
SESSION ID:

Sarah Meiklejohn
Graduate researcher 

UC San Diego 

Rethinking Verifiably Encrypted 
Signatures: A Gap in Functionality and 
Potential Solutions

•cryp-r02



#RSAC

Models for cryptographic primitives

!2



#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling 
security: what an adversary can and can’t do

!2



#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling 
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

!2



#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling 
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

!2



#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling 
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

! First show a generic construction based solely on signatures

!2



#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling 
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

! First show a generic construction based solely on signatures
! Then propose new definition(s)
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An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document, 
but they don’t trust each other
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Definitions for VES: 
!  Unforgeability 
!  Opacity 
!  Extractability
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Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

! Opacity: An adversary can’t create a signature given just VES

! Extractability: An adversary can’t create valid VES for which 
arbitration fails

!6

ω = VESign(skA,apk,m)

ω = Sign(skA,m)σ = A

ω
⊥

skA
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Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space 
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

! There are two signatures, and Verify checks for both

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥) T(m,apk,1,ω)

Sign VESign Resolve

DNV
YDV
DNV
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Resolution independence

! The problem with the signature-based construction: Bob got a different 
object from Alice than from the arbiter!
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Sign(skA,m) Resolve(ask,pkA,ω,m)
DNV
YDV

! Resolution independence: the distributions {Sign(sk,m)} and 
{Resolve(ask,pk,ω,m)} are identical
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Separating our construction from existing ones

! Signature construction is not resolution independent: σ vs. (apk,ω,ω′)

! But it is satisfied by all existing VES constructions 
! [BGLS03] uses bilinear groups, BLS signatures, deterministic Resolve
! [LOSSW05] uses bilinear groups, Waters signatures, randomized Resolve
! [R09] uses RSA groups and signatures, deterministic Resolve
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Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except 

the arbiter can extract σ′ from the same distribution (by resolution 
independence)

! Not quite encryption: σ′ might be different from σ

!13

! Resolution duplication requires: (1) resolution independence, (2) 
deterministic Resolve, and (3) that there exists an algorithm Extract 
such that Extract(sk,m,r) = Resolve(ask,pk,VESign(sk,apk,m;r),m)
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Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so 
that no one can pull out Sign(sk,m) from ω (by opacity), except the 
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

! This lets us “encrypt” signatures, but we want to encrypt arbitrary bits
! Adapt Goldreich-Levin trick [GL89]; show that it is hard to predict 

(compute) <σ,r> = ∑ σi⋅ri mod 2 given just ω and r

!14
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(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

The same by  
resolution duplication!

σ=Ext(ssk,0,r)
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Constructing PKE with resolution duplication

! Interestingly, resolution duplication contributed to the correctness of 
the encryption scheme rather than its security

! IND-CPA security follows fairly directly from opacity

!16
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Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from 

existing ones
! Demonstrated how stronger resolution duplication could be used to 

construct public-key encryption

! Are VES just misnamed?  Or would applications fail if encryption part 
were missing?
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Fair Exchange 

 Gradual Release of Secret 
 Bit by bit 

 Require multiple rounds 

 Optimistic Fair Exchange 
 Semi-trusted (offline) party  

 Involved only when there’s a dispute 
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Optimistic Fair Exchange 

Valid? Valid? 

Asokan-Shoup-Waidner CCS ’97 

Partial Signature σ 

Full Signature ζ 
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Optimistic Fair Exchange 

 PKC 2007 
 Multi-user setting 

 CT-RSA 2008 
 Chosen-key model 

 Asiacrypt 2008 
 Ambiguous OFE 

 Pairing 2010, PKC 2012 
 DCS → AOFE 

 Ambiguous OFE 
 Alice’s partial signature reveals her 

will! 

 Everyone can verify that σ was 
generated by Alice. 

 Bob can show to anybody that Alice 
is the signer of σ. 

 Solution Idea: 
 Bob is able to simulate Alice’s partial 

signature 
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Perfect Ambiguous OFE 

 (A)OFE: 

 An outsider knows who are involved in an exchange. 

 PAOFE: 

 No one including the arbitrator can tell from the partial signature who are 

involved in an exchange. 

 

Y. Wang, M. Au, W. Susilo. Perfect Ambiguous Optimistic Fair Exchange. ICICS 2012: 142-153 
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The Problem We consider 

 In (P)(A)OFE, the arbitrator is able to learn the full signature of Alice.  

 

 It is not desired in some sensitive applications, and people do not 
want to put high trust on the arbitrator. 
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Our Work 

 Introduce the notion of “Privacy-Preserving OFE” (P2OFE). 

 Present the security models. 

 Propose an efficient construction of P2OFE. 

 

 

 

Even after the resolution, the arbitrator cannot convince others who the signer is. 
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Our Idea 
PKA, SKA PKB, SKB 

APK, ASK 

MA, σA 

Π 

MB, ζB 

ζA 

θAResA(ASK, σA) 

ζAResV(SKB, θA) 

Π: σA is either from Alice or 
from Bob. 
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Definition of P2OFE 

 PMGen: system parameter generation  (PM) 

 SetupTTP: arbitrator key generation  (APK, ASK)  

 SetupUser: user key generation  (Pk, Sk) 

 Psig / Pver: partial signature (σ) generation / verification 

 Sig / Ver: full signature (ζ) generation / verification 

 ResA: resolution by the arbitrator (step 1)  θ 

 ResV: resolution by the verifier (step 2)  ζ 
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Definition of P2OFE 

 Resolution Ambiguity 

 Signer Ambiguity 

 Perfect Ambiguity 

 Security against Signers 

 Security against Verifiers 

 Security against the arbitrator 

Without ASK, anyone cannot tell whether a 
partial signature was generated by A or 
simulated by B. 
Without SK of the verifier, anyone including 
the arbitrator cannot tell who is the signer 
of a given partial signature. 
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Our Construction 

 Full signature ζ is BB short signature. 

 Partial signature σ is a `twisted’ double encryption of ζ. 

 Building blocks used: 
 Boneh-Boyen (fully secure) Signature 

 Kiltz’ Tag-based Public Key Encryption 

 Strong One-Time Signature 

 



#RSAC 

Signature Generation 

 Full signature: ζ  (g1/(xi + M + yi*r), r) 

 Partial signature: σ  (c, e, r, otvk, δ), where 

c = (c1, c2, c4, c5) and e = (e1, e2, e3, e4, e5) 
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Signature Verification 

 Full signature: e(ζ, Xi gM Yi
r) = e(g, g) 

 Partial signature: 
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Resolution 

 Arbitrator: c3  e3 e1
-ξ1 e2

-ξ2, return θ := (c1, c2, c3, c4, c5, r, otvk)  

 Verifier: S  c3 c1
-ξj1 c2

-ξj2, return ζ := (S, r) 
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Security 

 Our P2OFE protocol is secure if  

1. DLIN assumption holds; 

2. SDH assumption holds; 

3. H is collision resistant;  

4. OTS is one-time strongly unforgeable; and 

5. π is sound and witness indistinguishable. 

Signer Ambiguity: 1, 3, 4         

Perfect Ambiguity: 1, 3, 4        

Security against Signers: 2, 5 

Security against Arbitrator: 2 



Q&A 
 
Thanks! 
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From CPA-Secure KEM 
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In a 1 round KE protocol, 

Bob Alice 

X=gx Y=gy 

Each party sends one message  
simultaneously. 

(Session key) 
K=gxy 



In a 2-pass KE protocol, 

Bob Alice 

X=(N,e) 

Y=re mod N 

Each party sends one message  
sequentially. 

(Session key)  
K=H(r) 



Most of 

• The provably secure KE protocols  
    are based on the DDH assumption  
    or the CDH assumption 



On the other hand, 

round wPFS Assumption 
Boyd et al. 1-round 

protocol 
× by using 

CCA-KEM 

A CCA-secure KEM is more generic  
than specific number theoretic assumptions. 



KEM 

• Consists of (Gen, Enc, Dec). 
• In particular,  
  Enc(pk) outputs a ciphertext c and  
    the key K which is used for  
    a symmetric-key encryption scheme. 



A KEM is CPA-secure if 

• No adversary can distinguish between 
      (c, K) and (c, random)  
     



A KEM is CCA-secure if 

• No adversary can distinguish between 
         (c, K) and (c, random)  
    even if 
    the adversary can query c’≠c 
   to the decryption oracle  
   
     



For example, 

• Let 
       pk=gx and sk=x 
       c=gr 

       K=(pk)r 
 

• This KEM is CPA-secure  
    under the DDH assumption 



Cramer-Shoup KEM 

• is CCA-secure  
    under the DDH assumption 



round wPFS By using 
Boyd et al. 1-round × CCA-KEM 
〃 〃 

 
○ CCA-KEM 

          ＋DDH  

This construction is not generic  
because it relies on the DDH assumption 

Boyd et al. also showed 



Fujioka et al. showed 

round wPFS By using 
Boyd et al. 1-round × CCA-KEM 
〃 〃 

 
○ CCA-KEM 

          ＋DDH  
Fujioka et al. 2-pass ○ CCA-KEM 



We show 

round wPFS By using 
Fujioka et al. 2-pass ○ CCA-KEM 
This paper 2-pass ○ CPA-KEM 

Our assumption is weaker  
than Fujioka et al. 



In fact 

Proposed security 
1st one is CK-secure  
2nd one is  eCK-secure 
3rd one is Both CK and eCK-secure 

We show 3 generic constructions 
by using a CPA-secure KEM 



In Canetti-Krawczyk (CK) Model 

Adversary 
M Alice 

A long-term key 
             lskA   → 



First M sends “initiate” to Alice 

Adversary 
M Alice lskA → 

initiate 

Hi, 
I’m Bob. 
Let’s initiate a session. 



Then 
Adversary 

M Alice lskA → 

initiate 

Alice chooses rA  randomly 
and computes (X, state) 

(lskA, rA)→ Alice → (X, state) X 

Alice then erases rA  
and keeps only state 



Adversary 
M Alice lskA → 

Y 

X 

Keep state 

Next M sends “Y” to Alice 



Adversary 
M Alice lskA → 

Y 
Alice computes  
               the session –key K 
(Y, state , lskA,)→ Alice → K 

X 

Keep state 

She then erases state  and keeps K 

Then 



M can issue 

• A session-key query 
• A state-reveal query 
• and a corrupt query  
to Alice 



For a “session-key” query  
Adversary 

M Alice lskA → 

Y 

X 

“session-key” 

Alice returns the session-key K 



For a “state-reveal” query  
Adversary 

M Alice lskA → 

X 

Keep state 

“state-reveal” 

Alice returns the state 



For a “corrupt” query  

Alice returns  
• the long-term key lskA,  
• the state  
• and all the session keys stored at that time. 



Adversary 
M Alice 

Y 

X 

An instance between Alice and M 
is called a session 



Adversary 
M Bob 

Y’ 

X’ 

An instance between Bob and M 
is also a session 



Adversary 
M Bob 

Y’ 

X’=X 

They are matching sessions if 

Alice 

X 

Y=Y’ 



A session is locally exposed if 

Adversary 
M Alice 

or 
a state-reveal query  

M issues a corrupt query 

or 
a session-key query  



Adversary 
M Alice 

Y 

X 

A session is exposed (1) 
if it is locally exposed 

Locally 
exposed 



A session is exposed (2) 

Adversary 
M Bob 

Y’ 

X’=X 

Alice 

X 

Y=Y’ 

or, it has a matching session 
that is locally exposed 

Locally 
exposed 



A session is exposed (3) 

Adversary 
M Bob Alice 

X 

Y 

or, it doesn’t have a matching session 
and Bob is corrupted 

lskB 

Corrupted 



Adversary 
M Alice 

Y 

X 

A session which is not exposed  
is called unexposed 

Unexposed 



Adversary 
M Alice 

Y 

X 

At some point, 

Test 
session 

M chooses an unexposed session  
as a test session 



Adversary 
M Alice 

Y 

X 

“Test session” 
Then 
we choose a random bit b, 
and let 
  K*=K             if b=0 
  K*=random if b=1 M receives K* 



M finally outputs a bit b' 

• The advantage of M is defined as 
    Adv(M) = 2 × |Pr(b'=b)-1/2|                 



A KE protocol is CK-secure 

• If Adv(M) is negligible  
    for any PPT adversary M 



Perfect Forward Secrecy (PFS) 

• is defined as follows. 
• Suppose that the session key K expired, 
    and it was erased. 
• After that,  
    the adversary can obtain lskA and lskB. 
• PFS requires that  
    K should look random even in this case. 



Adversary 
M Bob 

Y’ 

X’=X 

Alice 

X 

Y=Y’ 

If the test-session has a matching session, 
then M can obtain both lskA and lskB 
after the session key K is erased. 

  lskA lskB 



In Weak PFS (wPFS), 
If the test-session doesn’t have a matching session, 
then M cannot obtain lskB 

Bob Adversary 
M Alice 

X 

Y 

lskA 



A KE protocol is CK-secure with wPFS 

• If Adv(M) is negligible  
    for any such PPT adversary M 
   



Our construction uses 

One-way 
function 

a signature scheme 

and a PRF 

CPA-KEM 



We can construct 

From 
a one-way 
function 

a signature scheme 

and a PRF 



The key generation algorithm Gen 
of a CPA-secure KEM 

• Can be considered as a one-way function  
   from a random string to a public-key pk. 
 
      Gen(random) → (pk, sk) 



Therefore 

One-way 
function 

we can construct 
a signature scheme 

and a PRF 

from 
CPA-KEM 

Hence  
our minimum assumption is that  
there exists a CPA-secure KEM 



Let 

 
• KEM=(Gen, Enc, Dec)  
                 be a CPA-secure KEM 
• SIG=(G, Sign, Verify)  
                 be a signature scheme 



In our Naïve approach 

Generates (pk, sk) of KEM 
Keeps sk as a state 

Alice 

pk, SignA(pk) 

c, SignB(pk,c) 

Bob 

(c, K) := Enc(pk) 

K := Dec(sk,c) 

K is the session key 



However, there exists an attack 

(pk, sk) of KEM 

Alice 

X=(pk, SignA(pk)) 

state-reveal 

Bob 
Adversary 

M 

sk 

After receiving X=(pk, SignA(pk)), 
M issues a state-reveal query. 
Then Alice returns sk 



Then M sends X to Bob 

(pk, sk) of KEM 

Alice 

X=(pk, SignA(pk)) 

state-reveal 

Bob 

Now M can compute K := Dec(sk,c) 
by using sk 

Adversary 
M 

X=(pk, SignA(pk)) 

Bob returns 
   c, SignB(pk,c) 

sk 

K 



We overcome this problem 

• By using a twisted PRF trick. 
• This trick was  introduced by Fujioka et al.  
• However,  
    we cannot prove that 
    their construction has the desired property 
     



So 

• We formulate tPRF formally 
• and then give a new construction 
    which satisfies our definition. 

 



Our definition of tPRF 

We say that F(k,r) is a tPRF if 
• If k is a key,  
•     F(k,r) works as a PRF 
• Even if r is used as a key,  
       F(k,r) also works as a PRF 
     



Our construction of tPRF 

• Let PRF be a psudorandom function 
• Let 
        F((k1,k2), (r1,r2))=PRFk1(r1)+PRFr2(k2) 
• Then we can prove that  
    this F is a tPRF. 



The construction of Fujioka et al. 

        F(k, (r1,r2))=PRFk(r1)+PRFr2(k) 
• We cannot prove that  
    this F is a tPRF. 



Remember that 
in the naïve approach, 

Alice generates (pk,sk)  
of KEM 

Alice 

state-reveal query 

sk 

M 

For a state-reveal query 
Alice must return sk 



In the proposed protocol, 

tPRF Gen 

Alice has a long-term key 
             k 

r 
RA 

(pk,sk) 

She first chooses r randomly 
and runs tPRF to generate RA 

She next runs Gen of KEM 
        to obtain (pk,sk) 



Then Alice erases RA and sk 

tPRF Gen 

A long-term key 
             k 

r 
RA 

(pk,sk) 

She keeps only r as a state 



Now M cannot obtain sk 

tPRF Gen 

A long-term key 
             k 

r 
RA 

(pk,sk) 

Because a session-state reveal query 
reveals only r,  
but not the long-term key k 



Our 2-PASS-CK protocol 

Alice 

pk, SignA(pk) 

Bob 

She chooses r  randomly 
and computes 
  RA:=tPRF(k,r) 
  (pk, sk) := Gen(RA) 

Alince has a long-term key 
                      k → 



Our 2-PASS-CK protocol 

Alice 

pk, SignA(pk) 

Bob 

r ← random 
RA=tPRF(k,r) 
(pk, sk) ← Gen(RA) 
Then  
Alice erases (RA, sk) 

k → 



Our 2-PASS-CK protocol 

Alice 

pk, SignA(pk) 

c, SignB(pk,c) 

Bob 

r ← random 
RA=tPRF(k,r) 
(pk, sk) ← Gen(RA) 
Then erase (RA, sk) (c, K) := Enc(pk) 

k → 



Our 2-PASS-CK protocol 

Alice 

pk, SignA(pk) 

c, SignB(pk,c) 

Bob 

r ← random 
RA=tPRF(k,r) 
(pk, sk) ← Gen(RA) 
Then erase (RA, sk) (c, K) ← Enc(pk) 

Alice re-computes 
   RA:=tPRF(k,r) 
   (pk, sk) := Gen(RA) 
Finally she obtains  
     K := Dec(sk,c) 

k → 



Theorem 2 

• 2-PASS-CK protocol is CK-secure with wPFS 
• if KEM is CPA-secure 
• the signature scheme is unforgeable 
• and tPRF is a tPRF 



Adversary 
M Bob 

Y’ 

X’=X 

Suppose that  
the test session has a matching session 

Alice 

X 

Y=Y’ 



In the CK model, 
nothing is revealed to M 

lskA lskB 

RA RB 

Alice Bob 

Long-term keys 

Random coins 

nor 



In the CK model with wPFS, 

lskA lskB 

RA RB 

Alice Bob M can obtain 



In the Extended CK (eCK) model 

lskA lskB 

RA RB 

Alice Bob M can obtain 



In the eCK model (2) 
or 

lskA lskB 

RA RB 

Alice Bob M 



In the eCK model (3) 
or 

lskA lskB 

RA RB 

Alice Bob 

M 



In the eCK model (4) 
or 

lskA lskB 

RA RB 

Alice Bob 

M 



In our 2-PASS-CK protocol 

RB = random coins RB is by tPRF 
sk is not erased 
sk is erased CK-secure with wPFS, 

But not eCK-secure 

RA is generated by using a tPRF. 
But RB is not. 

This protocol is  



In our 2nd scheme, 

RB = random coins RB is by tPRF 
sk is not erased eCK-secure 

But not CK-secure 
sk is erased CK-secure with wPFS, 

But not eCK-secure 

This protocol is  

Both RA and RB are generated by using a tPRF. 
But sk is not erased. 



In our 3rd scheme 

RB is not tPRF RB is tPRF 
sk is not erased eCK-secure, 

but not CK-secure 
sk is erased CK-secure with wPFS, 

but not eCK-secure 
CK-secure with wPFS 
and eCK-secure 

This protocol is  

Both RA and RB are generated by using a tPRF 
and sk is erased. 



Our results 

• Make it clear that  
• there exists a clear separation  
• between CK-security and eCK-security 



Summary (1) 

round wPFS By using 
Fujioka et al. 2-pass ○ CCA-KEM 
We constructed  2-pass ○ CPA-KEM 

Our assumption is weaker  
than Fujioka et al. 



Summary (2) 

Our security 
1st scheme is CK-secure  
2nd scheme is  eCK-secure 
3rd scheme is Both CK and eCK-secure 



Thank you ! 
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