

THE NIST RANDOMNESS BEACON

SESSION ID: ASEC-T07B

Rene Peralta

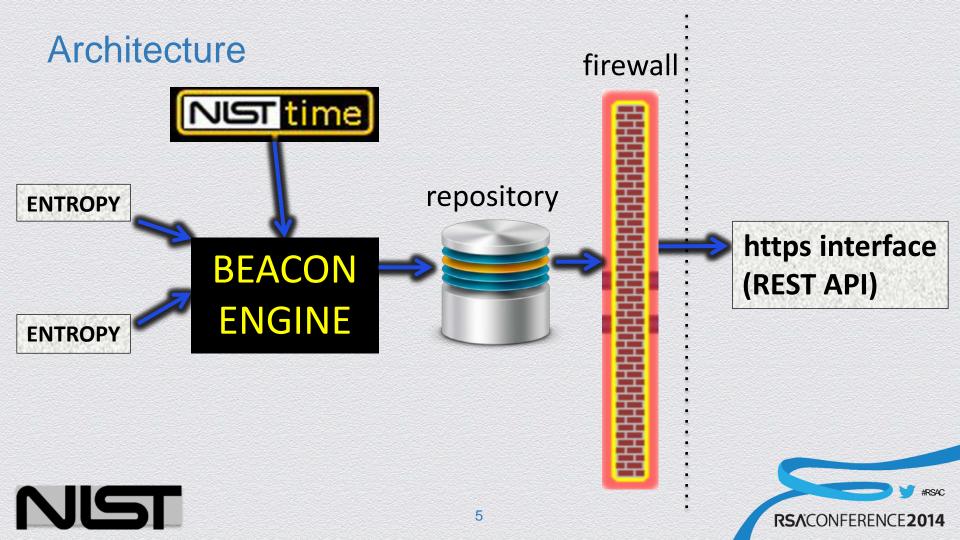
Computer Security Division
National Institute of Standards and Technology.

Outline of talk

- What the Beacon is and isn't.
- Motivation and usage.
- The bigger picture.
- A verifiable source of random bits.
- Summary.

What this is not

This is not for generation of secret keys.



What this is

- Public randomness
 - publish model
 - digitally signed and time-stamped
 - https://beacon.nist.gov/home

Motivation

- Public, time-bound randomness is a valuable resource
- A standard for such a resource is needed so that others can set them up.

Properties

- Unpredictability
- Autonomy
- Consistency
- "Forever" unforgeable public record

Sample applications

- Provably random sampling
- Selective disclosures. This aligns with the goals of the National Strategy for Trusted Identities in Cyberspace (NSTIC)

Selective Disclosure Scenario

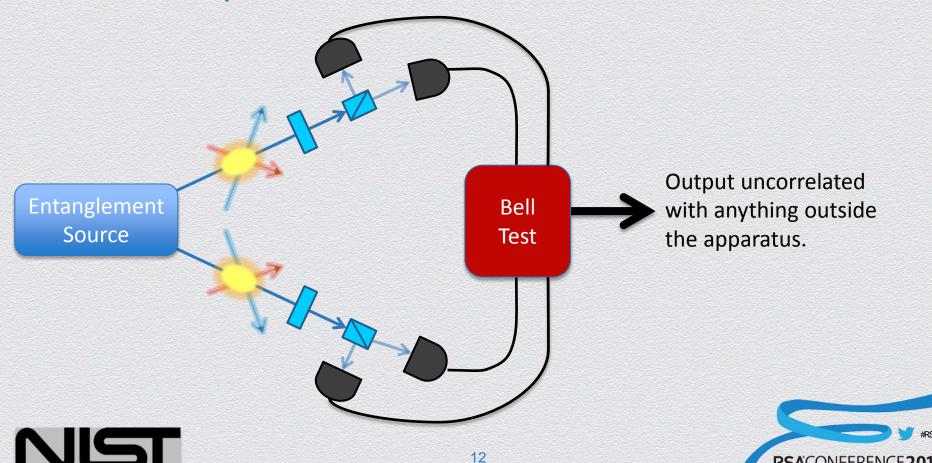
Suppose authenticated and encrypted data about you exists somewhere

You have

- At a later time, a function of this data is required for a given transaction (e.g. F(DATA) = "over 21 or doctor authorization")
- A "discreet" proof that F holds can be constructed using the key and a string from the Beacon

Can you trust it?

- You don't have to!
 - can combine with other sources
 - can flip a few bits and hash it
 - a "cooked" number could only target one application
 - chained mode implies even an insider cannot undetectably change a previous output value

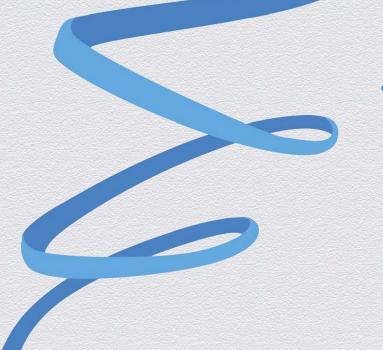

Entropy

- Currently using two independent commercial RNGs
- We plan to implement a "verifiable source". This is a collaborative project between NIST's Information Technology and Physical Measurement laboratories.

Verifiable quantum randomness source

The bigger picture

- We view this as a type of "trust anchor" for the Internet
 - something that is hard to subvert for gain
 - a primitive that can be leveraged for many purposes
- We hope it will encourage other such "anchors"
 - e.g. bulletin boards, "after time x" timestamps...
 - my favorite one: a service that certifies that (0,0) is not among a set of bit commitments.



Summary

- We are enabling "verifiably random" sampling
- The Beacon can simplify existing digital interactions and enable new ones
- We hope people will find innovative ways of using it
- We are working to develop the best randomness source in the world
- Project page at http://www.nist.gov/itl/csd/ct/nist_beacon.cfm

THE NIST RANDOMNESS BEACON