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Introduction

We describe a new approach to the compression technique of Lyuba-
shevsky et al. [8, 5] for lattice-based signatures based on the learn-
ing with errors (LWE) and short integer solution (SIS) problems. Our
main focus is to reduce the size of signatures.

The security of the signature, in the random oracle model, is based
on worst-case general lattice assumptions.

The signature size, to the best of our knowledge, is smaller than any
previous proposal for provably-secure signatures based on stan-
dard lattice problems: at the 128-bit level we improve the signature
size from more than 16500 bits [8] to around 9000 bits.
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Lattice-based cryptosystem

Lattice-based cryptosystems are often built upon the average-case
hardness of the short integer solution problem (SIS) and learning
with errors (LWE) problems.

I SIS: Given a matrix B ∈ Zn×m
q where n < m, find a “short”

vector v such that Bv ≡ 0 (mod q)

I LWE: Let χ and φ be distributions on Z. Given s← χn and
e← φm, let A be uniform over Zm×n

q . The LWE problem is to
compute the pair (s, e) given A,b where b = As+e (mod q).
LWE is well-defined if parameters are chosen properly.

The security of our signature schemes will be based on them (and
their variants).
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Related work

I A series of works by Lyubashevsky [7, 8] have developed
efficient schemes using the Fiat-Shamir paradigm in the
random oracle model. At the 100-bit security level, the
signatures are about 16500 bits.

I Güneysu, Lyubashevsky and Pöppelmann [5] described a
compression technique which further reduces the signature
size. The security depends on the Ring-SIS and DCK (an
NTRU-like variant of Ring-LWE with small parameters)
assumptions. At around the 100-bit security level, the
signatures are about 9000 bits.

I Another approach is to use the trapdoor functions and the
hash-and-sign methodology (see Gentry, Peikert and
Vaikuntanathan [4], Stehlé and Steinfeld [9]).

5 / 22



Lyubashevsky’s signature scheme [8]

Algorithm Key generation (LWE)

1: A← Zn×n
q , S← σn×k

S , E← σn×k
E

2: T ≡ AS + E (mod q)
3: return A,T

Algorithm Signing

INPUT: µ,A,T,S,E,H,B,D
OUTPUT: z1, z2, c

1: y1, y2 ← [−D,D]n

2: v ≡ Ay1 + y2 (mod q)
3: c = H (v, µ)
4: z1 = y1+Sc, z2 = y2+Ec
5: return (z1, z2, c) when
‖zi‖∞ ≤ B

Algorithm Verifying

INPUT: µ, z1, z2, c,A,T,B,H
OUTPUT: Accept or Reject

1: c′ = H (Az1 + z2 − Tc, µ)
2: if c′ = c and ‖zi‖∞ ≤ B

then
3: return “Accept”
4: else
5: return “Reject”
6: end if
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Security

Theorem (Lyubashevsky [8])

If there is a polynomial-time forger F , who makes s queries to the
signing oracle and h queries to the random oracle H, who breaks
the signature with non-trivial probability, then there exists a
polynomial-time algorithm who can solve the the search-SIS
problem (for some bound β) with non-trivial probability.

Some considerations on the security:

1. SIS: The forgery SIS problem is hard.

2. LWE: Given (A,T), keys S and E need to be secure.

3. Rejection sampling: Adversaries may attempt a statistical
analysis of the values (z1, z2, c). We need to make sure yi are
large enough so (z1, z2, c) is independent of the secrets.

4. Hash function H.
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GLP’s compression technique [5]
Instead of sending (z1, z2, c), GLP [5] uses a compression tech-
nique to send (z1, z′2, c) where z′2 is much smaller than z2 such that
R(Az1 + z2 − Tc) = R(Az1 + z′2 − Tc) where R is some truncating
(rounding) function.

Algorithm GLP Signing

INPUT:
µ,A,T,S,E,H,B,D,R,C

OUTPUT: z1, z2, c
1: y1, y2 ← [−D,D]n

2: v ≡ R(Ay1 + y2) (mod q)
3: c = H (v, µ)
4: z1 = y1 +Sc, z2 = y2 +Ec
5: z′2 = C(Az1 − Tc, z2,B)
6: return (z1, z′2, c) when
‖zi‖∞ ≤ B

Algorithm GLP Verifying

INPUT: µ, z1, z′2, c,A,T,H,B,R
OUTPUT: Accept or Reject

1: c′ = H (R(Az1 + z′2 − Tc), µ)
2: if c′ = c and ‖z1‖∞, ‖z′2‖∞ ≤

B then
3: return “Accept”
4: else
5: return “Reject”
6: end if
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Improved compression technique
At a high level, Lyubashevsky and GLP’s schemes behave like a
proof of knowledge of the pair (s, e). Our scheme proves knowl-
edge of only s. The proof of knowledge of e becomes implicit in the
verification: so no longer need to send any information about e.

I Lyubashevsky’s scheme:

I Generating y1, y2;

I Hashing H(Ay1 + y2);

I Signing z1 = y1 + Sc, z2 = y2 + Ec;

I Verifying Az1 + z2 − Tc ≡ Ay1 + y2 (mod q);

I New signature:

I Generating y1;

I Hashing H(R(Ay1));

I Signing z1 = y1 + Sc;

I Verifying R(Az1 − Tc) ≡ R(Ay1 − Ec) ≡ R(Ay1) (mod q);
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Improved compression technique and signature

I The Lyubashevsky signature needs to send is (z1, z2, c)
where zi are length n vectors.

I Signature size ≈ 2n log 2B.

I The GLP technique compresses z2 (by dropping bits in
Ay1 + y2). The signature to send is (z1, z′2, c) for a z′2 with
very small entries.

I Signature size ≈ n log 2B + 2n.

I We describe an improved “compression” technique which
drops z2 completely.

I Signature size ≈ n log 2B.
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Signature
Key generation is the same as before.

Algorithm Key generation (LWE)

INPUT: n,m, k , q, σS = σE

OUTPUT: A,T
1: A← Zm×n

q , S← σn×k
S , E← σm×k

E
2: T ≡ AS + E (mod q)
3: return A,T

For a ∈ Z and d ∈ N, let [a]2d ∈ (−2d−1, 2d−1] be such that [a]2d ≡
a (mod 2d). Define baed = (a − [a]2d )/2d (dropping the d-least
significant bits).

Let H be a hash function to binary strings c of fixed length κ, and F
be an encoding function that maps c to c (length k = n vectors of
weight w in {−1, 0, 1}).
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Signature (cont.)

Algorithm Signing

INPUT:
µ,A,T,S, d ,w , σE ,H,F,B,D

OUTPUT: (z, c)
1: y← [−D,D]n

2: v ≡ Ay (mod q)
3: c = H (bved , µ)
4: c = F(c)
5: z = y + Sc
6: w ≡ Az− Tc (mod q)
7: if |[wi ]2d | > 2d−1 − 7wσE then
8: Restart
9: end if

10: return (z, c) if ‖z‖∞ ≤ B

Algorithm Verifying

INPUT: µ, z, c,A,T,B, d ,H,F
OUTPUT: Accept or Reject

1: c = F(c)
2: w ≡ Az− Tc (mod q)
3: c′ = H (bwed , µ)
4: if c′ = c and ‖z‖∞ ≤ B

then
5: return “Accept”
6: else
7: return “Reject”
8: end if
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Security

Theorem

Let parameters n,m, d , κ,B, q be such that

(2B)nqm−n ≥ (2d+1)m2κ. (1)

Let A be a forger against the signature scheme. Then A can be
turned into either of the following two algorithms:

1. an algorithm that solves some decisional-LWE problem.

2. an algorithm that solves some search SIS problem: Given an
m× (n +m) matrix A′ to find a length n vector y1 and a length
m vector y2 such that ‖y1‖∞, ‖y2‖∞ ≤ max(2B, 2d−1)+2E ′w
and A′(y1

y2
) ≡ 0 (mod q) where E ′ satisfies

(2E ′)m+n ≥ qm2κ. (2)

13 / 22



Sketch of proof

Our proof follows the logic of Lyubashevsky’s framework in [8].

I First, one simulates the signing algorithm in the random
oracle model (using the rejection sampling lemma). Note we
consider an adaptive security setting and hence need to
handle sign queries for the adversaries.

I Second, one uses the forking lemma (by rewinding the forger)
to get two signatures on the same message.
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Sketch of proof: simulation of signing
Algorithm Simulation of signing

INPUT: µ,A,T,D,B, d ,w , σE ,H,F
OUTPUT: (z, c)

1: choose uniformly a κ-bit binary string c
2: c = F(c)
3: z← [−D,D]n

4: w ≡ Az− Tc (mod q)
5: if |[wi ]2d | > 2d−1 − 7wσE then
6: Restart
7: end if
8: if H has already been defined on (bwed , µ) then
9: Abort game

10: else
11: Program H(bwed , µ) = c
12: end if
13: return (z, c) if ‖z‖∞ ≤ B
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Sketch of proof: simulation of signing (cont.)

The simulation and true signing algorithm are computationally in-
distinguishable.

Notes:

I Line 8, the occurrence of “H has already been defined on
(bwed , µ)” is negligible: if Equation (1) holds, then the
probability that two values y1, y2 sampled uniformly from
[−B,B]n give the same bAy (mod q)ed value is at most 1/2κ;

I Line 13 uses a variant of rejection sampling lemma;
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Sketch of proof: alternative keys

Equation (2):
(2E ′)m+n ≥ qm2κ.

is required since the reduction (to SIS) requires existence of alter-
native keys. There needs to exist at least two independent pairs
(S,E), (S̃, Ẽ) such that T ≡ AS + E ≡ AS̃ + Ẽ (mod q).

Algorithm Alternative key generation in the simulation
INPUT: n,m, k , q, σ′S(= σ′E)� σS = σE

OUTPUT: A,T
1: A← Zm×n

q , S← σn×k
S′ , E← σm×k

E ′

2: T ≡ AS + E (mod q)
3: return A,T

The forger can not tell (computationally) which algorithm generates
A,T (decisional-LWE problem).

17 / 22



Parameters

Table: Parameters for LWE Signatures using Uniform Distributions (more
than 128 bit security).

I II III IV
n 576 512 512 400
m 969 945 1014 790
w 2w ·

(k
w

)
≥ 2128 18 19 19 20

Approx. log2(q) 33.10 30.84 32.66 28.71
κ 132 132 132 132
σE 68 66 224 70
σS 68 66 224 70
log2(B) 14σSc(n − 1) 21.15 20.97 22.74 20.74
2d 224 224 226 224

Prob. accept. in
(
1− 14σEw/2d)m

0.371 0.372 0.406 0.397
line 7 of Alg .

Signature (bits) ndlog2(2B)e+ κ 13380 11396 12420 8932
Public key (Mb) 2mn log2(q) 4.4 3.6 4.0 2.2
Signing key (Mb) 2mn log2(4σS) 1.0 0.9 1.2 0.6
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Practical security of parameters

To evaluate the security of the parameters against practical lattice
attacks, we consider the LWE problem for the secret key and the
SIS problem in the forgery (using Chen and Nguyen’s BKZ 2.0 [2]
estimate).

I Solving the LWE instances in (A,b ≡ As + e (mod q)):

I CVP problem in the lattice {v ∈ Zm : v ≡ As (mod q)}.

I Inhomogeneous SIS problem b = (A|Im)(sT , eT )T (mod q).

I Liu and Nguyen’s enumeration [6]: choose σE to be large.

I The forgery security depends on a SIS problem where the
short vector has entries bounded by max(2B, 2d−1) + 2E ′w .
We can evaluate the security using the BKZ 2.0.
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Conclusion

We have described a new approach for compressing the lattice-
based signatures. The new signature scheme, together with the
compression, is based on the standard average-case hardness of
LWE and SIS (and hence worse-case hardness of SVP/SIVP) in
general lattices.

Some further considerations:

I LWE with small secrets and/or non-standard LWE;

I Sampling vectors y from Gaussian (or bimodal Gaussian [3]);

I Signatures based on ring-variants.
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Thank you for your attention.

Questions and comments?
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#RSAC 

Basics on Elliptic Curve Scalar Multiplication 

Let an elliptic curve 𝐸:  𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be defined over the prime field 𝔽𝑝, 
such that #𝐸 = ℎ. 𝑟 with small co-factor ℎ and large prime order 𝑟. 

 

 The central operation in ECC, known as scalar multiplication, consists on 
computing the multiple 𝑘 𝑃 of a point 𝑃 ∈ 𝐸(𝔽𝑝), given an integer 𝑘 ∈ [1, 𝑟). 

 Naïvely, 𝑘 𝑃 = 𝑃 + 𝑃 + ⋯+ 𝑃  (𝑘 times). 
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#RSAC 

Basics on Elliptic Curve Scalar Multiplication 

Assume that the point 𝑃 is unknown before the computation.  

 

 𝑘 𝑃 can be computed using a (signed) binary representation, e.g., non-
adjacent form (NAF): 

𝑘 = (𝑘𝑙 , … , 𝑘0)NAF , where 𝑙 = log2(𝑘)  and 𝑘𝑖 ∈ 0, ±1 . 

 Then, one applies a double-and-add algorithm. 
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#RSAC 

Basics on Elliptic Curve Scalar Multiplication 

 

 

 

 

 The cost is given by (𝑙 + 1) point doublings and, in average, (𝑙 + 1)/3 point additions. 

 Extending the use of windowing reduces the number of additions to 𝑙+1
𝑤+1

 with 𝑤 ≥ 2. 

 BUT, the conditional execution makes it vulnerable to timing attacks (and others).  
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Given 𝑘 = (𝑘𝑙 , … ,𝑘0)NAF and point 𝑃 ∈ 𝐸(𝔽𝑝) 
1. 𝑄 = D 
2. for   𝑖 = 𝑙  downto  0  do 
3.      𝑄 = 2 𝑄 
5.      if  𝑘𝑖 ≠ 0, then  𝑄 = 𝑄 + 𝑠𝑖𝑃            {𝑠𝑖  is the sign of 𝑘𝑖} 
7. end for 
8. return (𝑄) 



#RSAC 

Constant-time Elliptic Curve Scalar Multiplication 

 

 

 

 

Using the fixed-window method [Okeya and Takagi, CT-RSA 2003]:  

 Represent odd scalar 𝑘 with a fixed length representation (𝑘𝑡 , … , 𝑘0)𝑓𝑖𝑓𝑓𝑓−𝑤 , where 
𝑡 = log2(𝑟)

𝑤−1
 and 𝑘𝑖 ∈ ±1, ±3, … , ±(2𝑤−1 − 1) . 

 The cost is given by 𝑡 ∙ (𝑤 − 1) point doublings and 𝑡 point additions (plus precomputation). 
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Given 𝑘 = (𝑘𝑡, … ,𝑘0)𝑓𝑖𝑓𝑓𝑓−𝑤 and point table 𝑃 𝑗 = 1,3, … , 2𝑤−1 − 1 𝑃 
1. 𝑄 = 𝑃[( 𝑘𝑡 − 1) 2⁄ )] 
2. for   𝑖 = (𝑡 − 1)  downto  0  do 
3.      𝑄 = [2𝑤−1]𝑄 
5.      𝑄 = 𝑄 + 𝑠𝑖𝑃[( 𝑘𝑖 − 1) 2⁄ )]            {𝑠𝑖  is the sign of 𝑘𝑖} 
7. end for 
8. return (𝑄) 



GLV-Based  
Scalar Multiplication 



#RSAC 

GLV-Based Elliptic Curve Scalar Multiplication 

Given a point 𝑃 ∈ 𝐸(𝔽𝑝), an integer 𝑘 ∈ [1, 𝑟) and an efficiently computable 
endomorphism φ, the Gallant-Lambert-Vanstone (GLV) method computes 

𝑘 𝑃 = 𝑘0 𝑃 + 𝑘1 φ(𝑃), 

 where max(|𝑘0|,|𝑘1|) = D( 𝑟) . 

 

 Using simultaneous multi-scalar multiplication, the number of doublings is cut 
to half. E.g., it costs roughly (𝑙 + 1)/2 point doublings and (𝑙 + 1)/3 point 
additions when using NAF. 
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#RSAC 

GLV-Based Elliptic Curve Scalar Multiplication 

 φ is a nontrivial endomorphism defined over 𝔽𝑝 with characteristic polynomial  
𝑋2 + 𝑢𝑋 + 𝑣, where  △ = 𝑢2 −4𝑣 < 0. 

 φ 𝑃 = &𝑃, where &∈ 1, 𝑟 − 1  is a root of the char polynomial of φ modulo 𝑟. 

 By solving a closest vector problem in a lattice, one can get values 𝑘0, 𝑘1  
such that 𝑘 = 𝑘0 + 𝑘1&xxxxxxxxxxxxxxxxxxxxxxxx (mod 𝑟), or equivalently, 𝑘 𝑃 = 𝑘0 𝑃 + 𝑘1 φ(𝑃). 

 Recent advances extend GLV from two dimensions to four when working over 
a quadratic extension field 𝔽𝑝2 (this is discussed later). 
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#RSAC 

Constant-time GLV Scalar Multiplication (first attempt) 

 

 

 

Using the fixed-window method:  

 Represent odd scalars 𝑘𝑖 with a fixed length representation (𝑘𝑖,𝑡 , … ,𝑘𝑖,0)𝑓𝑖𝑓𝑓𝑓−𝑤 , where 
𝑡 = log2(𝑟)

𝑚∙(𝑤−1)
 and 𝑘𝑖,𝑗 ∈ ±1, ±3, … , ±(2𝑤−1 − 1) . 

 The cost is given by 𝑡 ∙ (𝑤 − 1) point doublings and 𝑡 point additions. 

 Computing the 𝑚 tables 𝑃[𝑖] 𝑗  costs 𝑚 doublings and 𝑚 ∙ (2𝑤−2 − 1) additions. 

10 

(𝑚-dimension GLV) Given 𝑚 scalars 𝑘𝑖 = (𝑘𝑖,𝑡, … ,𝑘𝑖,0)𝑓𝑖𝑓𝑓𝑓−𝑤 and point table 
𝑃[𝑖] 𝑗 = 1,3, … , 2𝑤−1 − 1 𝑃[𝑖], for 𝑚 base points 𝑃[𝑖] and 𝑗 ∈ {0,1, … , 2𝑤−2 − 1}  
1. 𝑄 = ∑ 𝑃[𝑖][(|𝑘𝑖,𝑡| − 1) 2⁄ )]𝑖                                                                                           . 
2. for   𝑗 = (𝑡 − 1)  downto  0  do 
3.      𝑄 = [2𝑤−1]𝑄 
4.      𝑄 = 𝑄 + ∑ 𝑠𝑖,𝑗𝑃[𝑖][(|𝑘𝑖,𝑗| − 1) 2⁄ )]𝑖               {𝑠𝑖,𝑗  is the sign of 𝑘𝑖,𝑗} 
5. end for 
6. return (𝑄) 
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Representation 



#RSAC 

Least Significant Bit - Set (LSB-set) representation 

Feng, Zhu, Xu and Li, 2005: 

 Partition an odd scalar  𝑘 in 𝑤 consecutive parts of 𝑑 = log2(𝑟)
𝑤

 bits each, 
padding with (𝑑𝑤 − 𝑡) zeroes to the left. 

 Recode first 𝑑 bits to signed nonzero digits 𝑏𝑖 using 1 → 11�1�…1�  (1� = −1). 

 Recode remaining bits 𝑏𝑖 such that 𝑏𝑖 ∈ {0, 𝑏𝑖 mod 𝑓}. 

 Feng et al. exploits this representation for computing 𝑘 𝑃 with 𝑃 fixed using 
comb methods. 
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#RSAC 

Adapting LSB-set to the GLV setting:  
GLV Signed-Aligned Column (GLV-SAC) representation 
 

Given 𝑚 scalars 𝑘𝑗 for 𝑚-GLV scalar multiplication and 𝑙 = log2(𝑟)
𝑚

+ 1: 

 Pad each 𝑘𝑗 with zeroes to the left such that each one has bit-length 𝑙.  

 Take one 𝑘𝐽 ⊂ 𝑘𝑗, convert it to odd and recode it to signed nonzero digits 𝑏𝑖 
using 1 → 11�1�…1� : 

𝑘𝐽 = (𝑏𝑙−1
𝐽 , … , 𝑏0

𝐽), where 𝑏𝑖
𝐽 ∈ ±1 . 

 Recode remaining scalars 𝑘𝑗 such that 𝑏𝑖
𝑗 ∈ {0, 𝑏𝑖

𝐽}. 
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#RSAC 

GLV-Based Scalar Multiplication using GLV-SAC 

 

 

 

 

 

 The main loop costs (𝑙 − 1) = log2(𝑟)
𝑚

 point doublings and (𝑙 − 1) point additions. 

 Computing the table 𝑃[𝑢] costs (2𝑚−1 − 1) additions. 
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(𝑚-dimension GLV) Given 𝑚 scalars such that: 𝑘0 is recoded as (𝑏𝑙−10 , … , 𝑏00), where 𝑏𝑖0 ∈ ±1  and 
remaining 𝑘𝑗  are recoded as (𝑏𝑙−1

𝑗 , … , 𝑏0
𝑗), where 𝑏𝑖

𝑗 ∈ {0, 𝑏𝑖0}. 
1. Precompute 𝑃 𝑢 = 𝑃0 + 𝑢0𝑃1 + ⋯+ 𝑢𝑚−2𝑃𝑚−1 for all 0 ≤ 𝑢 < 2𝑚−1, where 𝑢 = (𝑢𝑚−2, … ,𝑢0)2 
2. 𝑄 = 𝑠𝑙−1𝑃[𝐾𝑙−1].                               {𝐾𝑖 = 𝑏𝑖1 + 𝑏𝑖2 ∙ 2 + ⋯+ 𝑏𝑖𝑚−1 ∙ 2𝑚−2} 
3. for   𝑖 = (𝑙 − 2)  downto  0  do 
4.      𝑄 = [2]𝑄 
5.      𝑄 = 𝑄 + 𝑠𝑖𝑃[𝐾𝑖].                          {𝑠𝑖 is the sign of 𝑏𝑖0} 
6. end for 
7. return (𝑄) 
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GLV-Based Scalar Multiplication using GLV-SAC 

 Example: let 𝑚 = 3, log2 𝑟 = 9 and 𝑘 𝑃 = 11𝑃0 + 2𝑃1 + 5𝑃2. Then 
𝑙 = 9

3
+ 1 = 4, and the GLV-SAC representation is given by: 

 𝑘0
𝑘1
𝑘2

=
1
0
0

   
1 1�
1
1

1
0
�    

1
0
1

 

 

 Precomputed values are: 𝑃 0 = 𝑃0, 𝑃 1 = 𝑃0 + 𝑃1, 𝑃 2 = 𝑃0 + 𝑃2, 𝑃 3 =
𝑃0 + 𝑃1 + 𝑃2 . 

 Computation: 2𝑃0 + 𝑃0 + 𝑃1 + 𝑃2 → 2 3𝑃0 + 𝑃1 + 𝑃2 − 𝑃0 + 𝑃1 →
2 5𝑃0 + 𝑃1 + 2𝑃2 + 𝑃0 + 𝑃2 = 11𝑃0 + 2𝑃1 + 5𝑃2 . 
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GLV-Based Scalar Multiplication using GLV-SAC 

 Total cost using fixed-window: (𝑙 + 𝑚 − 1) point doublings and 𝑚 ∙ 𝑙−1
𝑤−1

+
2𝑚 − 1 + 𝑚 ∙ (2𝑤−2 − 1) point additions, using 𝑚 ∙ (2𝑤−2 + 1) points. 

 Total cost of the new method: (𝑙 − 1) point doublings and (𝑙 + 2𝑚−1 − 1) point 
additions, using 2𝑚−1 points. 

 E.g., 𝑟 = 256,𝑚 = 4,𝑤 = 5 (typical parameters for 128-bit security) : 

 Fixed-window: 68 doublings and 99 additions using 36 points 

 New method: 64 doublings and 72 additions using 8 points 

20% speedup using only ~1/5 of storage (assuming one addition = 1.3 doubling) 
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Implementation on 
GLV-GLS Curves 
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Selected Curve 

Longa and Sica, ASIACRYPT 2012: 
 GLV-GLS curve in Twisted Edwards form  𝐸𝐸 𝔽𝑝2� :   −𝑥2 + 𝑦2 =

1 + 𝑑𝑥2𝑦2, where  𝑝 = 2127 − 5997, #𝐸𝐸(𝔽𝑝)  = 8𝑟 , where 𝑟 is a 251-
bit prime, with 𝑑 = 170141183460469231731687303715884099728 

+ 116829086847165810221872975542241037773𝑖. 

 This curve supports a 4-GLV decomposition: 

𝑘 𝑃 = 𝑘0 𝑃 + 𝑘1 Φ(𝑃) + 𝑘2 Ψ(𝑃) + 𝑘3 ΨΦ(𝑃), 
 where  max

𝑖
(|𝑘𝑖|)<179 𝑛1 4⁄  . 
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Efficient Implementation on ARM:  
Interleaving ARM and NEON instructions over GF(𝑝2)   

 

 Strategy: interleave independent NEON-based and ARM-based integer 
operations and reductions to exploit instruction level parallelism (ILP). 

 An example with multiplication over 𝔽𝑝2:  𝐶 = (𝑎0 + 𝑖𝑎1) × (𝑏0 + 𝑖𝑏1) 

𝐶0 = 𝑎0 × 𝑏0 − 𝑎1 × 𝑏1,  𝐶1 = 𝑎0 + 𝑎1 𝑏0 + 𝑏1 − 𝑎0 × 𝑏0 − 𝑎1 × 𝑏1. 

 

 Independent integer multiplies 𝑎0 × 𝑏0, 𝑎1 × 𝑏1 and 𝑎0 + 𝑎1 𝑏0 + 𝑏1  can be 
computed in “parallel”. 
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Efficient Implementation on ARM:  
Interleaving ARM and NEON instructions over GF(𝑝2)   

 
 Over 𝔽𝑝2 we designed: 

 A double integer multiply: one NEON-based, one ARM-based 

 A triple integer multiply: two NEON-based, one ARM-based  

 A double reduction: one NEON-based, one ARM-based 
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Efficient Implementation on ARM:  
Interleaving ARM and NEON instructions over GF(𝑝2)   

21 

𝑎 = 𝑎𝑖 , 𝑏 = 𝑏𝑖 ,  𝑐 = 𝑐𝑖 ,  𝑑 = 𝑑𝑖 ,  𝑒 = 𝑒𝑖 ,  𝑓 = 𝑓𝑖 , for 𝑖 ∈ {0,1,2,3}  
1. 𝐹,𝐺,𝐻 = (0, 0, 0) 
2. for   𝑖 = 0  downto  3  do 
3.      𝐶0,𝐶1,𝐶2 = (0, 0, 0) 
4.      for   𝑗 = 0  downto  3  do 
5.            𝐶0,𝐹𝑖+𝑗 ,𝐶1,𝐺𝑖+𝑗 = (𝐹𝑖+𝑗 + 𝑎𝑗𝑏𝑖 + 𝐶0,𝐺𝑖+𝑗 + 𝑐𝑗𝑑𝑖 + 𝐶1)           {done by NEON} 
6.      for   𝑗 = 0  downto  3  do 
7.            𝐶2,𝐻𝑖+𝑗 = 𝐻𝑖+𝑗 + 𝑒𝑗𝑓𝑖 + 𝐶2                                                                {done by ARM} 
8.      𝐹𝑖+4,𝐺𝑖+4,𝐻𝑖+4 = (𝐶0,𝐶1,𝐶2) 
9. return 𝐹,𝐺,𝐻 = (𝑎 × 𝑏, 𝑐 × 𝑑, 𝑒 × 𝑓) 

 Triple 128-bit integer multiplication with ARM/NEON interleaving: 
 



Experimental Results 
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Comparison of Constant-Time Implementations 
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Curve ARM 
Cortex-A9 

ARM 
Cortex-A15 

Intel 
Sandy Bridge 

Intel 
Ivy Bridge 

TEdwards (𝔽𝑝2), 4-GLV (this work) 417,000cc 244,000cc 96,000cc 92,000cc 

TEdwards (𝔽𝑝2), 4-GLV, Longa-Sica 2012 - - 137,000cc - 

Binary GLS (𝔽2254), Olivera et al. 2013 - - 115,000cc 113,000cc 

Genus 2 Kummer (𝔽𝑝), Bos et al. 2013 - - 126,000cc 117,000cc 

Curve25519 (𝔽𝑝), Bernstein et al. 2011 - - 194,000cc 183,000cc 

Curve25519 (𝔽𝑝), Bernstein et al. 2012  568,000cc - - - 

Montgomery (𝔽𝑝), Hamburg 2012 616,000cc - 153,000cc - 
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Related work I   
 

 Extended paper version: http://eprint.iacr.org/2013/158 
 Covers (side-channel protected) fixed-base scalar multiplication and 

double scalar multiplication (for signature verification) 
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Related work II   
 New elliptic curves for cryptography, including rigorous analysis from an efficiency and 

security perspective: http://eprint.iacr.org/2014/130  
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Questions? 

Patrick Longa 
Microsoft Research 
http://research.microsoft.com/en-us/people/plonga/ 
@PatrickLonga 
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