
SESSION ID:

Sarah Meiklejohn
Graduate researcher 

UC San Diego 

Rethinking Verifiably Encrypted
Signatures: A Gap in Functionality and
Potential Solutions

•cryp-r02

#RSAC

Models for cryptographic primitives

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

! First show a generic construction based solely on signatures

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

! First show a generic construction based solely on signatures
! Then propose new definition(s)

!2

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

A

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

A

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

A

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

Bc

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

A

c

Definitions for VES:
! Unforgeability
! Opacity
! Extractability

#RSAC

Verifiably encrypted signatures [BGLS03]

!5

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k) (pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)

σ

= Sign(skB,m)σ = B

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ

= Sign(skB,m)σ = B

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ

= Sign(skB,m)σ = B ω

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ←Resolve(ask,pkA,ω,m)

σ

= Sign(skB,m)σ = B ω

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ←Resolve(ask,pkA,ω,m)

σ

= Sign(skB,m)σ = B ω

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

!6

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:

!6

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

!6

ω = VESign(skA,apk,m)

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

! Opacity: An adversary can’t create a signature given just VES

!6

ω = VESign(skA,apk,m)

ω = Sign(skA,m)σ = A

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

! Opacity: An adversary can’t create a signature given just VES

! Extractability: An adversary can’t create valid VES for which
arbitration fails

!6

ω = VESign(skA,apk,m)

ω = Sign(skA,m)σ = A

ω
⊥

skA

A signature-based VES

#RSAC

Constructing VES with just signatures

!8

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

!8

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

Sign VESign Resolve

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

T(m,⊥,⊥,⊥)

Sign VESign Resolve

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥)

Sign VESign Resolve

DNV

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥) T(m,apk,1,ω)

Sign VESign Resolve

DNV
YDV
DNV

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

! There are two signatures, and Verify checks for both

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥) T(m,apk,1,ω)

Sign VESign Resolve

DNV
YDV
DNV

#RSAC

Security of signature-based construction

!9

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES

!9

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES

!9

T(m,apk,0,⊥)

DNV

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

DNV

T(m,apk,1,ω)

T(m,apk,0,⊥)

DNV
YDV

Resolution
independence

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

Sign(skA,m)

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

Sign(skA,m) Resolve(ask,pkA,ω,m)
DNV
YDV

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

Sign(skA,m) Resolve(ask,pkA,ω,m)
DNV
YDV

! Resolution independence: the distributions {Sign(sk,m)} and
{Resolve(ask,pk,ω,m)} are identical

#RSAC

Separating our construction from existing ones

!12

#RSAC

Separating our construction from existing ones

! Signature construction is not resolution independent: σ vs. (apk,ω,ω′)

!12

#RSAC

Separating our construction from existing ones

! Signature construction is not resolution independent: σ vs. (apk,ω,ω′)

! But it is satisfied by all existing VES constructions
! [BGLS03] uses bilinear groups, BLS signatures, deterministic Resolve
! [LOSSW05] uses bilinear groups, Waters signatures, randomized Resolve
! [R09] uses RSA groups and signatures, deterministic Resolve

!12

#RSAC

Resolution duplication

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except

the arbiter can extract σ′ from the same distribution (by resolution
independence)

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except

the arbiter can extract σ′ from the same distribution (by resolution
independence)

! Not quite encryption: σ′ might be different from σ

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except

the arbiter can extract σ′ from the same distribution (by resolution
independence)

! Not quite encryption: σ′ might be different from σ

!13

! Resolution duplication requires: (1) resolution independence, (2)
deterministic Resolve, and (3) that there exists an algorithm Extract
such that Extract(sk,m,r) = Resolve(ask,pk,VESign(sk,apk,m;r),m)

#RSAC

Constructing PKE with resolution duplication

!14

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

ω=VES(sk,apk,m;r)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

ω=VES(sk,apk,m;r) σ=Resolve(ask,pk,ω,m)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

! This lets us “encrypt” signatures, but we want to encrypt arbitrary bits

!14

ω=VES(sk,apk,m;r) σ=Resolve(ask,pk,ω,m)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

! This lets us “encrypt” signatures, but we want to encrypt arbitrary bits
! Adapt Goldreich-Levin trick [GL89]; show that it is hard to predict

(compute) <σ,r> = ∑ σi⋅ri mod 2 given just ω and r

!14

ω=VES(sk,apk,m;r) σ=Resolve(ask,pk,ω,m)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

!15

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)

!15

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

!15

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

!15

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

!15

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

The same by
resolution duplication!

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

!16

#RSAC

Constructing PKE with resolution duplication

! Interestingly, resolution duplication contributed to the correctness of
the encryption scheme rather than its security

!16

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

#RSAC

Constructing PKE with resolution duplication

! Interestingly, resolution duplication contributed to the correctness of
the encryption scheme rather than its security

! IND-CPA security follows fairly directly from opacity

!16

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

Conclusions

#RSAC

Conclusions and open problems

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from

existing ones

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from

existing ones
! Demonstrated how stronger resolution duplication could be used to

construct public-key encryption

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from

existing ones
! Demonstrated how stronger resolution duplication could be used to

construct public-key encryption

! Are VES just misnamed? Or would applications fail if encryption part
were missing?

!18

#RSAC

SESSION ID:

P2OFE: Privacy-Preserving Optimistic Fair
Exchange of Digital Signatures

Protocols - CRYP-R02

Qiong Huang1, Duncan S. Wong2 and Willy Susilo3

1 South China Agricultural University, Guangzhou, China
2 City University of Hong Kong, HK SAR, China
3 University of Wollong, Wollongong, Australia

#RSAC

Fair Exchange

 Gradual Release of Secret
 Bit by bit

 Require multiple rounds

 Optimistic Fair Exchange
 Semi-trusted (offline) party

 Involved only when there’s a dispute

#RSAC

Optimistic Fair Exchange

Valid? Valid?

Asokan-Shoup-Waidner CCS ’97

Partial Signature σ

Full Signature ζ

#RSAC

Optimistic Fair Exchange

 PKC 2007
 Multi-user setting

 CT-RSA 2008
 Chosen-key model

 Asiacrypt 2008
 Ambiguous OFE

 Pairing 2010, PKC 2012
 DCS → AOFE

 Ambiguous OFE
 Alice’s partial signature reveals her

will!

 Everyone can verify that σ was
generated by Alice.

 Bob can show to anybody that Alice
is the signer of σ.

 Solution Idea:
 Bob is able to simulate Alice’s partial

signature

#RSAC

Perfect Ambiguous OFE

 (A)OFE:

 An outsider knows who are involved in an exchange.

 PAOFE:

 No one including the arbitrator can tell from the partial signature who are

involved in an exchange.

Y. Wang, M. Au, W. Susilo. Perfect Ambiguous Optimistic Fair Exchange. ICICS 2012: 142-153

#RSAC

The Problem We consider

 In (P)(A)OFE, the arbitrator is able to learn the full signature of Alice.

 It is not desired in some sensitive applications, and people do not
want to put high trust on the arbitrator.

#RSAC

Our Work

 Introduce the notion of “Privacy-Preserving OFE” (P2OFE).

 Present the security models.

 Propose an efficient construction of P2OFE.

Even after the resolution, the arbitrator cannot convince others who the signer is.

#RSAC

Our Idea
PKA, SKA PKB, SKB

APK, ASK

MA, σA

Π

MB, ζB

ζA

θAResA(ASK, σA)

ζAResV(SKB, θA)

Π: σA is either from Alice or
from Bob.

#RSAC

Definition of P2OFE

 PMGen: system parameter generation (PM)

 SetupTTP: arbitrator key generation (APK, ASK)

 SetupUser: user key generation (Pk, Sk)

 Psig / Pver: partial signature (σ) generation / verification

 Sig / Ver: full signature (ζ) generation / verification

 ResA: resolution by the arbitrator (step 1) θ

 ResV: resolution by the verifier (step 2) ζ

#RSAC

Definition of P2OFE

 Resolution Ambiguity

 Signer Ambiguity

 Perfect Ambiguity

 Security against Signers

 Security against Verifiers

 Security against the arbitrator

Without ASK, anyone cannot tell whether a
partial signature was generated by A or
simulated by B.
Without SK of the verifier, anyone including
the arbitrator cannot tell who is the signer
of a given partial signature.

#RSAC

Our Construction

 Full signature ζ is BB short signature.

 Partial signature σ is a `twisted’ double encryption of ζ.

 Building blocks used:
 Boneh-Boyen (fully secure) Signature

 Kiltz’ Tag-based Public Key Encryption

 Strong One-Time Signature

#RSAC

Signature Generation

 Full signature: ζ (g1/(xi + M + yi*r), r)

 Partial signature: σ (c, e, r, otvk, δ), where

c = (c1, c2, c4, c5) and e = (e1, e2, e3, e4, e5)

#RSAC

Signature Verification

 Full signature: e(ζ, Xi gM Yi
r) = e(g, g)

 Partial signature:

#RSAC

Resolution

 Arbitrator: c3 e3 e1
-ξ1 e2

-ξ2, return θ := (c1, c2, c3, c4, c5, r, otvk)

 Verifier: S c3 c1
-ξj1 c2

-ξj2, return ζ := (S, r)

#RSAC

Security

 Our P2OFE protocol is secure if

1. DLIN assumption holds;

2. SDH assumption holds;

3. H is collision resistant;

4. OTS is one-time strongly unforgeable; and

5. π is sound and witness indistinguishable.

Signer Ambiguity: 1, 3, 4

Perfect Ambiguity: 1, 3, 4

Security against Signers: 2, 5

Security against Arbitrator: 2

Q&A

Thanks!

2-Pass Key Exchange Protocols
From CPA-Secure KEM

Kaoru Kurosawa
Ibaraki University, Japan

Jun Furukawa
NEC Corporation, Japan

In a 1 round KE protocol,

Bob Alice

X=gx Y=gy

Each party sends one message
simultaneously.

(Session key)
K=gxy

In a 2-pass KE protocol,

Bob Alice

X=(N,e)

Y=re mod N

Each party sends one message
sequentially.

(Session key)
K=H(r)

Most of

• The provably secure KE protocols
 are based on the DDH assumption
 or the CDH assumption

On the other hand,

round wPFS Assumption
Boyd et al. 1-round

protocol
× by using

CCA-KEM

A CCA-secure KEM is more generic
than specific number theoretic assumptions.

KEM

• Consists of (Gen, Enc, Dec).
• In particular,
 Enc(pk) outputs a ciphertext c and
 the key K which is used for
 a symmetric-key encryption scheme.

A KEM is CPA-secure if

• No adversary can distinguish between
 (c, K) and (c, random)

A KEM is CCA-secure if

• No adversary can distinguish between
 (c, K) and (c, random)
 even if
 the adversary can query c’≠c
 to the decryption oracle

For example,

• Let
 pk=gx and sk=x
 c=gr

 K=(pk)r

• This KEM is CPA-secure
 under the DDH assumption

Cramer-Shoup KEM

• is CCA-secure
 under the DDH assumption

round wPFS By using
Boyd et al. 1-round × CCA-KEM
〃 〃

○ CCA-KEM

 ＋DDH

This construction is not generic
because it relies on the DDH assumption

Boyd et al. also showed

Fujioka et al. showed

round wPFS By using
Boyd et al. 1-round × CCA-KEM
〃 〃

○ CCA-KEM

 ＋DDH
Fujioka et al. 2-pass ○ CCA-KEM

We show

round wPFS By using
Fujioka et al. 2-pass ○ CCA-KEM
This paper 2-pass ○ CPA-KEM

Our assumption is weaker
than Fujioka et al.

In fact

Proposed security
1st one is CK-secure
2nd one is eCK-secure
3rd one is Both CK and eCK-secure

We show 3 generic constructions
by using a CPA-secure KEM

In Canetti-Krawczyk (CK) Model

Adversary
M Alice

A long-term key
 lskA →

First M sends “initiate” to Alice

Adversary
M Alice lskA →

initiate

Hi,
I’m Bob.
Let’s initiate a session.

Then
Adversary

M Alice lskA →

initiate

Alice chooses rA randomly
and computes (X, state)

(lskA, rA)→ Alice → (X, state) X

Alice then erases rA
and keeps only state

Adversary
M Alice lskA →

Y

X

Keep state

Next M sends “Y” to Alice

Adversary
M Alice lskA →

Y
Alice computes
 the session –key K
(Y, state , lskA,)→ Alice → K

X

Keep state

She then erases state and keeps K

Then

M can issue

• A session-key query
• A state-reveal query
• and a corrupt query
to Alice

For a “session-key” query
Adversary

M Alice lskA →

Y

X

“session-key”

Alice returns the session-key K

For a “state-reveal” query
Adversary

M Alice lskA →

X

Keep state

“state-reveal”

Alice returns the state

For a “corrupt” query

Alice returns
• the long-term key lskA,
• the state
• and all the session keys stored at that time.

Adversary
M Alice

Y

X

An instance between Alice and M
is called a session

Adversary
M Bob

Y’

X’

An instance between Bob and M
is also a session

Adversary
M Bob

Y’

X’=X

They are matching sessions if

Alice

X

Y=Y’

A session is locally exposed if

Adversary
M Alice

or
a state-reveal query

M issues a corrupt query

or
a session-key query

Adversary
M Alice

Y

X

A session is exposed (1)
if it is locally exposed

Locally
exposed

A session is exposed (2)

Adversary
M Bob

Y’

X’=X

Alice

X

Y=Y’

or, it has a matching session
that is locally exposed

Locally
exposed

A session is exposed (3)

Adversary
M Bob Alice

X

Y

or, it doesn’t have a matching session
and Bob is corrupted

lskB

Corrupted

Adversary
M Alice

Y

X

A session which is not exposed
is called unexposed

Unexposed

Adversary
M Alice

Y

X

At some point,

Test
session

M chooses an unexposed session
as a test session

Adversary
M Alice

Y

X

“Test session”
Then
we choose a random bit b,
and let
 K*=K if b=0
 K*=random if b=1 M receives K*

M finally outputs a bit b'

• The advantage of M is defined as
 Adv(M) = 2 × |Pr(b'=b)-1/2|

A KE protocol is CK-secure

• If Adv(M) is negligible
 for any PPT adversary M

Perfect Forward Secrecy (PFS)

• is defined as follows.
• Suppose that the session key K expired,
 and it was erased.
• After that,
 the adversary can obtain lskA and lskB.
• PFS requires that
 K should look random even in this case.

Adversary
M Bob

Y’

X’=X

Alice

X

Y=Y’

If the test-session has a matching session,
then M can obtain both lskA and lskB
after the session key K is erased.

 lskA lskB

In Weak PFS (wPFS),
If the test-session doesn’t have a matching session,
then M cannot obtain lskB

Bob Adversary
M Alice

X

Y

lskA

A KE protocol is CK-secure with wPFS

• If Adv(M) is negligible
 for any such PPT adversary M

Our construction uses

One-way
function

a signature scheme

and a PRF

CPA-KEM

We can construct

From
a one-way
function

a signature scheme

and a PRF

The key generation algorithm Gen
of a CPA-secure KEM

• Can be considered as a one-way function
 from a random string to a public-key pk.

 Gen(random) → (pk, sk)

Therefore

One-way
function

we can construct
a signature scheme

and a PRF

from
CPA-KEM

Hence
our minimum assumption is that
there exists a CPA-secure KEM

Let

• KEM=(Gen, Enc, Dec)
 be a CPA-secure KEM
• SIG=(G, Sign, Verify)
 be a signature scheme

In our Naïve approach

Generates (pk, sk) of KEM
Keeps sk as a state

Alice

pk, SignA(pk)

c, SignB(pk,c)

Bob

(c, K) := Enc(pk)

K := Dec(sk,c)

K is the session key

However, there exists an attack

(pk, sk) of KEM

Alice

X=(pk, SignA(pk))

state-reveal

Bob
Adversary

M

sk

After receiving X=(pk, SignA(pk)),
M issues a state-reveal query.
Then Alice returns sk

Then M sends X to Bob

(pk, sk) of KEM

Alice

X=(pk, SignA(pk))

state-reveal

Bob

Now M can compute K := Dec(sk,c)
by using sk

Adversary
M

X=(pk, SignA(pk))

Bob returns
 c, SignB(pk,c)

sk

K

We overcome this problem

• By using a twisted PRF trick.
• This trick was introduced by Fujioka et al.
• However,
 we cannot prove that
 their construction has the desired property

So

• We formulate tPRF formally
• and then give a new construction
 which satisfies our definition.

Our definition of tPRF

We say that F(k,r) is a tPRF if
• If k is a key,
• F(k,r) works as a PRF
• Even if r is used as a key,
 F(k,r) also works as a PRF

Our construction of tPRF

• Let PRF be a psudorandom function
• Let
 F((k1,k2), (r1,r2))=PRFk1(r1)+PRFr2(k2)
• Then we can prove that
 this F is a tPRF.

The construction of Fujioka et al.

 F(k, (r1,r2))=PRFk(r1)+PRFr2(k)
• We cannot prove that
 this F is a tPRF.

Remember that
in the naïve approach,

Alice generates (pk,sk)
of KEM

Alice

state-reveal query

sk

M

For a state-reveal query
Alice must return sk

In the proposed protocol,

tPRF Gen

Alice has a long-term key
 k

r
RA

(pk,sk)

She first chooses r randomly
and runs tPRF to generate RA

She next runs Gen of KEM
 to obtain (pk,sk)

Then Alice erases RA and sk

tPRF Gen

A long-term key
 k

r
RA

(pk,sk)

She keeps only r as a state

Now M cannot obtain sk

tPRF Gen

A long-term key
 k

r
RA

(pk,sk)

Because a session-state reveal query
reveals only r,
but not the long-term key k

Our 2-PASS-CK protocol

Alice

pk, SignA(pk)

Bob

She chooses r randomly
and computes
 RA:=tPRF(k,r)
 (pk, sk) := Gen(RA)

Alince has a long-term key
 k →

Our 2-PASS-CK protocol

Alice

pk, SignA(pk)

Bob

r ← random
RA=tPRF(k,r)
(pk, sk) ← Gen(RA)
Then
Alice erases (RA, sk)

k →

Our 2-PASS-CK protocol

Alice

pk, SignA(pk)

c, SignB(pk,c)

Bob

r ← random
RA=tPRF(k,r)
(pk, sk) ← Gen(RA)
Then erase (RA, sk) (c, K) := Enc(pk)

k →

Our 2-PASS-CK protocol

Alice

pk, SignA(pk)

c, SignB(pk,c)

Bob

r ← random
RA=tPRF(k,r)
(pk, sk) ← Gen(RA)
Then erase (RA, sk) (c, K) ← Enc(pk)

Alice re-computes
 RA:=tPRF(k,r)
 (pk, sk) := Gen(RA)
Finally she obtains
 K := Dec(sk,c)

k →

Theorem 2

• 2-PASS-CK protocol is CK-secure with wPFS
• if KEM is CPA-secure
• the signature scheme is unforgeable
• and tPRF is a tPRF

Adversary
M Bob

Y’

X’=X

Suppose that
the test session has a matching session

Alice

X

Y=Y’

In the CK model,
nothing is revealed to M

lskA lskB

RA RB

Alice Bob

Long-term keys

Random coins

nor

In the CK model with wPFS,

lskA lskB

RA RB

Alice Bob M can obtain

In the Extended CK (eCK) model

lskA lskB

RA RB

Alice Bob M can obtain

In the eCK model (2)
or

lskA lskB

RA RB

Alice Bob M

In the eCK model (3)
or

lskA lskB

RA RB

Alice Bob

M

In the eCK model (4)
or

lskA lskB

RA RB

Alice Bob

M

In our 2-PASS-CK protocol

RB = random coins RB is by tPRF
sk is not erased
sk is erased CK-secure with wPFS,

But not eCK-secure

RA is generated by using a tPRF.
But RB is not.

This protocol is

In our 2nd scheme,

RB = random coins RB is by tPRF
sk is not erased eCK-secure

But not CK-secure
sk is erased CK-secure with wPFS,

But not eCK-secure

This protocol is

Both RA and RB are generated by using a tPRF.
But sk is not erased.

In our 3rd scheme

RB is not tPRF RB is tPRF
sk is not erased eCK-secure,

but not CK-secure
sk is erased CK-secure with wPFS,

but not eCK-secure
CK-secure with wPFS
and eCK-secure

This protocol is

Both RA and RB are generated by using a tPRF
and sk is erased.

Our results

• Make it clear that
• there exists a clear separation
• between CK-security and eCK-security

Summary (1)

round wPFS By using
Fujioka et al. 2-pass ○ CCA-KEM
We constructed 2-pass ○ CPA-KEM

Our assumption is weaker
than Fujioka et al.

Summary (2)

Our security
1st scheme is CK-secure
2nd scheme is eCK-secure
3rd scheme is Both CK and eCK-secure

Thank you !

	S.Meiklejohn
	Q.Huang
	K.Kurosawa

