new hardware or
firewalls?

RREO O T AT -

without applis

Wild Speculation?
.

RSACONFERENCE2013

RSACONFERENCE2013

A Brief History of

SOL

—1970s: SQL Invented

» Hey that's 40 years ago.
» Why is it still around and so popular?

» Exercise for the reader: Pick any gquery you like, and
write the equivalent in your favorite programming
language.

» SQL is scriptable data structures.

RSACONFERENCE2013

—— 1972: Oracle Releases the
First Commercial Database

-
- - ®
L ot
} -
i
Iz :
- o -
- -
[e
- ~
-

Also, Coppola releases The Godfather

RSACONFERENCE2013

—— Remember the 80s?

» Networking sucked!
» TCP/IP not widespread

_ | » Computers are fragile,
expensive and slow

» Shoulder-pads

so what do you do?

RSACONFERENCE2013

- Centralize

» Move computation as close as possible to the data
» Move to super-servers
» Have cheap/dumb clients i

RSACONFERENCE2013

— 1988: Oracle V6
Introduction of PL/SQL

» The Database is now a full programming environment
» Unicode/UTF8 not standard
» Complexity explosion
» ... but most clients are private
i Also in 1988:
S e Crack Cocaine 'invented'

prz. :
Hoart — : 4 o
- Increased heat rate PN R) A e
- Risk of cardiac arrest | Wl 3, : e ! . #
4 I " A
Lungs: —]] . . TGE .
- Risk of respiratory arest TR 30 - ! : y a
| Nl .-
e Iy e 8 o . \ g >
- Traf _“'/
RSACONFERENCE2013

And then the 1990s

» TCP/IP
» Cheap CPUs WEB BROWSER

» Web Browsers MOSAIC, THE FIRST POPULAR GRAPHICAL
) BROWSER FOR THE WORLD WIDE WEB, WAS

» Attachin g databases CREATED BY MARC L. ANDREESSEN AND ERIC J,
_ Bl BINA AT THE NATIONAL CENTER FOR SUPER-

1{0) pu blic networks COMPUTING APPLICATIONS (NCSA). UPON ITS

1993 RELEASE TO THE PUBLIC, MOSAIC GAVE
INTERNET USERS EASY ACCESS TO MULTIMEDIA
SOURCES OF INFORMATION. WEB BROWSERS
HAVE TRANSFORMED THE EXCHANGE OF

This is Why most of us INFORMATION.,
are here today.

UNIVERSITY OF ILLINOIS

RSACONFERENCE2013

—— 2000+ Web Scale

» Discovery that data problems are a lot more painful
than CPU problems.

» Turns out disk drives are mechanical

» If your database maxes out, you have big problems...
so move everything out of the database. Spindie Motor

» Complete reversal in strategy

Woloe Coll Motar

RSACONFERENCE2013

— SQL isn't going anywhere

» For front-ends, general trend is federating data across
cheap machines, using stripped down SQL

» SQL-like languages used by Amazon, Google and
others.

» Still great for analytics and reporting on the back end,
and generic data storage.

» But we stuck with legacy of the past.

RSACONFERENCE2013

http://bit.ly/UkQd7Z

—SQL Is Huge

» 40+ years of built up crud

» 1992 spec is 625 pages of plain text
» 2003 spec is 128 pages of BNF

» NoO one is completely compliant

» Every one has special extensions

SQL is more complicated
than you think....

RSACONFERENCE2013

—SQL Integer Forms | —
ENCYCLOPEDIA

0)3
- 09k INTEGER

- 0x[0-9a-fA-F]+ OXDEADbeef
MySQL, MSSQL SEQUENCES

Ox Is case sensitive
* Ox MSSQL only
© X'DEADbeef PgSQL G
- b'10101010' MySQL, PgSQL S
- 0b010101 MySQL

RSACONFERENCE2013

— SOL Floating Point Forms
digits |'M lN “R{ |

digits[.]F
digits[.]digits
digits[eE]digits
digits[eE][+-]digits
digits[.][eE]digits
digits[.]digits[eE][+-]digits I:AI.B“I."N
digits[.]digits[eE]digits e

[.]digits

[.]digits[eE]digits

[.]digits[eE][+-]digits Optional starts with [+-]

"binary float_infinity" (O) Optional ending with [dDfF] (Oracle)

RSACONFERENCE2013

VvV vy vVvyVvy VvV VY VY VYYVY VY

http://bit.ly/Qp6KTu

— SQL Money Literals

» MSSQL has a money type.

» -$45.12

» $123.0

» +$1,000,000.00 Commas ignored

» Many symbols are accepted for currency type

RSACONFERENCE2013

— SQL Ridiculous Operators

I = not equals, standard
<=> mysqg|

<> mssq|

~= oracle

>, < not less than mssq|
/\ oracle

I 1 factorial (pgsql)

| / sgaure root (pgsql)

| | / cube root (pgsql)

** exponents (oracle)

bitwise xor (pgsql conflicts with mysql comment)

RSACONFERENCE2013

vV v vy v vy vVvvyVvYVvyYyvYyy

— SQL Strings, Charset &
Comments

RSN Such a tangled mess,
3y TS Sk T
i\. A A, | defer to my

R DEFCON 20 talk:
NI | http://client9.c
} i BN om/20120727/
AR |

RSACONFERENCE2013

http://www.client9.com/2012/07/27/
http://www.client9.com/2012/07/27/

SQLI Detection

— Keyword Detection
s/UNION.ALL/1

» The dumbest possible regexp.

» |'ve used this regexp as a goof for a while,
but oddly works well in detecting
SQLi scans.

» Almost zero false positives

RSACONFERENCE2013

By Using Reqgular Expressions

Trying to catch more SQLI attacks leads to the question of
IS user input SQLI or not? Using regular expressions you
end u H\WIthensomethlng like this:

(2: \/*'\s’\d+ (?: ch ra) ?r\s*\ (\s*\d) ?:(n?andlx?or\not)\s+|\\\|\\&\&)\s*\w+\()(?:[\s()]case\s*\((2:\)\s*like\s*\ ()
hav1ng\s "s]+\s* \W\S (2:1f\s?\ ([\d\w] \S <>~1) (2:"\s*or\s*"?2\d) | (2:\\x(2:23[27[3d)) [(2:7.2"$) | (2:(?: A["\\]* (2:[\A"1+[[""]+™)
+\s*(?:n?and\x?or\notl\\\l\\&\&)\S*[\w"[+&!@(),.—])\(?:[A\w\s]\w+\s*[\—]\s*"\s*\w)\(?:@\w+\s+(and\or)\s ["\d]+ 2:Q[\w—
]+\s(and|or)\s*[A\w\s])\(?:[A\w\s:]\s*\d\W+[A\w\s]\s*".)\(?:\Winformation_schema\table_name\w)(?:"\s**.+(?:or|id)\W*"\d)I(?:\A")\(?
A [\w\s"-
1+ (?<=and\s) (?<=or\s) (?<=xor\s) (?2<= nand\s (?<=not\s) (2<=\[\]) (2<=\&\ &) \w+\ () | (?: \s\d]*[A\w\s]+\W*\d\W*.*["\d])\(?:"\s*[A\w\s?]+\s*
[P\wW\sT+\s*") | (2:"\s*["\w\s]+\s* \W\d (2 1--)) [(22" x*\s*\d) | (2:"\s*or\s ["\dI+[\w-]+.*\d) | (2: [() *<>%+-] [\w-

]+[A\w\s]+"[A,]) (2:\d"\s+"\s+\d) ?.Aadmln\s*"l \/*)+"+\s?(?:——|#\\/*|(?) 1 (2 "\s or [\w\s-1+\s* [+<>=(), -
J\s* \d" (2: "\S*[A\W\S]?:\S*")|(?:"\W*[+:]+\W*")I(?:"\S*[!:\][\d\S!:+—

IE *$ o;"\s*[[:\][\d\s!:]+.*\d+$)\(?:"\s*like\W+ \w" (1) | (?:\sis\s*0\W) | (?:where\s[\s\w\., -

]

+\s:)\(?."[<> 1+") (?2:union\s* (?:all|distinct | [(!@]*)2\s*[([]*\s*select) | (?:\w+\s+like\s+\") | (?2:1ike\s*"\%) | (?2:"\s*like\W*["\d])
"\s* (?:n?and|x?or|not

ININTIN&N&) \s+ [\s\w]+=\s*\w+\s*having) | (2:"\s**\s*\w+\W+") | (?2:"\s* [*2\w\s=.,;) (J+\s*[(@"]*\s*\w+\W+\w) | (?:select\s* [\ [\] () \s\w\., "~
J+from) | (?:find in_set\s*\ () (?:in\s*\ (+\s*select) | (?: (?:n?and|x?or |not
ININTIN&N&) \s+[\s\w+]+ (?2:regexp\s*\ (|sounds\s+like\s*" | [=\d]+x)) | ("\s*\d\s* (2:==[#)) | (2:"[3&<>"=]+\d\s* (=]|or)) | (2:"\W+ [\w+-

J+H\s*=\s*\d\W+") | (2:"\s*is\s*\d.+"2\w) | (2:"\ |2 [\w-

1{3, 1 ["\w\s., 1+") | (?:"\s*is\s*[\d.]+\s*\W.*") (2: [\d\W]\s+as\s* ["\w]+\s*from) | (?:*[\W\d]+\s* (?:union|select|create|rename|truncate]|lo
ad\alterldelete\updatelinsertldesc))|(?:(?:select\create\renameltruncatelload\alterldelete\update\insertldesc)\s+(?:(?:group_)concat
\char\load_file)\s?\(?)\(?:end\s*\);)\("\s+regexp\w)|(?:[\s(]load_file\s*\()(?:@.+:\s*\(\s*select)|(?:\d+\s*or\s*\d+\s*[\—

+1) 1 (2:\/\w+; 2\s+(2: having\andlorlselect YAW) | (2= \d\s+group\s+by.+\()\(?:(?:;\#I-—)\s*(?:droplalter))I(?:(?:;I#\——

\s* ?:update|insert)\s*\w{2,}) s [” \w]SET\s*@\w+ (?:(?:n?and|x?or|not

ININTIN&N&) [\s (J+\w+[\s)] *[! +]+[\s\d]*["—)1) (2 "\s+and\s*:\W)|(?:\(\s*select\s*\w+\s*\()\(?:*\/from)\(?:\+\s*\d+\s*\+\s*@)\(?:\w"
\s*(?: [~

+:\@]+\s*)+[\d(])|(?:coalesce\s*\(\@@\w+\s*[A\w\s])\(?:\W!+"\w)|(?:";\s*(?:iflwhile\begin) (?:"[\s\d]+=\s*\d) | (?:order\s+by\s+if\w*
\s*\ :[\s(]+case\d*\W.+[twlhen[\s(]) (?: (select|;) \s+(?:benchmark|if|sleep)\s*2\ (\s*\(7\s*\w+) ?:create\s+function\s+\w+\s+return
s) | (\s (?:select|create|rename|truncate|load|alter|delete|update|insert|desc) \s*[\[(]1?2\w{2,}) (?:alter\s*\w+.*character\s+set\s+\w
+)\(" \s waitfor\s+time\s+") | (?2:";.*:\s*goto) (?2:procedure\s+analyse\s*\ () | (?:;\s* (declare|open) \s+[\w-

1+) | (?:create\s+ (procedure| function) \s*\w+\s*\ (\s*\)\s*-

)| (?:declare["\w]+[@#]\s*\w+) | (exec\s*\ (\s*@Q) (?:select\s*pg_sleep) | (?:waitfor\s*delay\s?"+\s?\d) | (?:;\s*shutdown\s* (?:; |-~
[#1N/*[{)) (?:\sexec\s+xp_cmdshell) | (2:"\s*!\s*["\w]) | (?:from\W+information schema\W) | (?:(?: (?:current) ?user|database|schema|connec
tion 1d)\s*\ (["\)]1*) | (2:";?\s* (?:select|union|having)\s* ["\s]) | (2:\wiif\s*\ ()| (?:exec\s+master\.) | (?:union select

@) | (?:union[\w(\s]*select) | (?:select.*\w?user\ () | (?2:into[\s+]+ (?:dump|out) file\s*") (?:merge.*using\s*\ () | (execute\s*immediate\s*") | (
?:\W+\d*\s*having\s* [*\s\-]) | (?:match\s*[\w () ,+-]+\s*against\s*\ () (?:,.*[) \da-

12" xINZ[M"]4)) | (2:\Wselect.+\W*from) | ((?:select|create|rename|truncate|load|alter|delete|update|insert|desc) \s*\ (\s*space\s*
N() (?2:\[\S(?:nel|eg|lte?|gte?|n?in|mod|all|size|exists|typelslicelor)\]) (?2: (sleep\ ((\s*) (\d*) (\s*)\) |benchmark\ ((.*)\, (.*)\))) (?: (uni
on(.*)select(.*)from)) (?:"(-0000023456|4294967295|4294967296214748364812147483647|0000012345|-2147483648]~—
21474836491000002345612.2250738585072007e-30811e309)$)

RSACONFERENCE2013

First presented at
Black Hat USA 2012
http://CIient9.Com/20120725 iISEC Partners party at Bellagio

http://client9.com/20120725

—— libinjection

v

Takes input and create tokens as if it SQL

» Compares first 5 tokens to
"things that match SQLI"

» 50k+ SQLI samples, some from wild, some hand
made, some from scans

C, 100k checks per second
Open Source, BSD License
http://client9.com/libinjection

vV vy

RSACONFERENCE2013

http://client9.com/libinjection

— Why do we have UNION at all?

DDDDDDD

http://www.deepthoughtsbyjackhandey.com

and what else do I, the developer,
never use, but is commonly used
by SQLI attackers?

RSACONFERENCE2013

http://www.deepthoughtsbyjackhandey.com

—— Let's use libinjection to find
features of SQL used In
SQLI!

» That's what | wrote in the abstract.
» Turns out to be not necessary

» Used the 50,000+ SQLi samples library from
libinjection and ...

» ... the Awesome Power of Grep
(well ... python regexp actually)

RSACONFERENCE2013

— A Highly Unscientific
collection of 50,000+ SQLI
attacks collected from actual
attacks, scanners, how to
guides, etc. And doesn't
take Into account:

Frequency

Severity

Uniqueness

Actual successful attacks versus probes
Doesn't look at exfiltration techniques

vvyyvyyvyy

RSACONFERENCE2013

SQL used in SQLI

union 75%
comments (any type) 70%
concat, etc 2304

hex number literals 22%
subselects 22%

chr (), char () 6%
aes, hex, compress 4%
SQL variables 2%

RSACONFERENCE2013

— 95% reduction in SQLI

By eliminating the following in SQL.:

» unions
» comments
» subselects

More than 95% of all SQLi samples were prevented.

RSACONFERENCE2013

— 98+% reduction in SQLI

» By eliminating the remaining ‘'unusual’ SQL, more than
98% of SQLI samples were prevented or rejected.

» Remaining 2% of SQLI attacks are all equivalent of

10R1=1

» Those remaining SQLI probes are mostly annoying, and
mostly harmless.

RSACONFERENCE2013

—— Introducing SQL-RISC

| call this "simplified SQL" — SQL that limits SQLI
damage -- "SQL-RISC" in honor of RISC computing.
It also sounds cool.

http://en.wikipedia.org/wiki/Reduced instruction set computing

5 PowerPC 601

= ©IBM 1992
©® 1996, SMI

UltraSP/} RC

HPDY0S0CD S2
9709K9004

JAPAN
STP1030ABGA-200-001

PPC601FD-080-2

" = 19425030KS

ﬂl!ﬂﬂlﬂ (RI1]S]IC] munmnmu

RSACONFERENCE2013

http://en.wikipedia.org/wiki/Reduced_instruction_set_computing

- Feasibility:

~%, Can public applications

; QL-F\QISC?

w ;_"

—— Can we replace unions?

» Strongly suspect most? many? websites do not use
unions.

» All unions can be rewritten into two queries.
Minor overhead cost.

» Applications can create 'views' if absolutely required.

RSACONFERENCE2013

— Can we remove SQL
comments?

» Uhh, | have a hard time getting developers to write any
comments, let alone comments in SQL.

» Or just allow /* */ only at start of query
(some ORMSs generate a comment on where the query

IS coming from)

RSACONFERENCE2013

— Can we replace SQL
subselects?

» All subselects can be re-written as joins , with almost
no application level code changes needed.

» SQLIi that uses subselects can not be rewritten as joins
(except in rare cases)

RSACONFERENCE2013

— Can we replace SQL string
functions?

» Including: substring, concatenation, encoding,
encrypting, char functions, replacements

» Easy to move into application logic
» Suspect many web apps don't use these.

RSACONFERENCE2013

» sleep/waitfor/shutdown 3.2%
» in boolean mode 1.7%

» drop|create|replace 1.58%
» rand() 1.359%
» dbms_ 1.0%

» convert() 0.929%
» (updatexml|xmltype) 0.866%
» generate_series() 0.86%
» randomblob() 0.78%
» waitfor 0.46%
» extractvalue() 0.46%
» begin 0.45%
» load file() 0.29%
» ascii() 0.23%
» nvarchar() 0.11%
» as binary() 0.1%

» into outfile 6 0.01%

Other SQL Functions

Having a hard time seeing any
need for them in public
applications.

Again, | was going to analyze
"real world" benign SQL, but
I've never used any of these
functions, ever, on web
applications.

RSACONFERENCE2013

— Enterprise Apps

» If SQL-RISC were implemented as a separate client,

then
» public apps could use SQL-RISC

» Internal apps could use regular SQL,
and use all functions if required.

» This would make adoption much easier.

RSACONFERENCE2013

SQL-RISC
Benefits

— Fixing SQLI the Old Way

» Ensuring that every user input Is

properly validated is intractable
(true, some frameworks help, but
only if you are using them)

» Parameterized queries helps but some common SQL
expressions cannot be expressed with
parameterization (e.g. IN lists)

» Auditing is very slow

» Every code change may introduce new problem.

RSACONFERENCE2013

— Fixing SQLI using SQL-RISC

» Using SQL-RISC may some require some application
changes, however, this is a greppable finite problem.

» Feasibility, conversion & testing can be done before
deployment of SQL-RISC.

» Once complete, the entire application, current and
future is protected.

RSACONFERENCE2013

— Auto-Detecting Attacks

By using SQL-RISC, critical SQLI features are de-activated.

SQLI Attacks
turn Into

SQL Syntax Errors

RSACONFERENCE2013

— SQL Syntax Errors are
Easy to Monitor

» SQL Syntax errors are annoying but harmless, and are put into
logs (database and/or application)

» Trivial to monitor using existing tools
(e.g. grep 'syntax error' *.log)

» Now you know where input validation isn't being done

RSACONFERENCE2013

y

‘¥
oy e,
¢ L
e b
v'.'
! N
il
A B
Y '\ g : . o b
s 3 ’ ,."
N .

e S -
~ Next Steps

- 3-%

— Proof of Concept Patch

» Making a source code patch to deactivating functions
and features should be a relatively simple task.

» May be possible to produce a binary patch:
perl -p -1 -e mysqld
's/UNION/blah/g’

RSACONFERENCE2013

—— Access Control

» However, best done via access control.

» Different clients could enable or disable SQL functions
and features depending on need.

» This is a more complicated patch!

RSACONFERENCE2013

—— Closed-Source
Database Vendors

» | challenge you!
» Provide controls for '‘advanced' SQL features or provide

a simplified parser option.
®
ORACLE

Microsoft®

SQL Server

RSACONFERENCE2013

Let's Eatl

» Help wanted!

» contact me nickg@client9.com

» libinjection home page:
http://client9.com/libinjection

» these slides:
http://client9.com/20130227/

RSACONFERENCE2013

mailto:nickg@client9.com
http://client9.com/libinjection
http://client9.com/20130227/

