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Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling 
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

! First show a generic construction based solely on signatures
! Then propose new definition(s)
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An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document, 
but they don’t trust each other
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Definitions for VES: 
!  Unforgeability 
!  Opacity 
!  Extractability
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Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

! Opacity: An adversary can’t create a signature given just VES

! Extractability: An adversary can’t create valid VES for which 
arbitration fails

!6

ω = VESign(skA,apk,m)

ω = Sign(skA,m)σ = A

ω
⊥

skA
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Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space 
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

! There are two signatures, and Verify checks for both

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥) T(m,apk,1,ω)

Sign VESign Resolve

DNV
YDV
DNV
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Resolution independence

! The problem with the signature-based construction: Bob got a different 
object from Alice than from the arbiter!
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Sign(skA,m) Resolve(ask,pkA,ω,m)
DNV
YDV

! Resolution independence: the distributions {Sign(sk,m)} and 
{Resolve(ask,pk,ω,m)} are identical
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Separating our construction from existing ones

! Signature construction is not resolution independent: σ vs. (apk,ω,ω′)

! But it is satisfied by all existing VES constructions 
! [BGLS03] uses bilinear groups, BLS signatures, deterministic Resolve
! [LOSSW05] uses bilinear groups, Waters signatures, randomized Resolve
! [R09] uses RSA groups and signatures, deterministic Resolve
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Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except 

the arbiter can extract σ′ from the same distribution (by resolution 
independence)

! Not quite encryption: σ′ might be different from σ

!13

! Resolution duplication requires: (1) resolution independence, (2) 
deterministic Resolve, and (3) that there exists an algorithm Extract 
such that Extract(sk,m,r) = Resolve(ask,pk,VESign(sk,apk,m;r),m)
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Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so 
that no one can pull out Sign(sk,m) from ω (by opacity), except the 
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

! This lets us “encrypt” signatures, but we want to encrypt arbitrary bits
! Adapt Goldreich-Levin trick [GL89]; show that it is hard to predict 

(compute) <σ,r> = ∑ σi⋅ri mod 2 given just ω and r

!14
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(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

The same by  
resolution duplication!

σ=Ext(ssk,0,r)
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Constructing PKE with resolution duplication

! Interestingly, resolution duplication contributed to the correctness of 
the encryption scheme rather than its security

! IND-CPA security follows fairly directly from opacity

!16
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Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from 

existing ones
! Demonstrated how stronger resolution duplication could be used to 

construct public-key encryption

! Are VES just misnamed?  Or would applications fail if encryption part 
were missing?

!18



#RSAC 

SESSION ID: 

P2OFE: Privacy-Preserving Optimistic Fair 
Exchange of Digital Signatures 

Protocols - CRYP-R02 

Qiong Huang1, Duncan S. Wong2 and Willy Susilo3 

1 South China Agricultural University, Guangzhou, China 
2 City University of Hong Kong, HK SAR, China 
3 University of Wollong, Wollongong, Australia 

 



#RSAC 

Fair Exchange 

 Gradual Release of Secret 
 Bit by bit 

 Require multiple rounds 

 Optimistic Fair Exchange 
 Semi-trusted (offline) party  

 Involved only when there’s a dispute 
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Optimistic Fair Exchange 

Valid? Valid? 

Asokan-Shoup-Waidner CCS ’97 

Partial Signature σ 

Full Signature ζ 
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Optimistic Fair Exchange 

 PKC 2007 
 Multi-user setting 

 CT-RSA 2008 
 Chosen-key model 

 Asiacrypt 2008 
 Ambiguous OFE 

 Pairing 2010, PKC 2012 
 DCS → AOFE 

 Ambiguous OFE 
 Alice’s partial signature reveals her 

will! 

 Everyone can verify that σ was 
generated by Alice. 

 Bob can show to anybody that Alice 
is the signer of σ. 

 Solution Idea: 
 Bob is able to simulate Alice’s partial 

signature 
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Perfect Ambiguous OFE 

 (A)OFE: 

 An outsider knows who are involved in an exchange. 

 PAOFE: 

 No one including the arbitrator can tell from the partial signature who are 

involved in an exchange. 

 

Y. Wang, M. Au, W. Susilo. Perfect Ambiguous Optimistic Fair Exchange. ICICS 2012: 142-153 
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The Problem We consider 

 In (P)(A)OFE, the arbitrator is able to learn the full signature of Alice.  

 

 It is not desired in some sensitive applications, and people do not 
want to put high trust on the arbitrator. 
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Our Work 

 Introduce the notion of “Privacy-Preserving OFE” (P2OFE). 

 Present the security models. 

 Propose an efficient construction of P2OFE. 

 

 

 

Even after the resolution, the arbitrator cannot convince others who the signer is. 
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Our Idea 
PKA, SKA PKB, SKB 

APK, ASK 

MA, σA 

Π 

MB, ζB 

ζA 

θAResA(ASK, σA) 

ζAResV(SKB, θA) 

Π: σA is either from Alice or 
from Bob. 
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Definition of P2OFE 

 PMGen: system parameter generation  (PM) 

 SetupTTP: arbitrator key generation  (APK, ASK)  

 SetupUser: user key generation  (Pk, Sk) 

 Psig / Pver: partial signature (σ) generation / verification 

 Sig / Ver: full signature (ζ) generation / verification 

 ResA: resolution by the arbitrator (step 1)  θ 

 ResV: resolution by the verifier (step 2)  ζ 
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Definition of P2OFE 

 Resolution Ambiguity 

 Signer Ambiguity 

 Perfect Ambiguity 

 Security against Signers 

 Security against Verifiers 

 Security against the arbitrator 

Without ASK, anyone cannot tell whether a 
partial signature was generated by A or 
simulated by B. 
Without SK of the verifier, anyone including 
the arbitrator cannot tell who is the signer 
of a given partial signature. 
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Our Construction 

 Full signature ζ is BB short signature. 

 Partial signature σ is a `twisted’ double encryption of ζ. 

 Building blocks used: 
 Boneh-Boyen (fully secure) Signature 

 Kiltz’ Tag-based Public Key Encryption 

 Strong One-Time Signature 
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Signature Generation 

 Full signature: ζ  (g1/(xi + M + yi*r), r) 

 Partial signature: σ  (c, e, r, otvk, δ), where 

c = (c1, c2, c4, c5) and e = (e1, e2, e3, e4, e5) 
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Signature Verification 

 Full signature: e(ζ, Xi gM Yi
r) = e(g, g) 

 Partial signature: 
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Resolution 

 Arbitrator: c3  e3 e1
-ξ1 e2

-ξ2, return θ := (c1, c2, c3, c4, c5, r, otvk)  

 Verifier: S  c3 c1
-ξj1 c2

-ξj2, return ζ := (S, r) 
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Security 

 Our P2OFE protocol is secure if  

1. DLIN assumption holds; 

2. SDH assumption holds; 

3. H is collision resistant;  

4. OTS is one-time strongly unforgeable; and 

5. π is sound and witness indistinguishable. 

Signer Ambiguity: 1, 3, 4         

Perfect Ambiguity: 1, 3, 4        

Security against Signers: 2, 5 

Security against Arbitrator: 2 



Q&A 
 
Thanks! 



2-Pass Key Exchange Protocols 
From CPA-Secure KEM 

Kaoru Kurosawa  
Ibaraki University, Japan  

Jun Furukawa  
NEC Corporation, Japan 



In a 1 round KE protocol, 

Bob Alice 

X=gx Y=gy 

Each party sends one message  
simultaneously. 

(Session key) 
K=gxy 



In a 2-pass KE protocol, 

Bob Alice 

X=(N,e) 

Y=re mod N 

Each party sends one message  
sequentially. 

(Session key)  
K=H(r) 



Most of 

• The provably secure KE protocols  
    are based on the DDH assumption  
    or the CDH assumption 



On the other hand, 

round wPFS Assumption 
Boyd et al. 1-round 

protocol 
× by using 

CCA-KEM 

A CCA-secure KEM is more generic  
than specific number theoretic assumptions. 



KEM 

• Consists of (Gen, Enc, Dec). 
• In particular,  
  Enc(pk) outputs a ciphertext c and  
    the key K which is used for  
    a symmetric-key encryption scheme. 



A KEM is CPA-secure if 

• No adversary can distinguish between 
      (c, K) and (c, random)  
     



A KEM is CCA-secure if 

• No adversary can distinguish between 
         (c, K) and (c, random)  
    even if 
    the adversary can query c’≠c 
   to the decryption oracle  
   
     



For example, 

• Let 
       pk=gx and sk=x 
       c=gr 

       K=(pk)r 
 

• This KEM is CPA-secure  
    under the DDH assumption 



Cramer-Shoup KEM 

• is CCA-secure  
    under the DDH assumption 



round wPFS By using 
Boyd et al. 1-round × CCA-KEM 
〃 〃 

 
○ CCA-KEM 

          ＋DDH  

This construction is not generic  
because it relies on the DDH assumption 

Boyd et al. also showed 



Fujioka et al. showed 

round wPFS By using 
Boyd et al. 1-round × CCA-KEM 
〃 〃 

 
○ CCA-KEM 

          ＋DDH  
Fujioka et al. 2-pass ○ CCA-KEM 



We show 

round wPFS By using 
Fujioka et al. 2-pass ○ CCA-KEM 
This paper 2-pass ○ CPA-KEM 

Our assumption is weaker  
than Fujioka et al. 



In fact 

Proposed security 
1st one is CK-secure  
2nd one is  eCK-secure 
3rd one is Both CK and eCK-secure 

We show 3 generic constructions 
by using a CPA-secure KEM 



In Canetti-Krawczyk (CK) Model 

Adversary 
M Alice 

A long-term key 
             lskA   → 



First M sends “initiate” to Alice 

Adversary 
M Alice lskA → 

initiate 

Hi, 
I’m Bob. 
Let’s initiate a session. 



Then 
Adversary 

M Alice lskA → 

initiate 

Alice chooses rA  randomly 
and computes (X, state) 

(lskA, rA)→ Alice → (X, state) X 

Alice then erases rA  
and keeps only state 



Adversary 
M Alice lskA → 

Y 

X 

Keep state 

Next M sends “Y” to Alice 



Adversary 
M Alice lskA → 

Y 
Alice computes  
               the session –key K 
(Y, state , lskA,)→ Alice → K 

X 

Keep state 

She then erases state  and keeps K 

Then 



M can issue 

• A session-key query 
• A state-reveal query 
• and a corrupt query  
to Alice 



For a “session-key” query  
Adversary 

M Alice lskA → 

Y 

X 

“session-key” 

Alice returns the session-key K 



For a “state-reveal” query  
Adversary 

M Alice lskA → 

X 

Keep state 

“state-reveal” 

Alice returns the state 



For a “corrupt” query  

Alice returns  
• the long-term key lskA,  
• the state  
• and all the session keys stored at that time. 



Adversary 
M Alice 

Y 

X 

An instance between Alice and M 
is called a session 



Adversary 
M Bob 

Y’ 

X’ 

An instance between Bob and M 
is also a session 



Adversary 
M Bob 

Y’ 

X’=X 

They are matching sessions if 

Alice 

X 

Y=Y’ 



A session is locally exposed if 

Adversary 
M Alice 

or 
a state-reveal query  

M issues a corrupt query 

or 
a session-key query  



Adversary 
M Alice 

Y 

X 

A session is exposed (1) 
if it is locally exposed 

Locally 
exposed 



A session is exposed (2) 

Adversary 
M Bob 

Y’ 

X’=X 

Alice 

X 

Y=Y’ 

or, it has a matching session 
that is locally exposed 

Locally 
exposed 



A session is exposed (3) 

Adversary 
M Bob Alice 

X 

Y 

or, it doesn’t have a matching session 
and Bob is corrupted 

lskB 

Corrupted 



Adversary 
M Alice 

Y 

X 

A session which is not exposed  
is called unexposed 

Unexposed 



Adversary 
M Alice 

Y 

X 

At some point, 

Test 
session 

M chooses an unexposed session  
as a test session 



Adversary 
M Alice 

Y 

X 

“Test session” 
Then 
we choose a random bit b, 
and let 
  K*=K             if b=0 
  K*=random if b=1 M receives K* 



M finally outputs a bit b' 

• The advantage of M is defined as 
    Adv(M) = 2 × |Pr(b'=b)-1/2|                 



A KE protocol is CK-secure 

• If Adv(M) is negligible  
    for any PPT adversary M 



Perfect Forward Secrecy (PFS) 

• is defined as follows. 
• Suppose that the session key K expired, 
    and it was erased. 
• After that,  
    the adversary can obtain lskA and lskB. 
• PFS requires that  
    K should look random even in this case. 



Adversary 
M Bob 

Y’ 

X’=X 

Alice 

X 

Y=Y’ 

If the test-session has a matching session, 
then M can obtain both lskA and lskB 
after the session key K is erased. 

  lskA lskB 



In Weak PFS (wPFS), 
If the test-session doesn’t have a matching session, 
then M cannot obtain lskB 

Bob Adversary 
M Alice 

X 

Y 

lskA 



A KE protocol is CK-secure with wPFS 

• If Adv(M) is negligible  
    for any such PPT adversary M 
   



Our construction uses 

One-way 
function 

a signature scheme 

and a PRF 

CPA-KEM 



We can construct 

From 
a one-way 
function 

a signature scheme 

and a PRF 



The key generation algorithm Gen 
of a CPA-secure KEM 

• Can be considered as a one-way function  
   from a random string to a public-key pk. 
 
      Gen(random) → (pk, sk) 



Therefore 

One-way 
function 

we can construct 
a signature scheme 

and a PRF 

from 
CPA-KEM 

Hence  
our minimum assumption is that  
there exists a CPA-secure KEM 



Let 

 
• KEM=(Gen, Enc, Dec)  
                 be a CPA-secure KEM 
• SIG=(G, Sign, Verify)  
                 be a signature scheme 



In our Naïve approach 

Generates (pk, sk) of KEM 
Keeps sk as a state 

Alice 

pk, SignA(pk) 

c, SignB(pk,c) 

Bob 

(c, K) := Enc(pk) 

K := Dec(sk,c) 

K is the session key 



However, there exists an attack 

(pk, sk) of KEM 

Alice 

X=(pk, SignA(pk)) 

state-reveal 

Bob 
Adversary 

M 

sk 

After receiving X=(pk, SignA(pk)), 
M issues a state-reveal query. 
Then Alice returns sk 



Then M sends X to Bob 

(pk, sk) of KEM 

Alice 

X=(pk, SignA(pk)) 

state-reveal 

Bob 

Now M can compute K := Dec(sk,c) 
by using sk 

Adversary 
M 

X=(pk, SignA(pk)) 

Bob returns 
   c, SignB(pk,c) 

sk 

K 



We overcome this problem 

• By using a twisted PRF trick. 
• This trick was  introduced by Fujioka et al.  
• However,  
    we cannot prove that 
    their construction has the desired property 
     



So 

• We formulate tPRF formally 
• and then give a new construction 
    which satisfies our definition. 

 



Our definition of tPRF 

We say that F(k,r) is a tPRF if 
• If k is a key,  
•     F(k,r) works as a PRF 
• Even if r is used as a key,  
       F(k,r) also works as a PRF 
     



Our construction of tPRF 

• Let PRF be a psudorandom function 
• Let 
        F((k1,k2), (r1,r2))=PRFk1(r1)+PRFr2(k2) 
• Then we can prove that  
    this F is a tPRF. 



The construction of Fujioka et al. 

        F(k, (r1,r2))=PRFk(r1)+PRFr2(k) 
• We cannot prove that  
    this F is a tPRF. 



Remember that 
in the naïve approach, 

Alice generates (pk,sk)  
of KEM 

Alice 

state-reveal query 

sk 

M 

For a state-reveal query 
Alice must return sk 



In the proposed protocol, 

tPRF Gen 

Alice has a long-term key 
             k 

r 
RA 

(pk,sk) 

She first chooses r randomly 
and runs tPRF to generate RA 

She next runs Gen of KEM 
        to obtain (pk,sk) 



Then Alice erases RA and sk 

tPRF Gen 

A long-term key 
             k 

r 
RA 

(pk,sk) 

She keeps only r as a state 



Now M cannot obtain sk 

tPRF Gen 

A long-term key 
             k 

r 
RA 

(pk,sk) 

Because a session-state reveal query 
reveals only r,  
but not the long-term key k 



Our 2-PASS-CK protocol 

Alice 

pk, SignA(pk) 

Bob 

She chooses r  randomly 
and computes 
  RA:=tPRF(k,r) 
  (pk, sk) := Gen(RA) 

Alince has a long-term key 
                      k → 



Our 2-PASS-CK protocol 

Alice 

pk, SignA(pk) 

Bob 

r ← random 
RA=tPRF(k,r) 
(pk, sk) ← Gen(RA) 
Then  
Alice erases (RA, sk) 

k → 



Our 2-PASS-CK protocol 

Alice 

pk, SignA(pk) 

c, SignB(pk,c) 

Bob 

r ← random 
RA=tPRF(k,r) 
(pk, sk) ← Gen(RA) 
Then erase (RA, sk) (c, K) := Enc(pk) 

k → 



Our 2-PASS-CK protocol 

Alice 

pk, SignA(pk) 

c, SignB(pk,c) 

Bob 

r ← random 
RA=tPRF(k,r) 
(pk, sk) ← Gen(RA) 
Then erase (RA, sk) (c, K) ← Enc(pk) 

Alice re-computes 
   RA:=tPRF(k,r) 
   (pk, sk) := Gen(RA) 
Finally she obtains  
     K := Dec(sk,c) 

k → 



Theorem 2 

• 2-PASS-CK protocol is CK-secure with wPFS 
• if KEM is CPA-secure 
• the signature scheme is unforgeable 
• and tPRF is a tPRF 



Adversary 
M Bob 

Y’ 

X’=X 

Suppose that  
the test session has a matching session 

Alice 

X 

Y=Y’ 



In the CK model, 
nothing is revealed to M 

lskA lskB 

RA RB 

Alice Bob 

Long-term keys 

Random coins 

nor 



In the CK model with wPFS, 

lskA lskB 

RA RB 

Alice Bob M can obtain 



In the Extended CK (eCK) model 

lskA lskB 

RA RB 

Alice Bob M can obtain 



In the eCK model (2) 
or 

lskA lskB 

RA RB 

Alice Bob M 



In the eCK model (3) 
or 

lskA lskB 

RA RB 

Alice Bob 

M 



In the eCK model (4) 
or 

lskA lskB 

RA RB 

Alice Bob 

M 



In our 2-PASS-CK protocol 

RB = random coins RB is by tPRF 
sk is not erased 
sk is erased CK-secure with wPFS, 

But not eCK-secure 

RA is generated by using a tPRF. 
But RB is not. 

This protocol is  



In our 2nd scheme, 

RB = random coins RB is by tPRF 
sk is not erased eCK-secure 

But not CK-secure 
sk is erased CK-secure with wPFS, 

But not eCK-secure 

This protocol is  

Both RA and RB are generated by using a tPRF. 
But sk is not erased. 



In our 3rd scheme 

RB is not tPRF RB is tPRF 
sk is not erased eCK-secure, 

but not CK-secure 
sk is erased CK-secure with wPFS, 

but not eCK-secure 
CK-secure with wPFS 
and eCK-secure 

This protocol is  

Both RA and RB are generated by using a tPRF 
and sk is erased. 



Our results 

• Make it clear that  
• there exists a clear separation  
• between CK-security and eCK-security 



Summary (1) 

round wPFS By using 
Fujioka et al. 2-pass ○ CCA-KEM 
We constructed  2-pass ○ CPA-KEM 

Our assumption is weaker  
than Fujioka et al. 



Summary (2) 

Our security 
1st scheme is CK-secure  
2nd scheme is  eCK-secure 
3rd scheme is Both CK and eCK-secure 



Thank you ! 
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