Learn.

RSACONFERENCE2014

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO
Capitalizing on
Collective Intelliqence

Rethinking Verifiably Encrypted
Signatures: A Gap in Functionality and

Potential Solutions

SESSION ID: -cryp-r02

Sarah Meiklejohn

Graduate researcher
UC San Diego

Models for cryptographic primitives

[' #RSAC
RSACONFERENCE2014

Models for cryptographic primitives

+ |n cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

. Eamast? W #RSAC

RSACONFERENCE2014

Models for cryptographic primitives

+ |n cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

+ But it's also incredibly important to accurately model functionality!

Eat? W #RSAC

RSACONFERENCE2014

Models for cryptographic primitives

+ |n cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

+ But it's also incredibly important to accurately model functionality!

+ We look at definitions for verifiably encrypted signatures (VES)

~ W #RsAC

RSACONFERENCE2014

Models for cryptographic primitives

+ |n cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

+ But it's also incredibly important to accurately model functionality!
+ We look at definitions for verifiably encrypted signatures (VES)

¢ First show a generic construction based solely on signatures

/4 1
. — W #RSAC

RSACONFERENCE2014

Models for cryptographic primitives

+ |n cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

+ But it's also incredibly important to accurately model functionality!
+ We look at definitions for verifiably encrypted signatures (VES)

¢ First show a generic construction based solely on signatures

¢ Then propose new definition(s)

&

RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

. Eamast? W #RSAC

RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

)

-~

\ f‘)‘

: = - W#RSAC
RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don't trust each other

: = - W#RSAC
RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

)

-~

\ f‘)‘

: = - W#RSAC
RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

)

-~

: = - W#RSAC
RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

&
‘ K 0’4

| T—— W #RsAC

RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

(*_,_ -

*
2

: = - W#RSAC
RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

(; -

"N
|\"0 .

| T—— W #RsAC

RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

&
. X "}’4

: = - W#RSAC
RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

¢
N\
®: ’4-

P W #RSAC
RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

L
A\
. \ ",’4

P W /RSAC
RSACONFERENCE2014

An application: fair contract signing [ASW88]

+ Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

¢
2
9.

. Eamast? W #RSAC

RSACONFERENCE2014

RSACONFERENCE2074

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

Definitions for VES:

¢ Unforgeability
¢ Opacity
¢ Extractability

Verifiably encrypted signatures [BGLSO03]

[' #RSAC
RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢ AVES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

R ” #RSAC

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢ AVES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

-

X ‘)’

"N

. Eamast? W #RSAC

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢ AVES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

J
| ¢

(Pka,ska) —KG(14) == (hk,ske) —KG(1Y)

(apk,ask)—AKG(1X)

/i -
Q et W HRSAC
RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢ AVES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

"\ w = VESign(ska,apk,m) | <
oY, = 2

(Pka,ska) —KG(14) == (hks,ske)—KG(1H)

(apk,ask)—AKG(1¥)

&«

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

+ AVES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

A
.\" >
(pka,ska) —KG(1K)

&

w = VESign(ska,apk,m)| -
>

(apk,ask)—AKG(1X)

A~ VEVerify(pka,apk,w,m)

== (hk,ske) —KG(1Y)

s W #RSAC

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

+ AVES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

", [@ = VESign(skaapkm)|) EVerity(pa.apk.w,m)
i 3 o~) \

(Pka,ska) —KG(1 @) ' ign(ske,m) aa (pka,sks) —KG(14)

(apk,ask)—AKG(1¥)

&

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢ AVES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

Verify(pks,o.m) <&

@'\[_‘_‘EVerify(pkA,apk,w,m)

- |w = VESign(ska,apk,m) | -
59 | >

(Pka,ska) —KG(1¥) ' ign(ske,m) e (pka,sks) —KG(14)

(apk,ask)—AKG(1X)

/i <
e W RSAC

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

+ AVES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

Verify(pks,o,m) "\ ® = VESign(ska,apk,m) @\(EVerify(pkA,apk,w,m)

.\" >

= >T 1"
=g = Sign(sks,w| a=

(pka,ska) —KG(1¥) / (pks,ske) —KG(1%)

(apk,ask)—AKG(1X)

/o «
' W msac

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢ AVES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

Verify(pks,o,m) "\ ® = VESign(ska,apk,m) @\(_EVerify(pkA,apk,w,m)

.\'. o

= >
o==g| = Sign(skag,r ols

(pka,ska) —KG(1¥) / (pks,ske) —KG(1%)

(apk,ask) —AKG(1%)
o+ Resolve(ask,pka,w,m)

@ e W RSAC

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢ AVES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

Verify(pks,o.m) £& =\ VEVerify(pka,apk,w,m)

w = VES|gn(skA apk m) | &g

.\'. o |

—B Slgn(skB f

(Pka,ska) —KG(14) == (hks,ske) —KG(14)
/

(apk,ask) —AKG(1%)
o+ Resolve(ask,pka,w,m)

@ e W RSAC

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

[' #RSAC
RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢+ Asecure VES satisfies three properties:

. v #RSAC
RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢+ Asecure VES satisfies three properties:

¢+ Unforgeability: An adversary can't create VES

iw = VESign(ska,apk,m) %’
G

. Eamast? W #RSAC

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢+ Asecure VES satisfies three properties:

¢+ Unforgeability: An adversary can't create VES
w = VESign(ska,apk, m) P‘ 2

+ Opacity: An adQ/ersar can’t create a S|gnature glven just VES

7\'.'0;’ w >0 = é = Sign(ska,m)

Eat? W #RSAC

RSACONFERENCE2014

Verifiably encrypted signatures [BGLSO03]

¢+ Asecure VES satisfies three properties:

¢ Unforgeability: An adversary can’t create VES

W=

VESign(ska,apk, m) @

+ Opacity: An ad':/ersar can’t create a S|gnature glven just VES

\-v%

w

>0 = ; = Sign(ska,m)

+ Extractability: An adversar can’t create valid VES for which

arbitration fails
w

&

»»—‘

SV

RSACONFERENCE2014

RSACONFERENCE2074

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

mwr A signature-based VES

Constructing VES with just signatures

[' #RSAC
RSACONFERENCE2014

Constructing VES with just signatures

+ Assume we have a signature (KG’,Sign’,Verify') with message space
M’ and a transformation T from (M,APK,0/1,Q) to M’

. Eamast? W #RSAC

RSACONFERENCE2014

Constructing VES with just signatures

+ Assume we have a signature (KG’,Sign’,Verify') with message space
M’ and a transformation T from (M,APK,0/1,Q) to M’

+ Sign, VESIign, and Resolve all use Sign’, just sign different messages

RSACONFERENCE2014

Constructing VES with just signatures

+ Assume we have a signature (KG’,Sign’,Verify') with message space
M’ and a transformation T from (M,APK,0/1,Q) to M’

¢ Sign, VESIign, and Resolve all use Sign’, just sign different messages

Sign VESign Resolve

RSACONFERENCE2014

Constructing VES with just signatures

+ Assume we have a signature (KG’,Sign’,Verify') with message space
M’ and a transformation T from (M,APK,0/1,Q) to M’

¢ Sign, VESIign, and Resolve all use Sign’, just sign different messages

Sign VESign Resolve

RSACONFERENCE2014

Constructing VES with just signatures

+ Assume we have a signature (KG’,Sign’,Verify') with message space
M’ and a transformation T from (M,APK,0/1,Q) to M’

¢ Sign, VESIign, and Resolve all use Sign’, just sign different messages

Sign VESign Resolve

T(m,L,1,1) T(m,apk,0,1)

RSACONFERENCE2014

Constructing VES with just signatures

+ Assume we have a signature (KG’,Sign’,Verify') with message space
M’ and a transformation T from (M,APK,0/1,Q) to M’

¢ Sign, VESIign, and Resolve all use Sign’, just sign different messages

Sign VESIign Resolve

W~

—

PNV
YDV

T(m,L,L,1) T(m,apk,0,L) T(m,apk,1,w)

RSACONFERENCE2014

Constructing VES with just signatures

+ Assume we have a signature (KG’,Sign’,Verify') with message space
M’ and a transformation T from (M,APK,0/1,Q) to M’

¢ Sign, VESIign, and Resolve all use Sign’, just sign different messages

Sign VESIign Resolve

W~

—

PNV
YDV

T(m,L,L,1) T(m,apk,0,L) T(m,apk,1,w)

¢+ There are two signatures, and Verify checks for both

RSACONFERENCE2014

Security of signature-based construction

[' #RSAC
RSACONFERENCE2014

Security of signature-based construction

¢+ Unforgeability: can’t create VES

. v #RSAC
RSACONFERENCE2014

Security of signature-based construction

¢+ Unforgeability: can’t create VES

Emsa® W #RSAC

RSACONFERENCE2014

Security of signature-based construction

¢+ Unforgeability: can’t create VES

¢+ Opacity: can’t create signature given VES

BNV

T(m,apk,0,1)

> »
Q P W /RSAC

RSACONFERENCE2014

Security of signature-based construction

¢+ Unforgeability: can’t create VES

¢+ Opacity: can’t create signature given VES

P W #RSAC
RSACONFERENCE2014

Security of signature-based construction

¢+ Unforgeability: can’t create VES

¢+ Opacity: can’t create signature given VES

P W #RSAC
RSACONFERENCE2014

Security of signature-based construction

¢+ Unforgeability: can’t create VES

¢+ Opacity: can’t create signature given VES

e e W #RSAC
RSACONFERENCE2014

Security of signature-based construction

¢+ Unforgeability: can’t create VES
¢+ Opacity: can’t create signature given VES

4 Extractablllty can’t create VES for WhICh arbitration fails

RSACONFERENCE2014

Security of signature-based construction

¢+ Unforgeability: can’t create VES
¢+ Opacity: can’t create signature given VES

. Extractablllty can’t create VES for WhICh arbitration falls

T(m,apk,0, . map,,

RSACONFERENCE2014

Security of signature-based construction

¢+ Unforgeability: can’t create VES
¢+ Opacity: can’t create signature given VES

. Extractablllty can’t create VES for WhICh arbitration falls

T(m,apk,0, . map,,

RSACONFERENCE2014

Security of signature-based construction

¢+ Unforgeability: can’t create VES
¢+ Opacity: can’t create signature given VES

. Extractablllty can’t create VES for WhICh arbitration falls

T(m,apk,0, . map,,

y 1 5% ’
RSACONFERENCE2014

RSACONFERENCE2074

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

Resolution
independence

Resolution independence

¢+ The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

Eat? W #RSAC

RSACONFERENCE2014

Resolution independence

¢+ The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

9

Sign(ska,m)

Emt® W #RSAC

RSACONFERENCE2014

Resolution independence

¢+ The problem with the signature-based construction: Bob got a different
object from Alice thar}.from the arbitgy!

e

Sign(ska,m) | - | Resolve(ask,pka,w,m)

BRV
¥DV

© W #RsAC

RSACONFERENCE2014

Resolution independence

¢+ The problem with the signature-based construction: Bob got a different
object from Alice than jrom the arbit

&
e

Sign(ska,m) | - | Resolve(ask,pka,w,m)

BRV
YDV

¢+ Resolution independence: the distributions {Sign(sk,m)} and
{Resolve(ask,pk,w,m)} are identical

& ‘

RSACONFERENCE2014

Separating our construction from existing ones

[' #RSAC
RSACONFERENCE2014

Separating our construction from existing ones

¢ Signature construction is not resolution independent: o vs. (apk,w,w’)

| - v #RSAC
RSACONFERENCE2014

Separating our construction from existing ones

¢ Signature construction is not resolution independent: o vs. (apk,w,w’)

+ But it is satisfied by all existing VES constructions
¢ [BGLSO03] uses bilinear groups, BLS signatures, deterministic Resolve
¢+ [LOSSWO05] uses bilinear groups, Waters signatures, randomized Resolve

+ [R0O9] uses RSA groups and signatures, deterministic Resolve

% ‘

RSACONFERENCE2014

Resolution duplication

[' #RSAC
RSACONFERENCE2014

Resolution duplication

+ Verifiably encrypted signatures: encryption really must be happening

R W #RsAC

RSACONFERENCE2014

Resolution duplication

+ Verifiably encrypted signatures: encryption really must be happening

¢+ Can form w so that no one can extract o from w (by opacity), except

the arbiter can extract o’ from the same distribution (by resolution
independence)

e W RSAC

RSACONFERENCE2014

Resolution duplication

+ Verifiably encrypted signatures: encryption really must be happening

¢+ Can form w so that no one can extract o from w (by opacity), except

the arbiter can extract o’ from the same distribution (by resolution
independence)

+ Not quite encryption: o’ might be different from o

/i -
Q et W HRSAC
RSACONFERENCE2014

Resolution duplication

Verifiably encrypted signatures: encryption really must be happening

Can form w so that no one can extract o from w (by opacity), except

the arbiter can extract o’ from the same distribution (by resolution
independence)

Not quite encryption: o might be different from o

Resolution duplication requires: (1) resolution independence, (2)
deterministic Resolve, and (3) that there exists an algorithm Extract
such that Extract(sk,m,r) = Resolve(ask,pk,VESign(sk,apk,m;r),m)

@

RSACONFERENCE2014

Constructing PKE with resolution duplication

[' #RSAC
RSACONFERENCE2014

Constructing PKE with resolution duplication

+ With resolution duplication, Alice can form w := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from w (by opacity), except the
arbiter can pull out o, and Alice can duplicate o using Extract(sk,m,r)

‘o " ‘ V:E{‘!‘v #RSAC

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ With resolution duplication, Alice can form w := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from w (by opacity), except the
arbiter can pull out o, and Alice can duplicate o using Extract(sk,m,r)

~ W #RsAC

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ With resolution duplication, Alice can form w := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from w (by opacity), except the

aro, and Alice can duplicate o using Extract(sk,m,r)
¥ @
Yo

\"‘)%

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ With resolution duplication, Alice can form w := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from w (by opacity), except the

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ With resolution duplication, Alice can form w := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from w (by opacity), except the

o=Resolve(ask,pk,w,m)

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ With resolution duplication, Alice can form w := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from w (by opacity), except the

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ With resolution duplication, Alice can form w := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from w (by opacity), except the

o=Resolve(ask,pk,w,m)

This lets us “encrypt” signatures, but we want to encrypt arbitrary bits

Adapt Goldreich-Levin trick [GL89]; show that it is hard to predict
(compute) <o.r> =) o ri mod 2 given just w and r

RSACONFERENCE2014

Constructing PKE with resolution duplication

[' #RSAC
RSACONFERENCE2014

Constructing PKE with resolution duplication

+ EKeyGen(1k): Output (pk,sk)«—AKG(1¥) a

Emsa® W #RSAC
RSACONFERENCE2014

Constructing PKE with resolution duplication

+ EKeyGen(1k): Output (pk,sk)«—AKG(1¥) @

+ Enc(pk,m): Generate (spk,ssk)«—KG(1¥), w«VESign(ssk,pk,0;r),
o—Extract(ssk,0,r), and ro«—{0,1}°l. Output ¢ = (spk, w, rs, M®<0o,rs>)

s W #RSAC

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ EKeyGen(1k): Output (pk,sk)«AKG(1¥) &
+ Enc(pk,m): Generate (spk,ssk)«—KG(1¥), w«VESign(ssk,pk,0;r),

o—Extract(ssk.0,r), and ro«—{0,1}°l. Output ¢ = (spk, w, rs, M®<0o,rs>)
\é

9

/4 >
. — W #RSAC

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ EKeyGen(1k): Output (pk,sk)«—AKG(1¥) a
¢ Enc(pk,m): Generate (spk,ssk)«KG(1¥), w<—VESign(ssk,pk,0;r),

o—Extract(ssk.0,r), and ro«—{0,1}°l. Output ¢ = (spk, w, rs, M®<0o,rs>)

9 >| (spk, w, rs, M®<0,rs>)

% ‘

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ EKeyGen(1k): Output (pk,sk)«—AKG(1¥) a
¢ Enc(pk,m): Generate (spk,ssk)«KG(1¥), w<—VESign(ssk,pk,0;r),

o—Extract(ssk.0,r), and ro«—{0,1}°l. Output ¢ = (spk, w, rs, M®<0o,rs>)

N9 >| (spk, w, rs, M®<0,rs>)
+ Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute o = Resolve(sk,c1,c2,0)
and output cs@<o,c3>

%
RSACONFERENCE2014

Constructing PKE with resolution duplication

+ EKeyGen(1k): Output (pk,sk)«—AKG(1¥) a
¢ Enc(pk,m): Generate (spk,ssk)«KG(1¥), w<—VESign(ssk,pk,0;r),

o—Extract(ssk.0,r), and ro«—{0,1}°l. Output ¢ = (spk, w, rs, M®<0o,rs>)

N9 >| (spk, w, rs, M®<0,rs>)
+ Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute o = Resolve(sk,c1,c2,0)
and output cs@<o,c3>

o=Resolve(ask,pk,w,0)

_ . .. ‘.'

RSACONFERENCE2014

Constructing PKE with resolution duplication

&
¢+ EKeyGen(1k): Output (pk,sk)«—AKG(1¥) &2
¢ Enc(pk,m): Generate (spk,ssk)«—KG(1k), w—VESign(ssk,pk,0:r),

o—Extract(ssk.0,r), and ro«—{0,1}°l. Output ¢ = (spk, w, rs, M®<0o,rs>)

>| (spk, w, rs, M®<0,rs>)

+ Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute o = Resolve(sk,c1,c2,0)

and output cs@<o,c3>

o=Resolve(ask,pk,w,0)

C4®<0,C3>=M®<0,l:>®<0,C3>=M

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ EKeyGen(1k): Output (pk,sk)«—AKG(1¥) a
¢ Enc(pk,m): Generate (spk,ssk)«KG(1¥), w<—VESign(ssk,pk,0;r),

o—Extract(ssk.0,r), and ro«—{0,1}°l. Output ¢ = (spk, w, rs, M®<0o,rs>)
_ @ The same by

>| (spk, w, rs, M®<0,ls>) resolution duplication!

+ Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute o = Resolve(sk/c1,c2,))

and output cs@<o,c3>

o=Resolve(ask,pk,w,0)

\4
C4®<0,C3>=M®<0,l:>®<0,C3>=M

RSACONFERENCE2014

Constructing PKE with resolution duplication

[' #RSAC
RSACONFERENCE2014

Constructing PKE with resolution duplication

+ Interestingly, resolution duplication contributed to the correctness of
the encryption scheme rather than its security

C4®<0,C3>=M®<0,l:>®<0,C3>=M

Eat? W #RSAC

RSACONFERENCE2014

Constructing PKE with resolution duplication

+ Interestingly, resolution duplication contributed to the correctness of
the encryption scheme rather than its security

C4®<0,C3>=M®<0,l:>®<0,C3>=M

¢+ IND-CPA security follows fairly directly from opacity

/ <
e W RSAC

RSACONFERENCE2014

RSACONFERENCE2074

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

Conclusions and open problems

[' #RSAC
RSACONFERENCE2014

Conclusions and open problems

+ Existing VES definitions might not capture desired functionality

: = - W#RSAC
RSACONFERENCE2014

Conclusions and open problems

+ Existing VES definitions might not capture desired functionality

¢ Provided a solely signature-based VES

< e W #RSAC
RSACONFERENCE2014

Conclusions and open problems

+ Existing VES definitions might not capture desired functionality
¢ Provided a solely signature-based VES

¢+ Defined resolution independence to “separate” this construction from
existing ones

~ W #RsAC

RSACONFERENCE2014

Conclusions and open problems

¢+ Existing VES definitions might not capture desired functionality
Provided a solely signature-based VES

Defined resolution independence to “separate” this construction from
existing ones

Demonstrated how stronger resolution duplication could be used to
construct public-key encryption

@ '
RSACONFERENCE2014

Conclusions and open problems

¢+ Existing VES definitions might not capture desired functionality
Provided a solely signature-based VES

Defined resolution independence to “separate” this construction from
existing ones

Demonstrated how stronger resolution duplication could be used to
construct public-key encryption

¢+ Are VES just misnamed? Or would applications fail if encryption part
were missing?

RSACONFERENCE2014

RSACONFERENCE2014 Learn.

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

Capitalizing on
Collective Intelligence

P2OFE: Privacy-Preserving Optimistic Fair
Exchange of Digital Sighatures

SESSION ID: Protocols - CRYP-R02

Qiong Huang?!, Duncan S. Wong? and Willy Susilo3

1 South China Agricultural University, Guangzhou, China
2 City University of Hong Kong, HK SAR, China
3 University of Wollong, Wollongong, Australia

Fair Exchange

+ Gradual Release of Secret
+ Bit by bit
+ Require multiple rounds

+ Optimistic Fair Exchange
+ Semi-trusted (offline) party

+ Involved only when there’s a dispute

L
L
SOUTH CHINA AGRICULTURAL UNIVERSITY

RSACONFERENCE2014

Optimistic Fair Exchange

[’8°

m Iﬁ m ril Full Signature ¢

RSACONFERENCE2014

Optimistic Fair Exchange

+ PKC 2007 + Ambiguous OFE
+ Multi-user setting + Alice’s partial signature reveals her
+ CT-RSA 2008 a

+ Chosen-key model + Everyone can vgrlfy that o was
generated by Alice.

+ Asiacrypt 2008 + Bob can show to anybody that Alice

+ Ambiguous OFE is the signer of 0.
+ Pairing 2010, PKC 2012 + Solution Idea:
+ DCS — AOFE + Bob is able to simulate Alice’s partial
signature P

= =
. e

; 2 L e W #RSAC
Fazte ACON FERENCE2014

Perfect Ambiguous OFE

+ (AOFE:
+ An outsider knows who are involved in an exchange.

+ PAOFE:

+ No one including the arbitrator can tell from the partial signature who are

involved in an exchange.

Y. Wang, M. Au, W. Susilo. Perfect Ambiguous Optimistic Fair Exchange. ICICS 2012: 142-153

L
L
SOUTH CHINA AGRICULTURAL UNIVERSITY

W #rsac
RSACONFERENCE2014

The Problem We consider

+ In (P)(A)OFE, the arbitrator is able to learn the full signature of Alice.

+ Itis not desired in some sensitive applications, and people do not
want to put high trust on the arbitrator.

L
L
SOUTH CHINA AGRICULTURAL UNIVERSITY

RSACONFERENCE2014

Our Work

+ Introduce the notion of “Privacy-Preserving OFE” (P?OFE).

+ Present the security models.

+ Propose an efficient construction of P?OFE.

Even after the resolution, the arbitrator cannot convince others who the signer is.

) FadLkE RSACONFERENCE2014

Our ldea

PKa, SK, PKg, SKg
M,, O, AR\
" M
I\/IB’ CB
e : oY,
[1: o, Is either from Alice or Ca :
from Bob. Q%

0,<ResA(ASK, 0,)

APK, ASK W srsac

RSACONFERENCE2014

L L
7N
1iety;
N
7/ soum cnmaatmicimaL sty

Definition of P20OFE

+ PMGen: system parameter generation =2 (PM)

+ Setup'': arbitrator key generation 2 (APK, ASK)

¢ SetupYser: user key generation 2 (Pk, Sk)

+ Psig / Pver: partial signature (o) generation / verification
+ Sig / Ver: full signature () generation / verification

+ Res”: resolution by the arbitrator (step 1) > 6

+ ResV: resolution by the verifier (step 2) 2 (

ﬁ il

L yk’,ﬁj S e W #RSAC
Fazte ﬂCON FERENCE2014

Definition of P20OFE

+ Resolution Ambiguity = Without ASK, anyone cannot tell whether a
partial signature was generated by A or

= simulated by B.
+ Perfect Ambiguity Without SK of the verifier, anyone including

the arbitrator cannot tell who is the signer

. : ~of a given partial signature.
+ Security against Verifiers

+ Signer Ambiguity
+ Security against Signer

+ Security against the arbitrator

’——’

' #RSAC

ire .
Fusisxe ACON FERENCE2014

Our Construction

+ Full signature C is BB short signature.

+ Partial signature o is a "twisted’ double encryption of C.
+ Building blocks used:

+ Boneh-Boyen (fully secure) Signature
+ Kiltz’ Tag-based Public Key Encryption

+ Strong One-Time Signature

8 -4
L
SOUTH CHINA AGRICULTURAL UNIVERSITY

RSACONFERENCE2014

Signature Generation

+ Full signature: ¢ € (g/®i+M+y"))
+ Partial signature: o < (c, e, r, otvk,), where

C=(Cq, Cy Cys Cs) and € = (€4, €5, €3, €y,)

= FY, =Gl =g/t

e1 = F*, es =G,
cs = (9°K;)*. cs = (¢°L;)" . es = (9°K)*, es = (¢9°L)".

§ = OTS.Sig(otsk, M ||Pk; |Pk;||c|le|r). i

< W #rsac
) FadLkE , RSACONFERENCE2014

Jo = H(el, c2, €1, e2. €3, otvk),

Signhature Verification

+ Full signature: e(g, X.gMY/") = e(g, g)

+ Partial signature: eleg. F) = é(er, g" K).
é(es.G) = é(ea. g" L),
é(cs, Fy) = é(cr, 9°K)).

€(cs.G) = €(ca. g" L),
OTS.Sig(M||Pk; |Pk||c|e||r, otvk.d) = 1.
e Pf{{[s, t.s'.t'): = F;’I Aecy = G’? nep = FS hey =G

A(éles- g7 1 XigMY) = é(g.9) -
.U,r e - . —S—E—S'I—y X _-Ur}/r - .]
élea-g Xig Y) =¢€(g,9)) t- == e
I RSACONFERENCE2014

AN % d f %
N
et (Aﬁ /g k -
N

“= soumncHmaacmicuLTuRAL UNIVERSITY

Resolution

¢ Arbitrator: c; € e;e; % e, ®, return 6 :=(c,, C,, ¢35, Cy, Cq, I, OtVK)
¢ Verifier: S € c;¢, 91 ¢, %2, return Z:= (S, r)

Arbitrator
1. My, oy

M

2.0,

0, < Res®(Ask,M,,64) {4 « ResV(Skg, My, 0,)
3.¢4 l

) FadLkE RSACONFERENCE2014

Security

¢ Our P?OFE protocol is secure if
1. DLIN assumption holds;
2. SDH assumption holds;

3. His collision resistant;

2. OTS is one-time strongly unforgeable; and

s. T is sound and witness indistinguishable.

RSACONFERENCE2014

RSACONFERENCE2014

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

Q&A

Thanks!

2-Pass Key Exchange Protocols
From CPA-Secure KEM

Kaoru Kurosawa
Ibaraki University, Japan
Jun Furukawa
NEC Corporation, Japan

In a 1 round KE protocol,

Each party sends one message
simultaneously.

Alice Bob

(Session key)
K:gxy

In a 2-pass KE protocol,

Each party sends one message
sequentially.

Alice Bob

X=(N,e)

Y=r¢ mod N

(Session key)
K=H(r)

Most of

 The provably secure KE protocols
are based on the DDH assumption
or the CDH assumption

On the other hand,

Boyd etal. |1-round | X by using
protocol CCA-KEM

A CCA-secure KEM is more generic
than specific number theoretic assumptions.

KEM

e Consists of (Gen, Enc, Dec).
e |n particular,

Enc(pk) outputs a ciphertext c and
the key K which is used for

a symmetric-key encryption scheme.

A KEM is CPA-secure if

 No adversary can distinguish between
(c, K) and (c, random)

A KEM is CCA-secure if

 No adversary can distinguish between
(c, K) and (c, random)
even if
the adversary can query c’#c

to the decryption oracle

For example,

e Let
pk=g* and sk=x
c=g'
K=(pk)"

e This KEM is CPA-secure
under the DDH assumption

Cramer-Shoup KEM

e |s CCA-secure
under the DDH assumption

Boyd et al. also showed

Boyd etal. |1-round | X CCA-KEM
1 1 O CCA-KEM
DDH

This construction is not generic
because it relies on the DDH assumption

Fujioka et al. showed

Boyd etal. |1-round | X CCA-KEM
" " O CCA-KEM

-+ DDH
Fujioka et al. |2-pass | O CCA-KEM

We show

Fujioka et al. |2-pass | O CCA-KEM

This paper |2-pass |O CPA-KEM

Our assumption is weaker
than Fujioka et al.

We show

In fact

3 generic constructions

by using a CPA-secure KEM

Proposed security
15t one is CK-secure
2"d one is eCK-secure

3rd one is

Both CK and eCK-secure

In Canetti-Krawczyk (CK) Model

A long-term key @
sk, > @ i

First M sends “initiate” to Alice

Adversary
sk, > @ M

initiate

Hi,
‘'m Bob.
_et’s initiate a session.

Then

sk, > @ M

initiate
Alice chooses r, randomly
and computes (X, state)
(Isk,, rp)—> Alice - (X, state) X

Alice then erases r,
and keeps only state

Next M sends “Y” to Alice

sk, > @ M

Keep state

Then

sk, > @ M

Keep state

Alice computes
the session —key K
(Y, state, Isk,,)> Alice - K

She then erases state and keeps K

M can issue

e A session-key query
e A state-reveal query
e and a corrupt query
to Alice

For a “session-key” query

sk, > @ M

“session-key”

Alice returns the session-key K

For a “state-reveal” query

sk, > @ M

Keep state

“state-reveal”

Alice returns the state

For a “corrupt” query

Alice returns
* the long-term key Isk,,
e the state

e and all the session keys stored at that time.

An instance between Alice and M
is called a session

Adversary

An instance between Bob and M
is also a session

Adversary
M Bob

They are matching sessions if

Adversary
M Bob

Y=Y’ Y’

A session Is

locally exposed if

Adversary
M

M issues a corrupt query

e

or
a state-reveal query

or
a session-key query

e

A session is exposed (1)

if it is locally exposed

Adversary

ocally
exposed

A session is exposed (2)

or, it has a matching session
that is locally exposed

Adversary
M Bob

Y=Y’ Y’

ocally
exposed

/

A session is exposed (3)

or, it doesn’t have a matching session
and Bob is corrupted

Adversary sk

Corrupted

A session which is not exposed
is called unexposed

Adversary

Unexposed

At some point,

M chooses an unexposed session
as a test session

Adversary

Adversary

Then
we choose a random bit b,
and let
K*=K if b=0
*=random if b=1

“Test session”

M receives K*

M finally outputs a bit b’

 The advantage of M is defined as
Adv(M) =2 X |Pr(b'=b)-1/2]

A KE protocol is CK-secure

e |f Adv(M) is negligible
for any PPT adversary M

Perfect Forward Secrecy (PFS)

is defined as follows.

Suppose that the session key K expired,
and it was erased.

After that,

the adversary can obtain Isk, and Iskg.
PFS requires that

K should look random even in this case.

If the test-session has a matching session,
then M can obtain both Isk, and Iskg
after the session key K is erased.

Isk ,

sk
Adversary
Alice M \Bob

X X'=X

Y=Y’ Y’

In Weak PFS (wWPFS),

If the test-session doesn’t have a matching session,
then M cannot obtain Isk;

Isk ,
Adversary
Alice M Bob

X

A KE protocol is CK-secure with wPFS

e |f Adv(M) is negligible
for any such PPT adversary M

Our construction uses

a signature scheme

CPAKEM | One-way /

function

and a PRF

We can construct

a signature scheme

From /

a one-way
function

and a PRF

The key generation algorithm Gen
of a CPA-secure KEM

e Can be considered as a one-way function
from a random string to a public-key pk.

Gen(random) = (pk, sk)

Therefore

from One-way
CPA-KEM function
Hence

we can construct
a signature scheme

g

and a PRF

our minimum assumption is that
there exists a CPA-secure KEM

Let

e KEM=(Gen, Enc, Dec)

be a CPA-secure KEM
e SIG=(G, Sign, Verify)

be a signature scheme

In our Naive approach

Generates (pk, sk) of KEM

k, Sign,(pk
Keeps sk as a state Pk, Signa(Pk

¢, Signg(pk,c) (c, K) := Enc(pk)

K := Dec(sk,c)

K is the session key

However, there exists an attack

Adversary
@ :

(pk, sk) of KEM | X=(pk, Sign,(pk))

state-reveal

sk

After receiving X=(pk, Sign,(pk)),
M issues a state-reveal query.
Then Alice returns sk

Then M sends X to Bob

Adversary
(= :

(pk, sk) of KEM | X=(pk, Sign,(pk))

state-reveal

sk

X=(pk, Sign,(pk))
Bob returns
c, Sign,(pk,c]

Now M can compute K := Dec(sk,c)
by using sk

We overcome this problem

e By using a twisted PRF trick.
e This trick was introduced by Fujioka et al.
* However,
we cannot prove that
their construction has the desired property

So

 We formulate tPRF formally
e and then give a new construction

which satisfies our definition.

Our definition of tPRF

We say that F(k,r) is a tPRF if

e If kis akey,

e F(k,r) works as a PRF

e Evenifris used as a key,
F(k,r) also works as a PRF

Our construction of tPRF

* Let PRF be a psudorandom function
e Let
F((k1,k2), (r1,r2))=PRF,,(r1)+PRF(k2)
e Then we can prove that
this F is a tPRF.

The construction of Fujioka et al.

F(k, (r1,r2))=PRF, (r1)+PRF (k)
 We cannot prove that
this F is a tPRF.

Remember that
in the naive approach,

Alice

Alice generates (pk,sk)
of KEM state-reveal query

For a state-reveal query i
Alice must return sk \

In the proposed protocoal,

Alice has a long-term key
k

RA
r —| tPRF Gen [—— (pk,sk)

She first chooses r randomly
and runs tPRF to generate R,

She next runs Gen of KEM
to obtain (pk,sk)

Then Alice erases R, and sk

A long-term key
k

RF

Ra

She keeps only r as a state

Gen

—— (pk,sk)

Now M cannot obtain sk

A long-term key
k

RF

Ra

Because a session-state reveal query

reveals only r,

but not the long-term key k

Gen

—— (pk,sk)

Our 2-PASS-CK protocol

Alince has a long-term key

S

She chooses r randomly pk, Sign,(pk)
and computes
RA:=tPRF(k,r)
(pk, sk) := Gen(R,)

Our 2-PASS-CK protocol

NS

r & random pk’ SignA(pk)
R,=tPRF(k,r)

(pk, sk) < Gen(R,)
Then

Alice erases (R,, sk)

Our 2-PASS-CK protocol

NS

r & random
R,=tPRF(k,r)
(pk, sk) < Gen(R,)
Then erase (R,, sk)

pk, Sign,(pk)

c, Signg(pk,c)

(c, K) := Enc(pk)

Our 2-PASS-CK protocol

NS

r & random
R,=tPRF(k,r)
(pk, sk) < Gen(R,)
Then erase (R,, sk)

Alice re-computes
RA:=tPRF(k,r)
(pk, sk) := Gen(R,)
Finally she obtains
K := Dec(sk,c)

pk, Sign,(pk)

c, Signg(pk,c)

(c, K) €& Enc(pk)

Theorem 2

2-PASS-CK protocol is CK-secure with wPFS
if KEM is CPA-secure

the signature scheme is unforgeable
and tPRF is a tPRF

Suppose that
the test session has a matching session

Adversary
M Bob

Alice

In the CK model,
nothing is revealed to M

Long-term keys

sk

nor

Random coins

sk,

Bob

In the CK model with wPFS,

sk , sk

4

M can obtain Bob

Alice

In the Extended CK (eCK) model

sk , sk

4

M can obtain Bob

Alice

Alice

In the eCK model (2)

sk ,

or

sk,

Bob

Alice

In the eCK model (3)

sk ,

or

VI

)

sk,

Bob

In the eCK model (4)
or

sk, ~ M sk

U

Alice Bob

In our 2-PASS-CK protocol

R, is generated by using a tPRF.
But Rg is not.

Rg = random coins Rg is by tPRF

sk is not erased

sk is erased CK-secure with wPFS,
But not eCK-secure

This protocol is

In our 24 scheme,

Both R, and R are generated by using a tPRF.

But sk is not erased.

Rg = random coins

Rq is by tPRF

sk is not erased

eCK-secure
But not CK-secure

sk is erased CK-secure with wPFS,
But not eCK-secure

A

This protocol is

In our 3@ scheme

Both R, and R are generated by using a tPRF
and sk is erased.

Rg is not tPRF Rg is tPRF
sk is not erased eCK-secure,
but not CK-secure
sk is erased CK-secure with wPFS, CK-secure with wPFS
but not eCK-secure and eCK-secure

This protocol is

Our results

e Make it clear that
e there exists a clear separation
 between CK-security and eCK-security

Summary (1)

Fujioka et al. 2-pass | O CCA-KEM

We constructed |2-pass |O CPA-KEM

Our assumption is weaker
than Fujioka et al.

Summary (2)

security

1t scheme is

CK-secure

2"d scheme is

eCK-secure

3rd scheme is

Both CK and eCK-secure

Thank you !

	S.Meiklejohn
	Q.Huang
	K.Kurosawa

