
SESSION ID:

Attacking PUF-based Pattern Matching Key 

Generators via Helper Data Manipulation 

CRYP-W01

Jeroen Delvaux

Doctoral Researcher
University of Leuven (KU Leuven) & iMinds, Belgium
Department of Electrical Engineering ESAT/COSIC



#RSAC

Contents

 Physically Unclonable Functions (PUF): preliminaries

 Pattern Matching Key Generator (PMKG)

 Architecture

 Failure behavior

 Attacks

 Countermeasures

 Conclusion & Further Work

2



#RSAC

Physically Unclonable Functions (PUFs)

 Emerging hardware primitive

 IC-unique function (manufacturing variations)

 Analogous: human fingerprint (biometrics)

 Main usage: secret key generation

3

User
IC

ApplicationKey (VM)



#RSAC

Secret Keys: PUFs versus NVM 

4

User
IC

User
IC

Traditionally: NVM (e.g. Flash)

 Costly: no minimal CMOS 

(additional processing steps)

 Physical attacks: vulnerable

PUF

 Minimal CMOS

 Invasion damages PUF; no 

permanent electrical storage 

Application

ApplicationKey (NVM)

Key (VM)



#RSAC

Auxiliary Logic Resolves PUF Issues

5

User
(Attacker)

#1      0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1
#2      0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 
#3      0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 

#1 #2, #3, … 

Read: Leakage

IC

Key reproducibility: noise, ∆V, ∆T

Key entropy:
non-uniformity

Write: Manipulation

Public Helper 
Data (NVM)

Key (VM) ApplicationAuxiliary Logic



#RSAC

Pattern Matching Key Generator (HOST 2011 & patent)

6

User
(Attacker)

#1      0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1

#2      0 1 1 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 
#3      0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 

IC

Public 
Helper 
Data 

(NVM):
Patterns

Key (NVM) ApplicationIndices

HD ≤ T

R/W

(basic principle only)secret index = sub-key



#RSAC

PMKG Failure Conditions

 Pattern Miss: HD > T @ sub-key index

 Pattern Collision: HD ≤ T @ non sub-key index

 We construct approximating formulas for failure probabilities

 System parameters: W = pattern width, L = #indices, T = threshold

 Incorporate PUF statistics (65nm CMOS measurements)

7

L = 1024



#RSAC

Attacks: Common Framework

 Expose more stream bits (e.g. left to right), one-by-one

 Two hypotheses for unknown bit: ‘0’ or ‘1’

 Corresponding helper data (manipulation) 

 Observe (small) statistical difference in PMKG failure rate

 Exceeding index 0: abrupt change in failure rate

8

j = secret index, 
W = pattern witdh, 
L = #indices

W, L, T known (Kerckhoff’s principle) 



#RSAC

Snake I: Exploit Pattern Misses

 Shift sub-key

 Correct guess:

less misses

 Exceed index 0:

miss always

9

j = secret index, 
W = pattern witdh, 
L = #indices
T = threshold



#RSAC

Snake II: Exploit Pattern Collisions

 Correct guess:

more collisions

 Exceed index 0:

collide never

 Pattern misses side-effect complicates the attack

10

j = secret index, 
W = pattern witdh, 
L = #indices
T = threshold



#RSAC

Effective countermeasures

 Avoid abrupt change in failure rate @ index 0

 Non-overlapping patterns 

(patent only / not HOST; not proposed with a security objective)

 #stream bits = L*W (before L + W – 1)

 Inefficient

 Newly proposed: circularity of the response bits

 #stream bits = L

11



#RSAC

Conclusion & Further Work 

 PMKG vulnerable to helper data manipulation

 Statistical observation of the failure rate

 Countermeasure: circularity of PUF bits

 PMKG basic principle: HD measurements

 Simple operations, compared to traditional method (ECC, Hash function) 

 Lightweight for some use cases? 

 Secure variants?

12



Questions?



SESSION ID: 

On Increasing the Throughput  
of Stream Ciphers 
 

CRYP-W01 

Frederik Armknecht, Vasily Mikhalev 
University Mannheim 

Theoretical Computer Science and IT Security Group 



#RSAC 

Contents 

 

 Introduction 

 

 New Transformation 

 

 Conclusion 



#RSAC 

Introduction 



#RSAC 

Stream Ciphers 

 Designed for efficiently encrypting data streams of arbitrary length 

 Preferable choice if real-time encryption is required 

 Most popular application scenario:  Mobile communication 

 Examples: 
 GSM: A5-ciphers 

 Bluetooth: E0 ciphers 

 SSL: RC4 cipher 



#RSAC 

Principle of Stream Ciphers 

Key 

Plaintext Ciphertext 

 
Secure communication 

channel exchanging keys 

Public channel 

 Keystream 

Stream  

cipher 

Produce long bitstreams  
from short seed? 

and Vasily Mikhalev 



#RSAC 

Feedback Shift Registers 

At each clock-cycle: 
1) The value of stage 0 is output 
2) The new value of stage n-1 is computed 
3) All other values are shifted 
 

LFSR : linear feedback fct. 
NLFSR : nonlinear feedback fct. 

 n-1 

Feedback function f 

 n-2   0   n-3 … 

Output 

 Hardware efficient 

 Important building blocks of stream ciphers 

 Can produce bit streams with high period 

 Often combined with other components 



#RSAC 

Example: Grain-128 

7 

Initialization mode Initialization mode 

11 8 

h 

NLFSR N LFSR L 

Grain 128 e-STREAM finalist in the second profile portfolio 
(restricted hardware recourses) 



#RSAC 

eStream 



#RSAC 

Requirements 

Design of a cryptographic primitives is a trade-off 
between: 

 
 

Throughput  

Security 

Area 
Can we increase  
the throughput 

without (or only little) 
increase of the area? 



#RSAC 

Generic Stream Cipher 

Feedback 

Feedback function f 

… 

Output function h 

External 
block 

Keystream 

 We consider a generic stream cipher composed of three building blocks: 

 A feedback shift register FSR 

 An external block  

 An output function 

 Majority of stream ciphers comes within this structure  



#RSAC 

Example: Grain-128 

initialization mode initialization mode 

11 8 
h 

NLFSR N LFSR L 

and Vasily Mikhalev 



#RSAC 

Example: E0 (Bluetooth Standard) 

 4 LFSRs 

 Additional 
4-bit 
memory 

 Memory ≈ 
Addition 
with carry 

and Vasily ikhalev 



#RSAC 

A5/1 (GSM Standard) 

 3 LFSRs 

 Irregular clocking based on majority decision 



#RSAC 

Trivium 

 3 non-linear feedback shift registers 

 Another eStream finalist (low area hardware)  



#RSAC 

Throughput 
 Throughput = rate at which new ouput is produced with respect to time 

 Hardware implementation = circuit 

 

 

 

 

 Each component has a certain delay 

 Impacts total delay of circuit 

 Short total delay = higher frequency possible  
       = increase in maximum throughput 



#RSAC 

Total Delay 
 Example: 

 

 

 

 Total Delay Formula: 

Delay(Circuit) = max{Delay(A),Delay(B)} + Delay(C) 

 Here: 

Delay(Circuit) = Delay(B) + Delay(C) 

 Reducing Delay(B) decreases Delay(Circuit)  !! 

 

A 

B 
C 



#RSAC 

Preserving Transformations 
 Modification does not change the functionality 

 Preserving transformation T on circuit C: 

 For any input (initial state) of C,  

 there exists a corresponding input (initial state) for 
T(C) 

 such that both produce the same output (bitstream) 

 In our case: 

 

 
Stream 
Cipher 

Key 

Keystream 

Transformed 
Stream Cipher 

Keystream 

Transformation 

Key‘ 

equal 



#RSAC 

Improving the Throughput 

Three possible approaches 

a)    Decrease Delay(Feedback Shift Register) 

b)    Decrease Delay(Output Function h) 

c)    Decrease Delay(External Block)  (out of scope) 

 

 

Feedback 

Feedback function f 

… 

Output function h 

External 
block 

Keystream 



#RSAC 

a) Modifying Feedback Shift Register 
 Motivation: Parallelize feedback function 

 Realization: Each state entry has its „own“ feedback function 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

fn-1 fn-2 f0 … 
Galois configuration 

n-1 

fn-1 

n-2 n-3 … 
Fibonacci configuration 

n-1 n-2 0 0 0 



#RSAC 

b) Modifying Output Function 
 Main idea also here: parallelization 

 Example: implementing function f=x0+x1+x2x3+x4  using  2-input gates 

 Straightforward: 

 

 

 

 Delay(f) = max{Delay(XOR),Delay(AND)} + Delay(XOR) + Delay(XOR)        
    = 3 × Delay(XOR) 

 

 Computing n outputs takes time: n × Delay(f) 

 We can do better by using pipelining 

x0 x1 x2 x3 x4 

AND 

XOR 

XOR 

XOR 



#RSAC 

Pipelining 
 Idea: Once one layer of computation is finished for one ouput, it starts with computatin 

for next output 

 

 

 

 

 

 Delay: Delay(XOR) + Delay(Flip-Flop) 

 Problems: Intermediate values need to be stored → memory increase 

 

 

x0 x1 x2 x3 x4 

AND 

XOR 

XOR 

XOR 

m1 m2 m3 

m4 m5 

out 
Computation for output t  

Computation for output t+1  

Computation for output t+2  

Our contribution:  
Pipelining  

with no/little  
memory increase 



#RSAC 

New Transformation 

 



#RSAC 

LFSR of Grain-128 

Feedback function f LFSR L 

0 7 70 8 13 20 42 60 6 … 1 12 … 9 19 … 14 41 … 21 59 … 43 69 … 61 78 … 71 81 96 93 95 79 80 94 

127 

92 … 82 97 126 … 

11 

Schematic View of LFSR L 

Output function h NLFSR N 



#RSAC 

Idea 

 Schematic View: 

 

 Observation:  
 114 of 128 stages are not used by feedback function or other 

components 

 Only task: store and shift values 

 Idea: 
 Use these regions for storing intermediate values 



#RSAC 

Idea (cont.) 

 Use feedback shift register in Galois configuration 

 Move part of the output function h into the 
feedback function of the FSR 

 

Output function h 

External 
block fn-1 n-1 … fϐ ϐ ϐ-1 … fα   α fα-1 α-1 … f0 0 

h’’ 

Problem:  
This would change 

FSR output 

n-1 

fn-1 

n-2 0 n-3 … fn-1 n-1 … fϐ ϐ ϐ-1 … fα   α fα-1 α-1 … f0 0 h‘ ϐ-1 



#RSAC 

Idea (cont.) 
 To „correct“ the modification, we cancel out the difference at some later stage 

 Identify isolated interval:           

 

 
 

 

 Insert change at beginning of interval and cancel it out at the end 

 

fn-1 n-1 … fϐ   ϐ ϐ-1 α fα-1 α-1 … f0 0 

fn-1 n-1 … fϐ + h‘   ϐ ϐ-1 α fα-1+ h‘ α-1 … f0 0 

a) State entries are only shifted 
b) Updates outside the interval are independent of values inside the interval 



#RSAC h1(St , bt ,…)=h1*(St+r , bt+r ,…)  
Requirement: Inputs to h1 are still available r clocks later (r-sustainable values) 

Cipher Transformation 

h = St[ϐ] + h1(St-1 , bt-1 ,…,bt+l-2) 
            +h2(St , bt ,…,bt+l-1) 

fn-1 n-1 … fϐ ϐ fϐ-1 ϐ-1 … fα α fα-1 α-1 … f0 0 External 
block 

h‘ = St[ϐ] +h2(St , bt ,…,bt+l-1) 

External 
block 

fn-1 n-1 … fϐ + h1   ϐ ϐ-1 α fα-1+ h1* α-1 … f0 0 



#RSAC 

Application 
 We applied the transformations to Grain-128 

 

 

 Two modes: 

 Initialization mode (feedback from h to FSRs) 

 Keygeneration mode (no feedback from h to FSRs) 

 Specifications 

 

Initialization 
 mode 11 

h 

NLFSR 
N LFSR L 

8 

Output function h: 

𝑓127 = 𝐿𝑡 0 + 𝐿𝑡[7]+𝐿𝑡[38] +𝐿𝑡 [70]+𝐿𝑡[81]+𝐿𝑡 96  
𝑓𝑖 = 𝐿𝑡 𝑖 + 1 , 0 ≤ 𝑖 ≤ 127  
 

LFSR L feedback functions: NLFSR N feedback functions : 
𝑔127 = 𝐿𝑡 0 +𝑁𝑡 0 + 𝑁𝑡 26 +𝑁𝑡 56 +𝑁𝑡 91 + 𝑁𝑡 96 + 
              𝑁𝑡 3 𝑁𝑡 67 +𝑁𝑡 11 𝑁𝑡 13 + 𝑁𝑡 17 𝑁𝑡 18 +𝑁𝑡 27 𝑁𝑡 59 +  
              𝑁𝑡 40 𝑁𝑡 48 + 𝑁𝑡 61 𝑁𝑡 65 +𝑁𝑡 68 𝑁𝑡 84  
𝑔𝑖 = 𝑁𝑡 𝑖 + 1 , 0 ≤ 𝑖 ≤ 127  

ℎ = 𝑁𝑡 2 + 𝑁𝑡 15 +𝑁𝑡 36 +𝑁𝑡 45 +𝑁𝑡 64 +𝑁𝑡 73 +  𝑁𝑡 89 + 𝐿𝑡 93 + 𝐿𝑡 13 𝐿𝑡 20 +𝑁𝑡 95 𝐿𝑡 42  + 
         𝐿𝑡 60 𝐿𝑡 79 + 𝑁𝑡 12 𝐿𝑡 8 +𝑁𝑡 12 𝑁𝑡 95 𝐿𝑡 95  

Initialization 
 mode 



#RSAC 

Optimization of Grain-128 

Optimized Original 

initialization 
mode 

initialization 
mode 

11 8 
h 

initialization mode initialization mode 

6 1 h 

ℎ′ ℎ 

 
 

f127 

… 

 
 

g127 

… 

LFSR L   NLFSR N  
 

f127 f126 f0 … 

NLFSR L  
 

g127 g126 g0 … 

NLFSR N 



#RSAC 

Exact Specifications of Grain-128 
Original 

Output function: 

𝑓127 = 𝐿𝑡 0 + 𝐿𝑡[7]+𝐿𝑡[38] +𝐿𝑡 [70]+𝐿𝑡[81]+𝐿𝑡 96  
𝑓𝑖 = 𝐿𝑡 𝑖 + 1 , 0 ≤ 𝑖 ≤ 127  
 

LFSR L feedback functions: NLFSR N feedback functions : 
𝑔127 = 𝐿𝑡 0 +𝑁𝑡 0 + 𝑁𝑡 26 +𝑁𝑡 56 +𝑁𝑡 91 + 𝑁𝑡 96 + 
              𝑁𝑡 3 𝑁𝑡 67 +𝑁𝑡 11 𝑁𝑡 13 + 𝑁𝑡 17 𝑁𝑡 18 +𝑁𝑡 27 𝑁𝑡 59 +  
              𝑁𝑡 40 𝑁𝑡 48 + 𝑁𝑡 61 𝑁𝑡 65 +𝑁𝑡 68 𝑁𝑡 84  
𝑔𝑖 = 𝑁𝑡 𝑖 + 1 , 0 ≤ 𝑖 ≤ 127  

ℎ = 𝑁𝑡 2 + 𝑁𝑡 15 +𝑁𝑡 36 +𝑁𝑡 45 +𝑁𝑡 64 +𝑁𝑡 73 +  𝑁𝑡 89 + 𝐿𝑡 93 + 𝐿𝑡 13 𝐿𝑡 20 +𝑁𝑡 95 𝐿𝑡 42  + 
         𝐿𝑡 60 𝐿𝑡 79 + 𝑁𝑡 12 𝐿𝑡 8 +𝑁𝑡 12 𝑁𝑡 95 𝐿𝑡 95  

Optimized: 
NLFSR L feedback functions: 
𝑓127 = 𝐿𝑡 0  
𝑓123 = 𝐿𝑡[124]+𝐿𝑡 3  
𝑓119 = 𝐿𝑡[120]+𝐿𝑡 30  
𝑓111 = 𝐿𝑡[112]+𝐿𝑡 80  
𝑓103 = 𝐿𝑡[104]+𝐿𝑡 46  
𝑓97 = 𝐿𝑡[98]+𝐿𝑡 51  
𝑓93 = 𝐿𝑡[94]+𝐿𝑡 61 𝐿𝑡 80  
𝑓91 = 𝐿𝑡[92]+𝐿𝑡 59 𝐿𝑡 78  

Output function: ℎ = 𝑁𝑡 15 +𝑁𝑡 36 +𝑁𝑡 45 +𝑁𝑡 64 +𝑁𝑡 73 +  𝑁𝑡 89 + 𝐿𝑡 93  

All update functions are computed in parallel. The one with the biggest delay is  𝑔15= 𝑁𝑡 16 + 𝑁𝑡 13 𝑁𝑡 96 𝑁𝑡 96]  

NLFSR N feedback functions : 
𝑔127 = 𝐿𝑡 0 +𝑁𝑡 0  
𝑔125 = 𝑁𝑡 126 +𝑁𝑡 1 𝑁𝑡 65  
𝑔123 = 𝑁𝑡 124 +𝑁𝑡 7 𝑁𝑡 9  
𝑔121 = 𝑁𝑡 122 +𝑁𝑡 20  
𝑔119 = 𝑁𝑡 120 +𝑁𝑡 9 𝑁𝑡 10  
𝑔117 = 𝑁𝑡 118 +𝑁𝑡 17 𝑁𝑡 49  
𝑔113 = 𝑁𝑡 114 +𝑁𝑡 77  
𝑔111 = 𝑁𝑡 112 +𝑁𝑡 80  

𝑔100 = 𝑁𝑡 101 +𝑁𝑡 34 𝑁𝑡 38  
𝑔99 = 𝑁𝑡 100 +𝑁𝑡 40 𝑁𝑡 56  
𝑔98 = 𝑁𝑡 99 +𝑁𝑡 11 𝑁𝑡 19  
𝑔97 = 𝑁𝑡 98 +𝑁𝑡 26  
𝑔89 = 𝑁𝑡 90 +𝑁𝑡 3  
𝑔87 = 𝑁𝑡 88 +𝑁𝑡 1  
𝑔73 = 𝑁𝑡 74 +𝑁𝑡 13 𝐿𝑡 9  
𝑔71 = 𝑁𝑡 72 +𝑁𝑡 11 𝐿𝑡 7  

𝑔64 = 𝑁𝑡 65 +𝑁𝑡 14 𝑁𝑡 21  
𝑔62 = 𝑁𝑡 63 +𝑁𝑡 12 𝑁𝑡[19] 
𝑔36 = 𝑁𝑡 37 +𝑁𝑡 96 𝑁𝑡 43]  
𝑔34 = 𝑁𝑡 35 +𝑁𝑡 94 𝑁𝑡 41]  
𝑔15 = 𝑁𝑡 16 +𝑁𝑡 13 𝑁𝑡 96 𝑁𝑡 96]  
𝑔13 = 𝑁𝑡 14 +𝑁𝑡 11 𝑁𝑡 94 𝑁𝑡 94]  



#RSAC 

Implementation Results 
 Implementation details 

 Hardware description language: Verilog 

 Integrated circuit: ASIC 

 Cell library: Faraday Design Kit for UMC L180 GII technology library 

 Synthesis and simulation using: Cadence RTL Compiler*  

 Results: 

 

 

*The compiler offers a set of algorithms that perform synthesis based on concurrent 
optimization of timing/area/power consumption. It is commonly used in research.  

Compiler 
settings 

Change throughput Change Area 
Initialization Keystream 

generation 
Optimize throughput Increase by 18% (from 

1.11 GHz to 1.31 GHz) 
Increase by 24%  (from 
1.29 GHz to 1.45 GHz) 

Decrease by 46 GE (from 
1794 GE to 1748 GE) 

Optimize area Increase by 20% (from 
0.60 GHz to 0.72 GHz) 

Increase by 20% (from 
0.90 GHz to 1.08 GHz) 

Increase by 29 GE (from 
1627 GE to 1656 GE) 



#RSAC 

Conclusion 

 



#RSAC 

Contribution 

 A generic transformation for increasing throughput without memory increase 

 Applicable to a broad class of stream ciphers 

 Idea: follow pipelining approach but re-use existing structures for saving 
memory 

 Theory: 

 Formal description and proof of correctness 

 Practice: 

 Applied to Grain-128 stream cipher 

 Increase of throughput by 18% (24%) and no area increase 



#RSAC 

Future Work 

 Developing an algorithm which automatically finds a (nearly) optimal 
solution 

 Application to other stream ciphers 

 Design of a new stream cipher with decreased hardware-size 

 Other applications? 

 

 



#RSAC 

Thank you very much! 



SESSION ID: 

On Double Exponentiation for Securing RSA 
against Fault Analysis 

CRYP-W01 

Lê Đức Phong 
Temasek Laboratories 

National University of Singapore 

https://ae.rsaconference.com/US14/content/sessionDetail.do?SESSION_ID=9265


Hardware 
Implementations 



#RSAC 

Outline 
 RSA and Fault Analysis (FA) 

 Fault attack against CT-RSA implementation 

 Usual countermeasures 

 Using Double exponentiation against FA 

 Principle  

 Improvements: Binary, sliding-window methods 

 Right-to-Left Double exponentiation 

 Performance Comparison  

 Conclusion 

3 



#RSAC 

Fault Analysis Attack 

 In traditional security model (provable security): 

 one should believe that cryptographic primitives are secure whenever computational 
complexity assumptions (Factorization, RSA, DL, …) are difficult to solve 

 But, in practice: 

 Fault analysis attack [BDL97] recovers the secret key from the RSA-CRT signature 
scheme due to only one faulty signature 

 Fault Injection:  

 Various mechanisms 

 To misinterpret, skip instructions, random modify data, … 

 

4 



#RSAC 

Fault attacks against RSA-CRT 

 RSA-CRT (RSA with CRT mode) uses to Chinese Reminder Theorem 
 N=p∙q: RSA modulus, p and q: large primes 

 e∙d = 1 mod (p-1)(q-1) 

 dp=d mod (p-1) and dq=d mod (q-1) 

 Iq: inverse of q modulo p 

 Signature S of a message m 
 Sp = mdp mod p  and   Sq = mdq mod q 

 S = CRT(Sp, Sq) = Sq + q ∙ ((Sp-Sq)⋅ Iq mod p) 

 4x faster than RSA straightforward implementation 

 Reduce the size of data  

5 



#RSAC 

Fault attacks against RSA-CRT 

 Signature S of a message m 

1.    p= mdp mod p   

  Sq = mdq mod q 

2.    = CRT(  p, Sq) = Sq + q ∙ ((  p - Sq)⋅ Iq mod p) 

 Find primes p and q 

 q = GCD((S - S) mod N, N)  or  q = GCD((S e - m) mod N, N) 

 Basic countermeasures 

 compute a signature twice and compare the two results 

 verify the signature before returning  

6 

Fault attack 
S 

S S S 



#RSAC 

Usual countermeasures 

 Modulus extension based countermeasures (Sharmir’s trick) 

 Concept: compute S* = md mod rN and Z = md mod r 

 Check whether S* ≡ Z mod r  

 Self-secure exponentiation 

 Montgomery ladder, R2L multiply always exponentiation 

 Check the coherence of variables, e.g. in Montgomery ladder 

 Check whether:     

       R0 ∙ m = R1 

 

7 



#RSAC 

Double addition chain [Riv09] 

 In CT-RSA 2009, Rivain presented an alterative solution, called double 
addition chain 

 Basic concept: compute A = md and B = mφ(N) – d 

 Check whether the relation A x B ≡ 1 mod N 

 Need to find a short addition chain to raise m to both powers d and 
φ(N) – d. Rivain introduced an efficient heuristics 
 Basically, it is a binary method, compute on-the-fly 

 e.g., need to compute (m7, m35)    

 

 
8 

10 multiplications 



#RSAC 

Double exponentiation  
Improvement to binary method  
 Formally, he defined  

 

 

 The following chain requires only 8 multiplications: 

 

 We define:  

9 



#RSAC 

 Shorter addition chains can be obtained by using window methods 

 Require pre-computations, more memory 

 It is natural extension for a single exponentiation 

 For double exponentiation: need to find an appropriate encoding 

 We define: 

 

 

 For example:, the following chain saves one multiplication   

10 

Double exponentiation  
Sliding window method  



#RSAC 

Right-to-Left Sliding-window Double exponentiation 

 In principle, it works as two parallel 

executions of Yao’s algorithm 

 Don’t require pre-computation of the chain 

encoding, values: m3, m5, … 

 For example, compute (29, 50) 

 

 

 

 Then, one compute: 

m29  = m17 (m4)3; and m50 = m2 (m16)3 

11 



#RSAC 

Double exponentiation  
Performance   

 We make simulations for various exponent bit-length: 512, 1024, 
2048, and for various window sizes 

 For binary method, we improve 7%  

 L2R window-based method improves 4%-8%, depending the window 
size 

 Combined method improves 7%-9% 

 R2L sliding window method improves up to 19% 

12 



#RSAC 

Conclusion  

 We revisited double exponentiation algorithms for fault analysis 
resistant RSA 

 We introduced new variants of Rivain’s heuristics for double addition 
chains  
 improved up to 9% 

 We introduced a generalization of Yao’s right to left exponentiation to 
perform a double exponentiation 
 improved up to 19% 

 can be extended to compute monomials: md1, md2, …, mdk  

13 



Thank you ! 
 
 
Q & A 

14 


	J.Delvaux
	V.Mikhalev
	Le.Phong



