
SESSION ID:

Sarah Meiklejohn
Graduate researcher 

UC San Diego 

Rethinking Verifiably Encrypted
Signatures: A Gap in Functionality and
Potential Solutions

•cryp-r02

#RSAC

Models for cryptographic primitives

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

! First show a generic construction based solely on signatures

!2

#RSAC

Models for cryptographic primitives

! In cryptography, we put a lot of effort into accurately modeling
security: what an adversary can and can’t do

! But it’s also incredibly important to accurately model functionality!

! We look at definitions for verifiably encrypted signatures (VES)

! First show a generic construction based solely on signatures
! Then propose new definition(s)

!2

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

A

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

A

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

A

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

Bc

#RSAC

An application: fair contract signing [ASW88]

! Alice and Bob want each other’s signature on a particular document,
but they don’t trust each other

!3

Ac

B

A

c

Definitions for VES:
! Unforgeability
! Opacity
! Extractability

#RSAC

Verifiably encrypted signatures [BGLS03]

!5

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k) (pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)

σ

= Sign(skB,m)σ = B

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ

= Sign(skB,m)σ = B

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ

= Sign(skB,m)σ = B ω

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ←Resolve(ask,pkA,ω,m)

σ

= Sign(skB,m)σ = B ω

#RSAC

Verifiably encrypted signatures [BGLS03]

! A VES is a tuple (KG, Sign, Verify, AKG, VESign, VEVerify, Resolve)

!5

(pkA,skA)←KG(1k)

ω = VESign(skA,apk,m)

(pkB,skB)←KG(1k)

(apk,ask)←AKG(1k)

VEVerify(pkA,apk,ω,m)Verify(pkB,σ,m)

σ←Resolve(ask,pkA,ω,m)

σ

= Sign(skB,m)σ = B ω

σ

#RSAC

Verifiably encrypted signatures [BGLS03]

!6

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:

!6

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

!6

ω = VESign(skA,apk,m)

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

! Opacity: An adversary can’t create a signature given just VES

!6

ω = VESign(skA,apk,m)

ω = Sign(skA,m)σ = A

#RSAC

Verifiably encrypted signatures [BGLS03]

! A secure VES satisfies three properties:
! Unforgeability: An adversary can’t create VES

! Opacity: An adversary can’t create a signature given just VES

! Extractability: An adversary can’t create valid VES for which
arbitration fails

!6

ω = VESign(skA,apk,m)

ω = Sign(skA,m)σ = A

ω
⊥

skA

A signature-based VES

#RSAC

Constructing VES with just signatures

!8

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

!8

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

Sign VESign Resolve

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

T(m,⊥,⊥,⊥)

Sign VESign Resolve

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥)

Sign VESign Resolve

DNV

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥) T(m,apk,1,ω)

Sign VESign Resolve

DNV
YDV
DNV

#RSAC

Constructing VES with just signatures

! Assume we have a signature (KG′,Sign′,Verify′) with message space
M′ and a transformation T from (M,APK,0/1,Ω) to M′

! Sign, VESign, and Resolve all use Sign′, just sign different messages

! There are two signatures, and Verify checks for both

!8

T(m,⊥,⊥,⊥) T(m,apk,0,⊥) T(m,apk,1,ω)

Sign VESign Resolve

DNV
YDV
DNV

#RSAC

Security of signature-based construction

!9

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES

!9

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES

!9

T(m,apk,0,⊥)

DNV

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

DNV

T(m,apk,0,⊥)

#RSAC

Security of signature-based construction

! Unforgeability: can’t create VES
! Opacity: can’t create signature given VES
! Extractability: can’t create VES for which arbitration fails

!9

T(m,apk,0,⊥)

DNV DNV

T(m,apk,0,⊥)

T(m,⊥,⊥,⊥)

DNV

T(m,apk,1,ω)

T(m,apk,0,⊥)

DNV
YDV

Resolution
independence

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

Sign(skA,m)

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

Sign(skA,m) Resolve(ask,pkA,ω,m)
DNV
YDV

#RSAC

Resolution independence

! The problem with the signature-based construction: Bob got a different
object from Alice than from the arbiter!

!11

Sign(skA,m) Resolve(ask,pkA,ω,m)
DNV
YDV

! Resolution independence: the distributions {Sign(sk,m)} and
{Resolve(ask,pk,ω,m)} are identical

#RSAC

Separating our construction from existing ones

!12

#RSAC

Separating our construction from existing ones

! Signature construction is not resolution independent: σ vs. (apk,ω,ω′)

!12

#RSAC

Separating our construction from existing ones

! Signature construction is not resolution independent: σ vs. (apk,ω,ω′)

! But it is satisfied by all existing VES constructions
! [BGLS03] uses bilinear groups, BLS signatures, deterministic Resolve
! [LOSSW05] uses bilinear groups, Waters signatures, randomized Resolve
! [R09] uses RSA groups and signatures, deterministic Resolve

!12

#RSAC

Resolution duplication

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except

the arbiter can extract σ′ from the same distribution (by resolution
independence)

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except

the arbiter can extract σ′ from the same distribution (by resolution
independence)

! Not quite encryption: σ′ might be different from σ

!13

#RSAC

Resolution duplication

! Verifiably encrypted signatures: encryption really must be happening
! Can form ω so that no one can extract σ from ω (by opacity), except

the arbiter can extract σ′ from the same distribution (by resolution
independence)

! Not quite encryption: σ′ might be different from σ

!13

! Resolution duplication requires: (1) resolution independence, (2)
deterministic Resolve, and (3) that there exists an algorithm Extract
such that Extract(sk,m,r) = Resolve(ask,pk,VESign(sk,apk,m;r),m)

#RSAC

Constructing PKE with resolution duplication

!14

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

ω=VES(sk,apk,m;r)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

!14

ω=VES(sk,apk,m;r) σ=Resolve(ask,pk,ω,m)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

! This lets us “encrypt” signatures, but we want to encrypt arbitrary bits

!14

ω=VES(sk,apk,m;r) σ=Resolve(ask,pk,ω,m)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

! With resolution duplication, Alice can form ω := VESign(sk,apk,m;r) so
that no one can pull out Sign(sk,m) from ω (by opacity), except the
arbiter can pull out σ, and Alice can duplicate σ using Extract(sk,m,r)

! This lets us “encrypt” signatures, but we want to encrypt arbitrary bits
! Adapt Goldreich-Levin trick [GL89]; show that it is hard to predict

(compute) <σ,r> = ∑ σi⋅ri mod 2 given just ω and r

!14

ω=VES(sk,apk,m;r) σ=Resolve(ask,pk,ω,m)

σ=Ext(sk,m,r)

#RSAC

Constructing PKE with resolution duplication

!15

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)

!15

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

!15

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

!15

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

!15

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

! EKeyGen(1k): Output (pk,sk)←AKG(1k)
! Enc(pk,m): Generate (spk,ssk)←KG(1k), ω←VESign(ssk,pk,0;r),
σ←Extract(ssk,0,r), and rσ←{0,1}|σ|. Output c = (spk, ω, rσ, m⊕<σ,rσ>)

! Dec(sk,c): Parse c = (c1,c2,c3,c4). Compute σ = Resolve(sk,c1,c2,0)
and output c4⊕<σ,c3>

!15

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

(spk, ω, rσ, m⊕<σ,rσ>)

σ=Resolve(ask,pk,ω,0)

The same by
resolution duplication!

σ=Ext(ssk,0,r)

#RSAC

Constructing PKE with resolution duplication

!16

#RSAC

Constructing PKE with resolution duplication

! Interestingly, resolution duplication contributed to the correctness of
the encryption scheme rather than its security

!16

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

#RSAC

Constructing PKE with resolution duplication

! Interestingly, resolution duplication contributed to the correctness of
the encryption scheme rather than its security

! IND-CPA security follows fairly directly from opacity

!16

c4⊕<σ,c3>=m⊕<σ,rσ>⊕<σ,c3>=m

Conclusions

#RSAC

Conclusions and open problems

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from

existing ones

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from

existing ones
! Demonstrated how stronger resolution duplication could be used to

construct public-key encryption

!18

#RSAC

Conclusions and open problems

! Existing VES definitions might not capture desired functionality
! Provided a solely signature-based VES
! Defined resolution independence to “separate” this construction from

existing ones
! Demonstrated how stronger resolution duplication could be used to

construct public-key encryption

! Are VES just misnamed? Or would applications fail if encryption part
were missing?

!18

#RSAC

SESSION ID:

P2OFE: Privacy-Preserving Optimistic Fair
Exchange of Digital Signatures

Protocols - CRYP-R02

Qiong Huang1, Duncan S. Wong2 and Willy Susilo3

1 South China Agricultural University, Guangzhou, China
2 City University of Hong Kong, HK SAR, China
3 University of Wollong, Wollongong, Australia

#RSAC

Fair Exchange

 Gradual Release of Secret
 Bit by bit

 Require multiple rounds

 Optimistic Fair Exchange
 Semi-trusted (offline) party

 Involved only when there’s a dispute

#RSAC

Optimistic Fair Exchange

Valid? Valid?

Asokan-Shoup-Waidner CCS ’97

Partial Signature σ

Full Signature ζ

#RSAC

Optimistic Fair Exchange

 PKC 2007
 Multi-user setting

 CT-RSA 2008
 Chosen-key model

 Asiacrypt 2008
 Ambiguous OFE

 Pairing 2010, PKC 2012
 DCS → AOFE

 Ambiguous OFE
 Alice’s partial signature reveals her

will!

 Everyone can verify that σ was
generated by Alice.

 Bob can show to anybody that Alice
is the signer of σ.

 Solution Idea:
 Bob is able to simulate Alice’s partial

signature

#RSAC

Perfect Ambiguous OFE

 (A)OFE:

 An outsider knows who are involved in an exchange.

 PAOFE:

 No one including the arbitrator can tell from the partial signature who are

involved in an exchange.

Y. Wang, M. Au, W. Susilo. Perfect Ambiguous Optimistic Fair Exchange. ICICS 2012: 142-153

#RSAC

The Problem We consider

 In (P)(A)OFE, the arbitrator is able to learn the full signature of Alice.

 It is not desired in some sensitive applications, and people do not
want to put high trust on the arbitrator.

#RSAC

Our Work

 Introduce the notion of “Privacy-Preserving OFE” (P2OFE).

 Present the security models.

 Propose an efficient construction of P2OFE.

Even after the resolution, the arbitrator cannot convince others who the signer is.

#RSAC

Our Idea
PKA, SKA PKB, SKB

APK, ASK

MA, σA

Π

MB, ζB

ζA

θAResA(ASK, σA)

ζAResV(SKB, θA)

Π: σA is either from Alice or
from Bob.

#RSAC

Definition of P2OFE

 PMGen: system parameter generation  (PM)

 SetupTTP: arbitrator key generation  (APK, ASK)

 SetupUser: user key generation  (Pk, Sk)

 Psig / Pver: partial signature (σ) generation / verification

 Sig / Ver: full signature (ζ) generation / verification

 ResA: resolution by the arbitrator (step 1)  θ

 ResV: resolution by the verifier (step 2)  ζ

#RSAC

Definition of P2OFE

 Resolution Ambiguity

 Signer Ambiguity

 Perfect Ambiguity

 Security against Signers

 Security against Verifiers

 Security against the arbitrator

Without ASK, anyone cannot tell whether a
partial signature was generated by A or
simulated by B.
Without SK of the verifier, anyone including
the arbitrator cannot tell who is the signer
of a given partial signature.

#RSAC

Our Construction

 Full signature ζ is BB short signature.

 Partial signature σ is a `twisted’ double encryption of ζ.

 Building blocks used:
 Boneh-Boyen (fully secure) Signature

 Kiltz’ Tag-based Public Key Encryption

 Strong One-Time Signature

#RSAC

Signature Generation

 Full signature: ζ  (g1/(xi + M + yi*r), r)

 Partial signature: σ  (c, e, r, otvk, δ), where

c = (c1, c2, c4, c5) and e = (e1, e2, e3, e4, e5)

#RSAC

Signature Verification

 Full signature: e(ζ, Xi gM Yi
r) = e(g, g)

 Partial signature:

#RSAC

Resolution

 Arbitrator: c3  e3 e1
-ξ1 e2

-ξ2, return θ := (c1, c2, c3, c4, c5, r, otvk)

 Verifier: S  c3 c1
-ξj1 c2

-ξj2, return ζ := (S, r)

#RSAC

Security

 Our P2OFE protocol is secure if

1. DLIN assumption holds;

2. SDH assumption holds;

3. H is collision resistant;

4. OTS is one-time strongly unforgeable; and

5. π is sound and witness indistinguishable.

Signer Ambiguity: 1, 3, 4

Perfect Ambiguity: 1, 3, 4

Security against Signers: 2, 5

Security against Arbitrator: 2

Q&A

Thanks!

2-Pass Key Exchange Protocols
From CPA-Secure KEM

Kaoru Kurosawa
Ibaraki University, Japan

Jun Furukawa
NEC Corporation, Japan

In a 1 round KE protocol,

Bob Alice

X=gx Y=gy

Each party sends one message
simultaneously.

(Session key)
K=gxy

In a 2-pass KE protocol,

Bob Alice

X=(N,e)

Y=re mod N

Each party sends one message
sequentially.

(Session key)
K=H(r)

Most of

• The provably secure KE protocols
 are based on the DDH assumption
 or the CDH assumption

On the other hand,

round wPFS Assumption
Boyd et al. 1-round

protocol
× by using

CCA-KEM

A CCA-secure KEM is more generic
than specific number theoretic assumptions.

KEM

• Consists of (Gen, Enc, Dec).
• In particular,
 Enc(pk) outputs a ciphertext c and
 the key K which is used for
 a symmetric-key encryption scheme.

A KEM is CPA-secure if

• No adversary can distinguish between
 (c, K) and (c, random)

A KEM is CCA-secure if

• No adversary can distinguish between
 (c, K) and (c, random)
 even if
 the adversary can query c’≠c
 to the decryption oracle

For example,

• Let
 pk=gx and sk=x
 c=gr

 K=(pk)r

• This KEM is CPA-secure
 under the DDH assumption

Cramer-Shoup KEM

• is CCA-secure
 under the DDH assumption

round wPFS By using
Boyd et al. 1-round × CCA-KEM
〃 〃

○ CCA-KEM

 ＋DDH

This construction is not generic
because it relies on the DDH assumption

Boyd et al. also showed

Fujioka et al. showed

round wPFS By using
Boyd et al. 1-round × CCA-KEM
〃 〃

○ CCA-KEM

 ＋DDH
Fujioka et al. 2-pass ○ CCA-KEM

We show

round wPFS By using
Fujioka et al. 2-pass ○ CCA-KEM
This paper 2-pass ○ CPA-KEM

Our assumption is weaker
than Fujioka et al.

In fact

Proposed security
1st one is CK-secure
2nd one is eCK-secure
3rd one is Both CK and eCK-secure

We show 3 generic constructions
by using a CPA-secure KEM

In Canetti-Krawczyk (CK) Model

Adversary
M Alice

A long-term key
 lskA →

First M sends “initiate” to Alice

Adversary
M Alice lskA →

initiate

Hi,
I’m Bob.
Let’s initiate a session.

Then
Adversary

M Alice lskA →

initiate

Alice chooses rA randomly
and computes (X, state)

(lskA, rA)→ Alice → (X, state) X

Alice then erases rA
and keeps only state

Adversary
M Alice lskA →

Y

X

Keep state

Next M sends “Y” to Alice

Adversary
M Alice lskA →

Y
Alice computes
 the session –key K
(Y, state , lskA,)→ Alice → K

X

Keep state

She then erases state and keeps K

Then

M can issue

• A session-key query
• A state-reveal query
• and a corrupt query
to Alice

For a “session-key” query
Adversary

M Alice lskA →

Y

X

“session-key”

Alice returns the session-key K

For a “state-reveal” query
Adversary

M Alice lskA →

X

Keep state

“state-reveal”

Alice returns the state

For a “corrupt” query

Alice returns
• the long-term key lskA,
• the state
• and all the session keys stored at that time.

Adversary
M Alice

Y

X

An instance between Alice and M
is called a session

Adversary
M Bob

Y’

X’

An instance between Bob and M
is also a session

Adversary
M Bob

Y’

X’=X

They are matching sessions if

Alice

X

Y=Y’

A session is locally exposed if

Adversary
M Alice

or
a state-reveal query

M issues a corrupt query

or
a session-key query

Adversary
M Alice

Y

X

A session is exposed (1)
if it is locally exposed

Locally
exposed

A session is exposed (2)

Adversary
M Bob

Y’

X’=X

Alice

X

Y=Y’

or, it has a matching session
that is locally exposed

Locally
exposed

A session is exposed (3)

Adversary
M Bob Alice

X

Y

or, it doesn’t have a matching session
and Bob is corrupted

lskB

Corrupted

Adversary
M Alice

Y

X

A session which is not exposed
is called unexposed

Unexposed

Adversary
M Alice

Y

X

At some point,

Test
session

M chooses an unexposed session
as a test session

Adversary
M Alice

Y

X

“Test session”
Then
we choose a random bit b,
and let
 K*=K if b=0
 K*=random if b=1 M receives K*

M finally outputs a bit b'

• The advantage of M is defined as
 Adv(M) = 2 × |Pr(b'=b)-1/2|

A KE protocol is CK-secure

• If Adv(M) is negligible
 for any PPT adversary M

Perfect Forward Secrecy (PFS)

• is defined as follows.
• Suppose that the session key K expired,
 and it was erased.
• After that,
 the adversary can obtain lskA and lskB.
• PFS requires that
 K should look random even in this case.

Adversary
M Bob

Y’

X’=X

Alice

X

Y=Y’

If the test-session has a matching session,
then M can obtain both lskA and lskB
after the session key K is erased.

 lskA lskB

In Weak PFS (wPFS),
If the test-session doesn’t have a matching session,
then M cannot obtain lskB

Bob Adversary
M Alice

X

Y

lskA

A KE protocol is CK-secure with wPFS

• If Adv(M) is negligible
 for any such PPT adversary M

Our construction uses

One-way
function

a signature scheme

and a PRF

CPA-KEM

We can construct

From
a one-way
function

a signature scheme

and a PRF

The key generation algorithm Gen
of a CPA-secure KEM

• Can be considered as a one-way function
 from a random string to a public-key pk.

 Gen(random) → (pk, sk)

Therefore

One-way
function

we can construct
a signature scheme

and a PRF

from
CPA-KEM

Hence
our minimum assumption is that
there exists a CPA-secure KEM

Let

• KEM=(Gen, Enc, Dec)
 be a CPA-secure KEM
• SIG=(G, Sign, Verify)
 be a signature scheme

In our Naïve approach

Generates (pk, sk) of KEM
Keeps sk as a state

Alice

pk, SignA(pk)

c, SignB(pk,c)

Bob

(c, K) := Enc(pk)

K := Dec(sk,c)

K is the session key

However, there exists an attack

(pk, sk) of KEM

Alice

X=(pk, SignA(pk))

state-reveal

Bob
Adversary

M

sk

After receiving X=(pk, SignA(pk)),
M issues a state-reveal query.
Then Alice returns sk

Then M sends X to Bob

(pk, sk) of KEM

Alice

X=(pk, SignA(pk))

state-reveal

Bob

Now M can compute K := Dec(sk,c)
by using sk

Adversary
M

X=(pk, SignA(pk))

Bob returns
 c, SignB(pk,c)

sk

K

We overcome this problem

• By using a twisted PRF trick.
• This trick was introduced by Fujioka et al.
• However,
 we cannot prove that
 their construction has the desired property

So

• We formulate tPRF formally
• and then give a new construction
 which satisfies our definition.

Our definition of tPRF

We say that F(k,r) is a tPRF if
• If k is a key,
• F(k,r) works as a PRF
• Even if r is used as a key,
 F(k,r) also works as a PRF

Our construction of tPRF

• Let PRF be a psudorandom function
• Let
 F((k1,k2), (r1,r2))=PRFk1(r1)+PRFr2(k2)
• Then we can prove that
 this F is a tPRF.

The construction of Fujioka et al.

 F(k, (r1,r2))=PRFk(r1)+PRFr2(k)
• We cannot prove that
 this F is a tPRF.

Remember that
in the naïve approach,

Alice generates (pk,sk)
of KEM

Alice

state-reveal query

sk

M

For a state-reveal query
Alice must return sk

In the proposed protocol,

tPRF Gen

Alice has a long-term key
 k

r
RA

(pk,sk)

She first chooses r randomly
and runs tPRF to generate RA

She next runs Gen of KEM
 to obtain (pk,sk)

Then Alice erases RA and sk

tPRF Gen

A long-term key
 k

r
RA

(pk,sk)

She keeps only r as a state

Now M cannot obtain sk

tPRF Gen

A long-term key
 k

r
RA

(pk,sk)

Because a session-state reveal query
reveals only r,
but not the long-term key k

Our 2-PASS-CK protocol

Alice

pk, SignA(pk)

Bob

She chooses r randomly
and computes
 RA:=tPRF(k,r)
 (pk, sk) := Gen(RA)

Alince has a long-term key
 k →

Our 2-PASS-CK protocol

Alice

pk, SignA(pk)

Bob

r ← random
RA=tPRF(k,r)
(pk, sk) ← Gen(RA)
Then
Alice erases (RA, sk)

k →

Our 2-PASS-CK protocol

Alice

pk, SignA(pk)

c, SignB(pk,c)

Bob

r ← random
RA=tPRF(k,r)
(pk, sk) ← Gen(RA)
Then erase (RA, sk) (c, K) := Enc(pk)

k →

Our 2-PASS-CK protocol

Alice

pk, SignA(pk)

c, SignB(pk,c)

Bob

r ← random
RA=tPRF(k,r)
(pk, sk) ← Gen(RA)
Then erase (RA, sk) (c, K) ← Enc(pk)

Alice re-computes
 RA:=tPRF(k,r)
 (pk, sk) := Gen(RA)
Finally she obtains
 K := Dec(sk,c)

k →

Theorem 2

• 2-PASS-CK protocol is CK-secure with wPFS
• if KEM is CPA-secure
• the signature scheme is unforgeable
• and tPRF is a tPRF

Adversary
M Bob

Y’

X’=X

Suppose that
the test session has a matching session

Alice

X

Y=Y’

In the CK model,
nothing is revealed to M

lskA lskB

RA RB

Alice Bob

Long-term keys

Random coins

nor

In the CK model with wPFS,

lskA lskB

RA RB

Alice Bob M can obtain

In the Extended CK (eCK) model

lskA lskB

RA RB

Alice Bob M can obtain

In the eCK model (2)
or

lskA lskB

RA RB

Alice Bob M

In the eCK model (3)
or

lskA lskB

RA RB

Alice Bob

M

In the eCK model (4)
or

lskA lskB

RA RB

Alice Bob

M

In our 2-PASS-CK protocol

RB = random coins RB is by tPRF
sk is not erased
sk is erased CK-secure with wPFS,

But not eCK-secure

RA is generated by using a tPRF.
But RB is not.

This protocol is

In our 2nd scheme,

RB = random coins RB is by tPRF
sk is not erased eCK-secure

But not CK-secure
sk is erased CK-secure with wPFS,

But not eCK-secure

This protocol is

Both RA and RB are generated by using a tPRF.
But sk is not erased.

In our 3rd scheme

RB is not tPRF RB is tPRF
sk is not erased eCK-secure,

but not CK-secure
sk is erased CK-secure with wPFS,

but not eCK-secure
CK-secure with wPFS
and eCK-secure

This protocol is

Both RA and RB are generated by using a tPRF
and sk is erased.

Our results

• Make it clear that
• there exists a clear separation
• between CK-security and eCK-security

Summary (1)

round wPFS By using
Fujioka et al. 2-pass ○ CCA-KEM
We constructed 2-pass ○ CPA-KEM

Our assumption is weaker
than Fujioka et al.

Summary (2)

Our security
1st scheme is CK-secure
2nd scheme is eCK-secure
3rd scheme is Both CK and eCK-secure

Thank you !

	S.Meiklejohn
	Q.Huang
	K.Kurosawa

