A generic view on trace-and-revoke broadcast encryption schemes

Dennis Hofheinz and Christoph Striecks

Karlsruhe Institute of Technology, Germany

Overview

- New generic view on trace-and-revoke schemes from (generic) Extended DDH (EDDH) assumption [HO12]
- 1st result: EDDH-based threshold PKE/signatures, revocation schemes (extends [Wee11])
- 2nd result: (mild) traceability of EDDH-based revocation schemes
- 1st + 2nd: new (generic view of) EDDH-based trace-and-revoke schemes

Broadcast encryption [FN93]

Goal: est. a shared symm. key betw. sender and privileged set S of users,
say, $S=\{1,2,4,6\} \subseteq\{1, \ldots, 6\}$
$(p k, s k 1, \ldots)=\operatorname{Gen}\left(1^{k}, N=6\right)$

Trivial system:	$\|C\|=O(\|S\|)$	$\|s k\|=O(1)$
[e.g.,BGW05*,D07,SF07,PPSS13,BZ13]:	\mid C $\mid=O(1)$	$\|\mathrm{pk}\|=O(1)$
[GW09,PPSS13,BZ13]:	adapt. security	

* provide also a system with $|\mathrm{C}|=\mathrm{O}(\sqrt{ } \mathrm{N})$ and $|\mathrm{pk}|=\mathrm{O}(\sqrt{ } \mathrm{N})$

Our focus: revocation schemes

Consider a set of revoked users, say, $R=\{3,5\}$

$$
(\mathrm{pk}, \mathrm{sk} 1, \ldots)=\operatorname{Gen}\left(1^{\mathrm{k}}, 1^{\mathrm{t}}, \mathrm{~N}=6\right)
$$

* only secret-key schemes; parameters improved by [GST04]

Generic revocation schemes and threshold extractable hash proof systems [Wee11]

- Previous revocation schemes use Shamir's secret sharing (i.e., Lagrange interpolation) in the exponent [e.g.,NPOO]
- [W11] gives a simple and elegant view of revocation schemes using TEHPSs
- $\operatorname{Gen}\left(1^{k}, 1^{t}, N\right)$

$$
\begin{aligned}
& \mathrm{pk}=\mathrm{g}^{\mathrm{a}_{0}}, \mathrm{~g}^{\mathrm{a}_{1}}, \ldots, \mathrm{~g}^{\mathrm{a}_{\mathrm{t}}} \\
& \text { sec. polyn. } f(\mathrm{x})=\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}+\ldots+\mathrm{a}_{\mathrm{t}} \mathrm{x}^{\mathrm{t}} \\
& \text { sk }_{\mathrm{j}}=\mathrm{f}(\mathrm{j}), \mathrm{j} \in[\mathrm{~N}]
\end{aligned}
$$

- $E(p k, R)$:

$$
\begin{aligned}
& C=\left(R, u,\left(u^{f(i)}\right)_{i \in R}\right), u=g^{r}, \text { rand. } r,|R|=t \\
& K=G\left(u^{f(0)}\right)
\end{aligned}
$$

- D(sk $\left.j_{j} C\right)$: $\quad j \notin R$: with $u^{s k_{j}}=u^{f(j)}$, all $\left(u^{f(i)}\right)_{i \in R}$, interpol. $u^{f(0)}$
for Lagr. coeff. $L_{j}(0)=\prod \frac{-i}{j-i}$
$K=G\left(u^{f(0)}\right)$
- Depending on G, this yields rev. schemes from factoring, CDH, and DDH

1st result: slightly different view of [W11]

- Based on Extended DDH assumpt. [HO12] (which general. DDH, DCR):

$$
\begin{aligned}
& \left(g, g^{a}, g^{r}, g^{a \cdot r}\right) \approx\left(g, g^{a}, g^{r}, g^{\mathrm{a} \cdot \mathrm{r}} \cdot h\right) \\
& \text { for } G^{\prime}, \mathrm{H} \subseteq G, \text { rand. } g \in G^{\prime}, h \in H, \exp . a, r
\end{aligned}
$$

- But now: order of G' might be unknown (i.e., with DCR); hence, difficult to interpolate in the exponent, i.e.,

$$
\text { how to compute Lagr. coeff. } L_{j}(0)=\prod \frac{-i}{j-i} \text { in the exponent? }
$$

- Solution: "clearing the denominator in the exponent" [S00], i.e.,

$$
\text { use } \mathrm{D}=\operatorname{lcm}\left\{\prod_{\mathrm{i}, \mathrm{j}, \mathrm{i} \neq \mathrm{j}}(\mathrm{j}-\mathrm{i})\right\} \text { s.t. } \mathrm{DL}_{\mathrm{j}}(0) \text { is an integer }
$$

- As a result: we derive EDDH-based TEHPSs, i.e., EDDH-based threshold PKE/signatures, revocation schemes

In detail: EDDH-based rev. schemes

$\cdot \operatorname{Gen}\left(1^{k}, 1^{t}, N\right): \quad p k=g^{a_{0}}, g^{a_{1}}, \ldots, g^{a_{t}}$ with sec. polyn. $f(x)=a_{0}+a_{1} x+\ldots+a_{t} x^{t}$

$$
\mathrm{sk}_{\mathrm{j}}=\mathrm{f}(\mathrm{j}), \mathrm{j} \in[\mathrm{~N}]
$$

- $E(p k, R):$

$$
\begin{aligned}
& \mathrm{C}=\left(\mathrm{R}, \mathrm{u}_{1},\left(\mathrm{u}_{1}^{\mathrm{f}(\mathrm{i})}\right)_{\mathrm{i} \in \mathrm{R}}, \mathrm{u}_{2}\right), \mathrm{u}_{1}=\mathrm{g}^{\mathrm{r}}, \mathrm{u}_{2}=\mathrm{u}_{1}^{\mathrm{f}(0)} \cdot \mathrm{h}, \text { rand. } \mathrm{r}, \mathrm{~h} \\
& \mathrm{~K}=\mathrm{G}(\mathrm{~h})
\end{aligned}
$$

- D(sk $\left.j_{j} C\right)$: $\quad j \notin R$: with $u_{1}^{s k_{j}}=u_{1}^{f(j)}$, all $\left(u_{1}^{f(i)}\right)_{i \in R}$, interpol. $u_{1}^{f(0)}$

$$
\begin{aligned}
& \text { for Lagr. coeff. } \mathrm{L}_{\mathrm{j}}(0)=\prod \frac{-\mathrm{i}}{\mathrm{j}-\mathrm{i}} \\
& \text { and } \mathrm{D}=\operatorname{lcm}\left\{\prod_{\mathrm{i}, \mathrm{j}, \mathrm{i} \neq \mathrm{j}}(\mathrm{j}-\mathrm{i})\right\} \text { such that }
\end{aligned}
$$

$$
\left(\left(\prod \mathrm{u}_{1}^{\mathrm{DL},(0) f(\mathrm{j}}\right)^{-1} \cdot \mathbf{u}_{2}^{\mathrm{D}}\right)^{\mathrm{D}^{-1} \bmod \mathrm{n}}=\mathrm{h}
$$

$$
K=G(h)
$$

- Special case: yields DCR-based rev. schemes (uses a potential stronger assumpt. than Wee's fact.-based inst. but, via our 2nd result, yields new DCR-based trace-and-revoke schemes, which is not known from factoring)

Traceability [CFN94]

- Ability to trace a pirate dec. box back to its (corrupt.) creator(s)

```
[e.g.,NP98,BF99,GSY99,NP00,NNL01,TT01,KY01b,KY02,HS02,DF02,DF03,
KHL03,DFKY05,BSW06,BW06,JL07,FA08,KP09,AKPS12,...]
```

- Here, consider traceability model in the rev. setting:

A wins iff $Q>e$ and A never queried a secret key for i;
rev. system is traceable iff $\operatorname{Pr}[\mathrm{A}$ wins] $=$ negl.

- Results in trace-and-revoke schemes (non-trivial to achieve [BW06])

Traceability in our concrete setting

- Observation: decryption of ciphertext C, where (C, K) $=E(p k, R)$, does not depend on a user secret key (i.e., $D\left(\mathrm{sk}_{j}, \mathrm{C}\right)=\mathrm{K}$, for all $\mathrm{j} \notin \mathrm{R}$)
- Thus: we have to generate random ciphertexts
- But: these ciphertexts must be indistinguishable to real ctexts for B
- Further: B might only decrypt correctly down to some threshold e
- Previous work: [TT01] assumes $\mathrm{e}=1$ and no adv. chosen R while [DFKY05] considered diff. scheme

2nd result: our tracing strategy of rev. instances

- Consider random ciphertexts in the EDDH-based rev. setting:

$$
\mathrm{C}_{\mathrm{rnd}}=\left(\mathrm{R}, \mathrm{u}_{1},\left(\mathrm{u}_{1}^{\mathrm{f}(\mathrm{i})} \mathrm{h}^{\mathrm{z}_{\mathrm{i}}}\right)_{\mathrm{i}}, \mathrm{u}_{1}^{\mathrm{f}(0)} \mathrm{h}^{\mathrm{z}_{0}}\right) \text {, for uniform } \mathrm{h} \in \mathrm{H}, \mathrm{z}_{\mathrm{i}}, \mathrm{z}_{0}
$$

- Under EDDH, $\mathrm{C}_{\text {rnd }}$ is indistinguishable from real ciphertexts (but only for one sk in B !)
- Thus, adapt to allow more sks in B:

$$
\mathrm{C}_{\mathrm{rnd}}^{\mathrm{I}}=\left(\mathrm{R}, \mathrm{u}_{1},\left(\mathrm{u}_{1}^{\mathrm{f}(\mathrm{i})} \mathrm{h}^{\mathrm{f}^{\prime}(\mathrm{i})}\right)_{\mathrm{i}}, \mathrm{u}_{1}^{\mathrm{f}(0)} \mathrm{h}^{\mathrm{f}^{\prime}(0)}\right) \text {, with } \mathrm{f}^{\prime}(\mathrm{i})=0 \text { for } \mathrm{i} \in \mathrm{I}
$$

- $\mathrm{C}_{\text {rnd }}^{\prime}$ is indist. to a real ciphertext (even when knowing sks for set I)
- Task: find "suspect set" I; unfort., only eff. for polyn. values of $\binom{\mathrm{N}}{\mathrm{T}}$ with number of traitors $\mathrm{T} \leq(\mathrm{t}+1) / 2$

More on our tracing strategy

- If I is found, use standard techniques [e.g.,BF99,NNL01,TT01,KY02, DFKY05,BSW06]:

- 1st run: B will decrypt correctly with probability e (i.e., B cannot dist. random from real ciphertexts)
- 2nd run: remove one l-element j and try again with set $\mathrm{I}=\mathrm{I} \backslash\{\mathrm{j}\}$ (if B has no $\mathrm{sk}_{\mathrm{j}}, \mathrm{B}$ does not notice)
- i-th run: if decryption quality drops, we must have removed a traitor

Putting the pieces together

- 1st result: EDDH-based TEHPSs (extends [W11]), i.e., threshold PKE/signatures, revocation schemes from the EDDH assumption
- 2nd result: (mild) traceability of the EDDH-based revocation instances
- 1st + 2nd: new (generic view on) EDDH-based trace-and-revoke schemes which explains (known) DDH-based and (new) DCR-based constructions
- Open problem: not known if factoring-based revocation instances of [W11] are traceable

RS^CONFERENCE2014

FEBRUARY $24-28 \mid$ MOSCONE CENTER | SAN FRANCISCO

Broadcast Steganography

or

How to Broadcast a Secret Covertly

SESSION ID: CRYP-T08

Nelly Fazio

The City College of CUNY fazio@cs.ccny.cuny.edu

Antonio R. Nicolosi
Stevens Institute of Technology nicolosi@cs.stevens.edu

Irippuge Milinda Perera
The Graduate Center of CUNY iperera@gc.cuny.edu

Without Crypto

Without Crypto

Without Crypto

Without Crypto

With Encryption

With Encryption

With Encryption

With Encryption

With Encryption

With Steganography

With Steganography

With Steganography

RS^CONFERENCE2014

With Steganography

With Steganography

With Broadcast Steganography [This Work]

With Broadcast Steganography [This Work]

RSACONFERENCE 2014

With Broadcast Steganography [This Work]

RSACONFERENCE2014

With Public-Key Broadcast Steganography [This Work]

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

O Broadcast Steganography (BS)
O Constructions
O Summary

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

○ Broadcast Steganography (BS)
O Constructions
O Summary

The Setting

The Setting

The Setting

RS^CONFERENCE2014

The Setting

The Setting

The Setting

The Setting

MPK

History

The Setting

The Security Model

1. Chosen-Covertext Attack (BS-IND-CCA)

- Analogous to BE-IND-CCA model
- Adversary is allowed to corrupt users
- Adversary is also given access to a decoding oracle

2. Publicly-Detectable Replayable Chosen Covertext Attack (BS-IND-PDR-CCA)

- Similar to BS-IND-CCA, but with stricter restrictions on allowable decoding queries

3. Chosen-Hiddentext Attack (BS-IND-CHA)

- Analogous to BE-IND-CPA model
- Adversary is only allowed to corrupt users
- No decoding queries

RS^CONFERENCE2014

FEBRUARY $24-28 \mid$ MOSCONE CENTER | SAN FRANCISCO
© Broadcast Steganography (BS)

- Constructions

O Summary

Realizing Broadcast Steganography

- Encrypt-then-Embed Paradigm [HLvA02, BaCa05]

Realizing Broadcast Steganography

- Encrypt-then-Embed Paradigm [HLvA02, BaCa05]

> Embed (rejection-sampling)

1. Let H be a strongly universal hash function
2. Break the ciphertext c into bits $c_{1}, c_{2}, \ldots, c_{1}$
3. To embed c_{i}, sample s_{i} from the channel until $H\left(s_{i}\right)=c_{i}$
4. Output $s=s_{1}\left\|s_{2}\right\| \cdots \| s_{1}$

Realizing Broadcast Steganography

- Encrypt-then-Embed Paradigm [HLvA02, BaCa05]

> Extract

1. Break the stegotext s into documents $s_{1}, s_{2}, \ldots, s_{1}$
2. Set $c_{i}=H\left(s_{i}\right)$
3. Output $c=c_{1}\left\|c_{2}\right\| \cdots \| c_{1}$

Broadcast Encryption + Encrypt-then-Embed = Broadcast Steganography?

- Encrypt-then-Embed requires pseudorandom ciphertexts ...
- ... but, Broadcast ciphertexts have structure

header	body

broadcast ciphertext format

- Neither header nor body is pseudorandom

Outsider-Anonymous Broadcast Encryption [FaPe12]

- Motivation: Anonymous Broadcast Encryption with short ciphertexts
\& A fully anonymous ciphertext length is subject to a linear lower bound [KiSa12]
\& In some applications, content may give recipient set away
\Rightarrow Suffices to protect anonymity of receivers from outsiders
- Outsider-Anonymity in Broadcast Encryption
\& Trades some degree of anonymity for better efficiency
\& Allows constructions with sub-linear ciphertext length

oABE Encryption in [FaPe12]

- Encrypt(S, m)

1. Group users in S into S^{\prime}, a set of disjoint subsets \& $\left|S^{\prime}\right|$ is sub-linear in $|S|$
2. Generate a ciphertext c_{i} for each s_{i} in S^{\prime} (using anonymous IBE)
3. Attach a tag t_{i} to each c_{i} (for efficient decryption at the receivers)
4. Bundle all $\left(\mathrm{t}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}\right)$ components using one-time signature

oABE Encryption in [FaPe12]

- Encrypt(S, m)

1. Group users in S into S^{\prime}, a set of disjoint subsets \& $\left|S^{\prime}\right|$ is sub-linear in $|S|$
2. Generate a ciphertext c_{i} for each s_{i} in S^{\prime} (using anonymous IBE)
3. Attach a tag t_{i} to each c_{i} (for efficient decryption at the receivers)
4. Bundle all $\left(\mathrm{t}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}\right)$ components using one-time signature

oABE Encryption in [FaPe12]

- Encrypt(S, m)

1. Group users in S into S^{\prime}, a set of disjoint subsets

* $\quad\left|S^{\prime}\right|$ is sub-linear in $|S|$

2. Generate a ciphertext c_{i} for each s_{i} in S^{\prime} (using anonymous IBE)
3. Attach a tag t_{i} to each c_{i} (for efficient decryption at the receivers)
4. Bundle all $\left(t_{i}, c_{i}\right)$ components using one-time signature

$$
\mathrm{c}_{1} \cdots \quad \mathrm{c}_{1}
$$

oABE Encryption in [FaPe12]

- Encrypt(S, m)

1. Group users in S into S^{\prime}, a set of disjoint subsets
$\left|S^{\prime}\right|$ is sub-linear in $|S|$
2. Generate a ciphertext c_{i} for each s_{i} in S^{\prime} (using anonymous IBE)
3. Attach a tag t_{i} to each c_{i} (for efficient decryption at the receivers)
4. Bundle all $\left(t_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}\right)$ components using one-time signature

oABE Encryption in [FaPe12]

- Encrypt(S, m)

1. Group users in S into S^{\prime}, a set of disjoint subsets

* $\quad\left|S^{\prime}\right|$ is sub-linear in $|S|$

2. Generate a ciphertext c_{i} for each s_{i} in S^{\prime} (using anonymous IBE)
3. Attach a tag t_{i} to each c_{i} (for efficient decryption at the receivers)
4. Bundle all $\left(t_{i}, c_{i}\right)$ components using one-time signature

oABE Encryption in [FaPe12]

- Encrypt(S, m)

1. Group users in S into S^{\prime}, a set of disjoint subsets

* $\quad\left|S^{\prime}\right|$ is sub-linear in $|S|$

2. Generate a ciphertext c_{i} for each s_{i} in S^{\prime} (using anonymous IBE)
3. Attach a tag t_{i} to each c_{i} (for efficient decryption at the receivers)
4. Bundle all $\left(\mathrm{t}_{\mathrm{i}}, \mathrm{c}_{\mathrm{i}}\right)$ components using one-time signature

- Notice that ciphertexts have no header ...
- ... but still exhibit structure due to tags and signature
- Idea: Toward a BS construction, make these components pseudorandom
oABE with Pseudorandom Ciphertexts (oABE\$) [This Work]
pseudorandom group elements

- How to make oABE ciphertexts pseudorandom?

1. Replace the underlying AIBE with AIBES [AgBo09]
2. Apply an entropy smoothing hash to group elements
3. Replace one-time signature with a MAC (implemented via PRF)
oABE with Pseudorandom Ciphertexts (oABE\$) [This Work]
pseudorandom group elements

- How to make oABE ciphertexts pseudorandom?

1. Replace the underlying AIBE with AIBES [AgBo09]
2. Apply an entropy smoothing hash to group elements
3. Replace one-time signature with a MAC (implemented via PRF)

oABE with Pseudorandom Ciphertexts (oABE\$) [This Work]

- How to make oABE ciphertexts pseudorandom?

1. Replace the underlying AIBE with AIBE\$ [AgBo09]
2. Apply an entropy smoothing hash to group elements
3. Replace one-time signature with a MAC (implemented via PRF)

oABE with Pseudorandom Ciphertexts (oABE\$) [This Work]

- How to make oABE ciphertexts pseudorandom?

1. Replace the underlying AIBE with AIBE\$ [AgBo09]
2. Apply an entropy smoothing hash to group elements
3. Replace one-time signature with a MAC (implemented via PRF)

oABE with Pseudorandom Ciphertexts (oABE\$) [This Work]

- How to make oABE ciphertexts pseudorandom?

1. Replace the underlying AIBE with AIBE\$ [AgBo09]
2. Apply an entropy smoothing hash to group elements
3. Replace one-time signature with a MAC (implemented via PRF)

Question: How to embed the MAC key in c's and still obtain CCA security?
Solution: Construct an encapsulation mechanism [DoKa05, BoKa05] with pseudorandom commitments

Comparison of BE Schemes with Anonymity Properties

Scheme	$\|\mathrm{PK}\|$	\mid sk \mid	$\|c\|$	Security Model	Anonymity
BBW06	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{N}-\mathrm{r})$	Static, RO	Full
LPQ12	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{N}-\mathrm{r})$	Adaptive, Standard	Full
FaPe12a	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\log \mathrm{N})$	$\mathrm{O}(\mathrm{r} \log (\mathrm{n} / \mathrm{r}))$	Adaptive, Standard	Outsider
FaPe12b	$\mathrm{O}(\mathrm{N} \log \mathrm{N})$	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(r)$	Adaptive, Standard	Outsider
This Work	$\mathrm{O}(\mathrm{N})$	$\mathrm{O}(\log \mathrm{N})$	$\mathrm{O}(\mathrm{rlog}(\mathrm{n} / \mathrm{r}))$	Adaptive, Standard	Outsider

N : total number of users, r: number of revoked users

- Only oABE\$ provides pseudorandom ciphertexts

Our Construction of Broadcast Steganography

- Highlights
\& oABE\$ + Encrypt-then-Embed = Broadcast Steganography
\& Our constructions have sub-linear stegotext length
\& For CCA security, requires stateless channel
- Constructions:

1. BS-CHA
2. BS-PDR-CCA
3. BS-CCA

FEBRUARY 24 - 28 | MOSCONE CENTER | SAN FRANCISCO

○ Broadcast Steganography (BS)

- Constructions
© Summary

BE and Friends

Summary

- Initiated the study of Broadcast Steganography
\& A multi-recipient communication tool to plant undetectable messages in innocentlooking conversations
- Put forth sublinear constructions of broadcast steganography under a range of security notions
- In the process, devised efficient broadcast encryption schemes with pseudorandom ciphertexts and anonymity properties
\star Implementing CCA checks without imposing structure on broadcast ciphertexts required overcoming multiple technical hurdles

Practical Dual-Receiver Encryption Soundness, Complete Non-malleability, and Applications

Sherman S.M. Chow

Chinese University of Hong Kong sherman@ie.cuhk.edu.hk

Matthew Franklin

Haibin Zhang
University of California, Davis \{franklin,hbzhang\}@cs.ucdavis.edu

Our Contributions

- Reformizing and recasting Dual-Receiver Encryption
- Defining soundness notions
- Practical DREs with soundness in the CRS model
- Applications:

1. Complete non-malleable encryption
2. Plaintext-aware encryption
3. More applicatons---PKE with plaintext equality test, off-the-record messaging, ...

- Practical combined encryption of DRE and PKE
- Complete non-malleable DRE

What's Dual-Receiver Encryption?

- Original DLKY notion:

A kind of PKE allowing a ciphertext to be decrypted into the same plaintext by two independent receivers.

What's Dual-Receiver Encryption?

- Original DLKY notion:

A kind of PKE allowing a ciphertext to be decrypted into the same plaintext by two independent receivers.

Encryptor $\left(\mathrm{pk}_{1}, \mathrm{pk}_{2}, \mathrm{~m}\right)$

Receiver 1 $\left(\mathrm{pk}_{1}, \mathrm{sk}_{1}\right)$

$$
\begin{aligned}
& \text { Receiver } 2 \\
& \left(\mathrm{pk}_{2}, \mathrm{sk}_{2}\right) \\
& \hline
\end{aligned}
$$

What's Dual-Receiver Encryption?

- Original DLKY notion:

A kind of PKE allowing a ciphertext to be decrypted into the same plaintext by two independent receivers.

What's Dual-Receiver Encryption?

- Original DLKY notion:

A kind of PKE allowing a ciphertext to be decrypted into the same plaintext by two independent receivers.

What's Dual-Receiver Encryption?

- Original DLKY notion:

A kind of PKE allowing a ciphertext to be decrypted into the same plaintext by two independent receivers.

Basic consistency: $m=m_{1}=m_{2}$

DRE: A Useful Primitive

- DLKY: constructing useful security puzzle.
[Diament, Lee, Keromytis, Yung 2001]

Extending the DLKY notion---Soundness

- What about a cheating encryptor?
- "Bad" example: $E(p k 1, p k 2, m)=E(p k 1, m)| | E(p k 2, m)$
- Soundness goals:

1. Ensure adversary cannot "cheat."
2. Both receivers "know" the ciphertext can be decrypted to the same result.

Extending the DLKY notion-Soundness

- Formally:

```
Experiment \(\operatorname{Exp}_{\mathcal{D} \mathcal{R} \mathcal{E}, \mathcal{A}}^{\text {sound }}(k)\)
\(\mathrm{crs} \stackrel{{ }^{8}}{\leftarrow} \mathrm{CGen}_{\text {DRE }}\left(1^{k}\right)\)
\(\left(p k_{1}, s k_{1}\right) \stackrel{\&}{\leftarrow} \operatorname{Gen}_{\text {DRE }}(\mathrm{crs}) ;\left(p k_{2}, s k_{2}\right) \stackrel{\&}{\gtrless}_{\leftarrow} \mathrm{Gen}_{\text {DRE }}(\mathrm{crs})\)
\(C \stackrel{\&}{\leftarrow} \mathcal{A}\left(\mathrm{crs}, p k_{1}, s k_{1}, p k_{2}, s k_{2}\right)\)
if \(\operatorname{Dec}_{\mathrm{DRE}}\left(s k_{1}, C\right) \neq \operatorname{Dec}_{\mathrm{DRE}}\left(s k_{2}, C\right)\) then
return 1 else return 0
```


Extending the DLKY notion-Soundness

- Formally:

Experiment $\operatorname{Exp}_{\mathcal{D} \mathcal{R E}, \mathcal{A}}^{\text {sound }}(k)$
$\mathrm{crs} \stackrel{{ }^{8}}{\leftarrow} \mathrm{CGen}_{\text {DRE }}\left(1^{k}\right)$
$\left(p k_{1}, s k_{1}\right) \stackrel{\&}{\leftarrow}_{\leftarrow} \operatorname{Gen}_{\text {DRE }}(\mathrm{crs}) ;\left(p k_{2}, s k_{2}\right) \stackrel{\&}{\&}_{\leftarrow} \mathrm{Gen}_{\text {DRE }}(\mathrm{crs})$
$C \stackrel{\&}{\leftarrow} \mathcal{A}\left(\mathrm{crs}, p k_{1}, s k_{1}, p k_{2}, s k_{2}\right)$
if $\operatorname{Dec}_{\mathrm{DRE}}\left(s k_{1}, C\right) \neq \operatorname{Dec}_{\mathrm{DRE}}\left(s k_{2}, C\right)$ then return 1 else return 0

$$
\operatorname{Adv}_{\mathcal{D} \mathcal{R E}, \mathcal{A}}^{\text {sound }}(k)=\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{D} \mathcal{R E}, \mathcal{A}}^{\text {sound }}(k)=1\right] .
$$

Extending the DLKY notion-Soundness

- Formally:

```
Experiment \(\operatorname{Exp}_{\mathcal{D} \mathcal{R} \mathcal{E}, \mathcal{A}}^{\text {sound }}(k)\)
crs \(\stackrel{\&}{\leftarrow} \operatorname{CGen}_{\mathrm{DRE}}\left(1^{k}\right)\)
\(\left(p k_{1}, s k_{1}\right) \stackrel{\&}{\leftarrow} \operatorname{Gen}_{\text {DRE }}(c r s) ;\left(p k_{2}, s k_{2}\right) \stackrel{\&}{\leftarrow} \operatorname{Gen}_{\text {DRE }}(\mathrm{crs})\)
\(C \stackrel{\otimes}{\leftarrow} \mathcal{A}\left(\mathrm{crs}, p k_{1}, s k_{1}, p k_{2}, s k_{2}\right)\)
if \(\operatorname{Dec}_{\mathrm{DRE}}\left(s k_{1}, C\right) \neq \operatorname{Dec}_{\mathrm{DRE}}\left(s k_{2}, C\right)\) then
return 1 else return 0
```

$$
\operatorname{Adv}_{\mathcal{D} \mathcal{R} \mathcal{E}, \mathcal{A}}^{\text {sound }}(k)=\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{D} \mathcal{R} \mathcal{E}, \mathcal{A}}^{\text {sound }}(k)=1\right]
$$

We show DRE with soundness is even more useful.

Chosen Ciphertext Security of DRE

- DRE's soundness makes one of the two decryption oracles redundant.
- Formally:

Experiment $\operatorname{Exp}_{\mathcal{D} \mathcal{R} \mathcal{E}, \mathcal{A}}^{\text {cca }}(k)$
crs $\stackrel{\&}{\leftarrow} \operatorname{CGen}_{\text {DRE }}\left(1^{k}\right)$
$\left(p k_{1}, s k_{1}\right) \stackrel{\&}{\leftarrow} \operatorname{Gen}_{\text {DRE }}(c r s) ;\left(p k_{2}, s k_{2}\right) \stackrel{\&}{\leftarrow} \operatorname{Gen}_{\text {DRE }}(c r s)$
$\left(M_{0}, M_{1}, \mathrm{~s}\right) \stackrel{\&}{\leftarrow} \mathcal{A}^{\operatorname{Dec}_{\mathrm{DRE}}\left(s k_{1}, \cdot\right)}\left(\right.$ find $\left., \mathrm{crs}, p k_{1}, p k_{2}\right)$
$b \stackrel{\&}{\leftarrow}\{0,1\} ; C^{*} \stackrel{\&}{\leftarrow} \mathrm{Enc}_{\text {DRE }}\left(\mathrm{crs}, p k_{1}, p k_{2}, M_{b}\right)$
$b^{\prime} \stackrel{8}{\leftarrow} \mathcal{A}^{\operatorname{Dec} \operatorname{DRE}\left(s k_{1}, \cdot\right)}\left(\right.$ guess $\left., C^{*}, \mathrm{~s}\right)$
if $b^{\prime}=b$ then return 1 else return 0
$\operatorname{Adv}_{\mathcal{D} \mathcal{R} \mathcal{E}, \mathcal{A}}^{\text {cca }}(k)=\operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{D} \mathcal{R}, \mathcal{A}}^{\text {cca }}(k)=1\right]-1 / 2$.

Properties of a Desirable DRE

- Efficient; standard model; well-studied assumption
- Symmetry
- Public verifiability

Constructing DRE

- Previous constructions: either in ROM or rely on general and inefficient NIZK proofs
- We construct DRE in the CRS model.

Our CRS is simply a benign bilinear group such that two receivers pick their keys from the group.

- We also construct DKEM

DKEM=Dual-receiver Key Encapsulation Mechanism.

Practical DRE and DKEM from BDDH Assumption

- Basic ideas: Boneh and Boyen, Identity-based techniques [Boneh and Boyen, 2004]
- DRE similar to: Kiltz tag-based encryption [Kiltz, TCC 2006]
- DKEM similar to: Kiltz KEMs and BMW KEM

Practical DRE from BDDH Assumption

$\begin{gathered} \operatorname{CGen}_{\mathrm{DRE}}\left(1^{k}\right) \\ \text { return } \mathcal{B G} \end{gathered}$	$\begin{gathered} \operatorname{Enc}_{\mathrm{DRE}}\left(\mathcal{B G}, p k_{1}, p k_{2}, M\right. \\ (\mathrm{vk}, \mathrm{sk}) \stackrel{\&}{\leftarrow} \operatorname{Gen}_{\mathrm{OT}}\left(1^{k}\right) \end{gathered}$	parse C as (vk, $\left.c, \pi_{1}, \pi_{2}, \phi, \sigma\right)$
$\operatorname{Gen}_{\text {DRE }}\left(1^{k}, \mathcal{B}\right.$	$r \stackrel{\text { ¢ }}{\leftarrow} \mathbb{Z}_{a}^{*} ; c \leftarrow g^{r}$	if $\mathrm{Vrf}_{\text {OT }}\left(\mathrm{vk}, \sigma,\left(c, \pi_{1}, \pi_{2}, \phi\right)\right) \neq 1$ or
$J_{i} \leftarrow \mathbb{Z}_{q}^{*}$	$\pi_{1} \leftarrow\left(u_{1} \nu_{1}\right)$	$e\left(g, \pi_{1}\right) \neq e\left(c, u_{1}^{\mathrm{vk}} v_{1}\right)$ or
$g^{x_{i}} ; v_{i} \leftarrow g^{y_{i}}$	$\pi_{2} \leftarrow\left(u_{2}^{\mathrm{vk}} v_{2}\right)^{r}$	$e\left(g, \pi_{2}\right) \neq e\left(c, u_{2}^{\text {vk }} v_{2}\right)$
	$\phi \leftarrow e\left(u_{1}, u_{2}\right)^{r}$	re
	$\stackrel{\$}{*} \mathrm{Sig}_{\mathrm{OT}}(\mathrm{sk}$,	$M \leftarrow \phi \cdot e\left(c, u_{2}\right)$
return $\left(p k_{i}, s k_{i}\right)$	return $C \leftarrow\left(\mathrm{vk}, c, \pi_{1}, \pi_{2}, \phi, \sigma\right)$	return M

- Efficient and practical
- Well-studied assumption---BDDH assumption
- Symmetric
- Public verifiable

Practical DKEM from BDDH Assumption

$\operatorname{CGen}_{\text {DKEM }}\left(1^{k}\right)$	$\operatorname{Enc}_{\text {DKEM }}\left(\mathcal{B G}, p k_{1}, p k_{2}\right)$	$\operatorname{Dec}_{\text {DKEM }}\left(\mathcal{B G}, p k_{1}, p k_{2}, s k_{1}, C\right)$
return $\mathcal{B G}$	$r \leftarrow \mathbb{Z}_{q}^{*} ; c \leftarrow g^{r}$	parse C as $\left(c, \pi_{1}, \pi_{2}\right)$
$\operatorname{Gen}_{\text {DKEM }}\left(1^{k}, \mathcal{B G}\right) i \in\{1,2\}$	$t \leftarrow \operatorname{TCR}(c)$	$t \leftarrow \operatorname{TCR}(c)$
$x_{i}, y_{i} \leftarrow \mathbb{Z}_{q}^{*}$	$\pi_{1} \leftarrow\left(u_{1}^{t} v_{1}\right)^{r}$	if $e\left(g, \pi_{1}\right) \neq e\left(c, u_{1}^{t} v_{1}\right)$ or
$u_{i} \leftarrow g^{x_{i}} ; v_{i} \leftarrow g^{y_{i}}$	$\pi_{2} \leftarrow\left(u_{2}^{t} v_{2}\right)^{r}$	$e\left(g, \pi_{2}\right) \neq e\left(c, u_{2}^{t} v_{2}\right)$
$p k_{i} \leftarrow\left(u_{i}, v_{i}\right)$	$K \leftarrow e\left(u_{1}, u_{2}\right)^{r}$	return \perp
$s k_{i} \leftarrow x_{i}$	$C \leftarrow\left(c, \pi_{1}, \pi_{2}\right)$	$K \leftarrow e\left(c, u_{2}\right)^{x_{1}}$
return $\left(p k_{i}, s k_{i}\right)$	return (C, K)	return K

Plaintext-Aware (PA) Encryption via Registration

- Plaintext aware encryption

1. "Any adversary can decrypt any ciphertext that it creates"
2. PA+IND-CPA-->IND-CCA2
3. PA encryption in the standard model --- difficult to analyze.

Plaintext-Aware (PA) Encryption via Registration

PA via registration --- "Any adversary can decrypt any ciphertext it creates, as long as the adversary registered its sending key."

```
[Herzog, Liscov, Micali (HLM) 2003]
```

HLM is relatively simple but relies on generic NIZK proofs.

Plaintext Aware Encryption via Registration from DRE

- General transformation: Given a DRE with (pk1,sk1) and (pk2,sk2),
pk 1 is the sender and pk2 is the receiver: pk1 further runs a zero-knowledge PoK of its secret key.
- Efficient; symmetric; general; simple to analyze.

Complete Non-Malleable (CNM) PKE from DRE

- CNM----another strong notion than IND-CCA2/NMCCA2.
[Fischlin 2005] [Ventre and Visconti 2008]
- CNM prohibits adversary from computing encrypted ciphertext of related plaintext even with adverserial public keys.
- DRE with soundness implies CNM PKE in the CRS model.
- The transformation is even simpler: Given a DRE with (pk1,sk1) (pk2,sk2). crs---pk1, PKE's (pk,sk)=DRE's (pk2,sk2).

Public key encryption with equality test (PET) from DRE

- Two types of PET:
- 1. Probabilistic PKE with equality test:
one-way CCA [Yang, Tan, Huang, Wong 2010]
a stronger notion (still weak than one for PKE) [Lu, Zhang, Lin 2012]
- 2. e-voting and verifiable dual encryption (chosenplaintext attack model):

```
e.g.,[Jakobsson and Juels 2000]
```

[Zhou, Marsh, Schneider, Redz 2005]
Our DRE with soundness strengthens two types of PET.

Off-the-record messaging with stronger undeniability from DRE

- Off-the-record messaging (OTR) protocol. [Borisov, Goldberg, Brewer, 2000]
- DKSW proposed stronger notion for undenaiability. The bottleneck is jus the efficiency of DRE.
[Dodis, Katz, Smith, and Walfish 2009]
- OTR made practical with our DREs.

Other Applications

- Key exchange protocols.
[Suzuki and Yoneyama 2013]
[Purushothama and Amberker 2013]

Combined Encryption of DRE and PKE

- Combined encryption of DRE and PKE without key separation.

Complete Non-Malleable DRE

- Motivated by

1. same reason as CNM PKE---stonger security for DRE
2. stronger security for PETs
3. dual-receiver non-malleable commitment scheme

Paradigms for CNM-DRE (1): Groth-Sahai Proof System

- Naor-Yung Paradigm and Groth-Sahai Proof system [Naor, Yung, 1990]
[Groth, Sahai, 2008]

$\operatorname{CGen}_{\mathrm{DRE}}\left(1^{k}\right)$	$\operatorname{Enc}_{\mathrm{DRE}}\left(\mathrm{crs}, p k_{1}, p k_{2}, m\right)$	$\operatorname{Dec}_{\mathrm{DRE}}\left(\mathrm{crs}, p k_{1}, p k_{2}, s k_{1}, C\right)$
returncrs $\leftarrow \operatorname{CGen}\left(1^{k}\right)$	$c_{1} \leftarrow \operatorname{Enc}\left(p k_{1}, m ; r_{1}\right)$	parse C as $\left(c_{1}, c_{2}, \pi\right)$
	$c_{2} \leftarrow \operatorname{Enc}\left(p k_{2}, m ; r_{2}\right)$	if $\mathrm{V}\left(\operatorname{crs}, c_{1}, c_{2}, p k_{1}, p k_{2}, \pi\right) \neq 1$
$\operatorname{Gen}_{\mathrm{DRE}}\left(1^{k}\right) i \in\{1,2\} \leftarrow \mathrm{P}\left(\operatorname{crs},\left(c_{1}, c_{2}, p k_{1}, p k_{2}\right),\left(m, r_{1}, r_{2}\right)\right)$	return \perp	
$\left(p k_{i}, s k_{i}\right) \stackrel{\&}{\leftarrow} \operatorname{Gen}\left(1^{k}\right)$	$c \leftarrow\left(c_{1}, c_{2}, \pi\right)$	$m \leftarrow \operatorname{Dec}\left(c_{1}, p k_{1}, s k_{1}\right)$
return $\left(p k_{i}, s k_{i}\right)$	return c	return m

- (P, V) is simulation-sound and simulation-sound extractable NIZK proof of knowledge proof system
- can be realized via Groth-Sahai proof system
- SXDH and DLIN assumptions

Paradigms for CNM-DRE (2): Lossy Trapdoor Functions

- Lossy trapdoor functions (DDH, LWE, and CR assumptions)
$\operatorname{CGen}_{\mathrm{DRE}}\left(1^{k}\right)$

$$
\begin{aligned}
& b_{0} \stackrel{\&}{\leftarrow}\{0,1\}^{n} \\
& \left(s_{0}, t_{0}\right) \stackrel{\&}{\leftarrow} \mathcal{S}_{a b o}\left(1^{k}, b_{0}\right) \\
& h \stackrel{\leftarrow}{\leftarrow} \mathcal{H} \\
& \text { return crs } \leftarrow\left(s_{0}, h\right)
\end{aligned}
$$

$$
\operatorname{Gen}_{\text {DRE }}\left(1^{k}\right) \quad i \in\{1,2\}
$$

$$
\left(s_{i}, t_{i}\right) \stackrel{\leftrightarrow}{\leftarrow} \mathcal{S}\left(1^{k}, 1\right)
$$

$$
\text { return }\left(s_{i}, t_{i}\right)
$$

E Enc $_{\text {DRE }}\left(\mathrm{crs}, s_{1}, s_{2}, m ; r\right)$
$(\mathrm{vk}, \mathrm{sk}) \stackrel{\&}{\leftarrow} \operatorname{Gen}_{\text {Oт }}\left(1^{k}\right)$
$r \stackrel{\&}{\leftarrow}\{0,1\}^{n}$
$C_{1} \leftarrow \mathcal{F}\left(s_{1}, r\right)$
$C_{2} \leftarrow \mathcal{F}\left(s_{2}, r\right)$
$C_{3} \leftarrow \mathcal{G}_{a b o}\left(s_{0}, \mathrm{vk}, r\right)$
$C_{4} \leftarrow M \oplus \mathrm{H}_{h}(r)$
$\sigma \stackrel{\&}{\leftarrow} \operatorname{Sig}_{\text {от }}\left(\mathrm{sk},\left(C_{1}, C_{2}, C_{3}, C_{4}, p k_{1}, p k_{2}\right)\right)$
return $C \leftarrow\left(\mathrm{vk}, C_{1}, C_{2}, C_{3}, C_{4}, \sigma\right)$
$\operatorname{Dec}_{\text {DRE }}\left(c r s, s_{1}, s_{2}, t_{1}, C\right)$
parse C as $\left(C_{1}, C_{2}, C_{3}, C_{4}, p k_{1}, p k_{2}, \sigma\right)$
if $\operatorname{Vrf}_{\text {от }}\left(\mathrm{vk}, \sigma,\left(C_{1}, C_{2}, C_{3}, C_{4}, p k_{1}, p k_{2}\right)\right) \neq 1$ then return \perp
$r \leftarrow \mathcal{F}^{-1}\left(t_{1}, C_{1}\right)$
if $C_{2} \neq \mathcal{F}\left(s_{2}, r\right)$ or $C_{3} \neq \mathcal{F}\left(s_{0}, r\right)$ then
return \perp
$m \leftarrow C_{4} \oplus \mathrm{H}_{h}(r)$
return m

Thank you!

