
Motivation Matsui’s Algorithm Application to ARX Results

Automatic Search for Differential Trails in ARX
Ciphers

A. Biryukov V. Velichkov

Laboratory of Algorithmics, Cryptology and Security (LACS)
University of Luxembourg

RSA Conference Cryptographers’ Track – 2014
February 24-28, San Francisco, USA

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 1 / 27

Motivation Matsui’s Algorithm Application to ARX Results

1 Motivation

2 Matsui’s Algorithm

3 Application to ARX

4 Results

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 2 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Outline

1 Motivation

2 Matsui’s Algorithm

3 Application to ARX

4 Results

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 3 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Differential Cryptanalysis (DC) [Biham,Shamir,1991]

P

round
X1

round
X2

round

C

P
′

round
X

′

1
round

X
′

2
round

C
′

α = P ⊕ P
′

∆X1

∆X2

β = C ⊕ C
′

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 4 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Differentials, Trails and Probabilities

Differential for r rounds:
(α, β) .

Differential trail (characteristic) for r rounds:

(α = ∆X0, ∆X1 . . . ∆Xr−1, ∆Xr = β) .

Differential Probability (DP) of a single round:

DP(α
FK−→ β) =

#{X ,K : FK (X)⊕ FK (X ⊕ α) = β}

#{X ,K}
.

DP of a trail (∗):

DP(∆X0,∆X1, . . . ,∆Xr) =
r∏

i=1

DP(∆Xi−1
FKi−−→ ∆Xi) .

(∗) Under certain assumptions: Markov cipher, independent round keys, etc.

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 5 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Difference Distribution Table (DDT)

α, β 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16
1 . . . 2 . . . 2 . 2 4 . 4 2 . .
2 . . . 2 . 6 2 2 . 2 2 .
3 . . 2 . 2 4 2 . 2 . . 4
4 . . . 2 . . 6 . . 2 . 4 2 . . .
5 . 4 . . . 2 2 . . . 4 . 2 . . 2
6 . . . 4 . 4 2 2 2 2
7 . . 2 2 2 . 2 . . 2 2 4
8 2 2 . . . 4 . 4 2 2
9 . 2 . . 2 . . 4 2 . 2 2 2 . . .
A . 2 2 6 . . 2 . . 4 .
B . . 8 . . 2 . 2 2 . 2
C . 2 . . 2 2 2 2 . 6 . .
D . 4 4 2 . 2 . 2 . 2 .
E . . 2 4 2 . . . 6 2 .
F . 2 . . 6 4 . 2 . . 2 .

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 6 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Searching for the Best Trail

Matsui’s branch-and-bound algorithm:

Mitsuru Matsui, On Correlation Between the Order of S-boxes and
the Strength of DES, EUROCRYPT’94.

Find the best trails for up to 16 rounds of DES.

Best = maximum probability.

Lower bound on the prob. of the best differential.

Indication of the strength against DC; first step in a DC attack.

Problem: not applicable to ciphers without S-boxes such as ARX.

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 7 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Ciphers Based on Addition, Rotation, XOR (ARX)

In ARX ADD and XOR provide non-linearity similarly to an S-box

≪

≪

≪

≪

Examples: FEAL, TEA/XTEA, Salsa20, Threefish, etc.

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 8 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Outline

1 Motivation

2 Matsui’s Algorithm

3 Application to ARX

4 Results

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 9 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Bn = ?

Bn−1

Bi+1

Bi

B2

B1

∆0

round 1

round 2
...

round i

round i + 1
...

round n − 1

round n

∆n

Input: best p for n − 1 rounds:
B1,B2, . . . ,Bn−1

Output: best p for n rounds:
Bn

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 10 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Bn−1

B1

∆0

round 1

round 2
...

round i

round i + 1
...

round n − 1

round n

∆n

init bound:
Bn ← Bn−1B1

Bn

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 10 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Bn−1

∆0

round 1

round 2
...

round i

round i + 1
...

round n − 1

round n

∆n

for all ∆0 :
if p1Bn−1 ≥ Bn :

call round 2

Bn

p1

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 10 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Bn−2

∆0

round 1

round 2
...

round i

round i + 1
...

round n − 1

round n

∆n

if p1p2Bn−2 ≥ Bn :
call round 3

Bn

p1

p2

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 10 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Bn−i

∆0

round 1

round 2
...

round i

round i + 1
...

round n − 1

round n

∆n

if p1p2 . . . piBn−i ≥ Bn :
call round i + 1

Bn

p1

p2

pi

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 10 / 27

Motivation Matsui’s Algorithm Application to ARX Results

B1

∆0

round 1

round 2
...

round i

round i + 1
...

round n − 1

round n

∆n

if p1p2 . . . pn−1B1 ≥ Bn:
call round n

Bn

p1

p2

pi

pi+1

pn−1

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 10 / 27

Motivation Matsui’s Algorithm Application to ARX Results

∆0

round 1

round 2
...

round i

round i + 1
...

round n − 1

round n

∆n

if p = p1p2 . . . pn−1pn ≥ Bn :
update bound:

Bn ← p

Bn

p1

p2

pi

pi+1

pn−1

pn

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 10 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Application to DES

α1β1
F

α2β2
F

. . . αi = βi−1 ⊕ αi−2

βi
F

round 1
for all α1 :

β1 : p1 = maxβp(α1 → β)

if p1Bn−1 ≥ Bn :
call round 2

round 2
for all α2, β2 :

p2 = p(α2 → β2)

if p1p2Bn−2 ≥ Bn

call round 3
. . .
round i
αi = βi−1 ⊕ αi−2

for all βi : pi = p(αi → βi) :
if p1p2 . . . piBn−i ≥ Bn :

call round i + 1

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 11 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Divide-and-Conquer the Input to the S-box Layer

αi

k

EX

α8
iβ8

i S8

α7
iβ7

i S7

α6
iβ6

i S6

α5
iβ5

i S5

α4
iβ4

i S4

α3
iβ3

i S3

α2
iβ2

i S2

α1
iβ1

i S1

Pβi

round 2
for j : 1 ≤ j ≤ 8 :

for all αj
2, β

j
2 :

pj = p(αj
2 → β j

2)
p2 = p1p2 . . . pj

if p1p2Bn−2 ≥ Bn

j = j + 1
if j > 8

call round 3

Note: p is computed using the DDT of the S-boxes.

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 12 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Outline

1 Motivation

2 Matsui’s Algorithm

3 Application to ARX

4 Results

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 13 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Application to ARX

F

F

.

F

k0

≪ 4
δ

≫ 5

k1

64 Rounds Block Cipher TEA

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 14 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Application to ARX: Problems and Solutions

Problems: /

1 No S-boxes =⇒ divide-and-conquer trick does not work.
2 Infeasible to compute full DDT for ADD or XOR.

Solutions: ,

1 Partial difference distribution table (pDDT).
2 The country roads and highways analogy.

The Catch?

Not guaranteed to find the (provably) best trail.

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 15 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Partial Difference Distribution Table (pDDT)

Definition

A partial difference distribution table (pDDT) D for the non-linear

mapping S is a DDT that contains differentials (α
S
−→ β) with

probabilities larger than or equal to a fixed threshold pthres > 0 :

(α
S
−→ β) ∈ D ⇐⇒ p(α S

−→ β) ≥ pthres .

Definition

A pDDT is said to be complete (resp. incomplete) if it contains all
(resp. not all) differentials that have probability ≥ pthres.

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 16 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Problem: for given αi no transition in the pDDT

α1β1
F

α2β2
F

. . . αi = βi−1 ⊞ αi−2

?
F

round 1
for all α1, β1 ∈ pDDT :

p1 = p(α1 → β1)

if p1Bn−1 ≥ Bn :
call round 2

round 2
for all α2, β2 ∈ pDDT :

p2 = p(α2 → β2)

if p1p2Bn−2 ≥ Bn

call round 3
. . .
round i
αi = βi−1 ⊕ αi−2

∄β : (αi , β) ∈ pDDT

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 17 / 27

Motivation Matsui’s Algorithm Application to ARX Results

The Highways and Country Roads Analogy

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 18 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Highways and Country Roads

Definition (Highway)

A highway is a transition (α→ β) such that p(α→ β) ≥ pthres for some
fixed probability threshold pthres.

Definition (Country road)

All transitions that are not highways are country roads.

Remark
All transitions in a pDDT are highways.

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 19 / 27

αi−2

F
αi = βi−1 ⊞ αi−2 αi−1

αi
F

F

Problem: ∄β : (αi , β) ∈ D

?

αi−2

F
αi = βi−1 ⊞ αi−2 αi−1

αi
F

F

αi+1 = β j
i ⊞ αi−1βi+1

Problem: ∄β : (αi , β) ∈ D

Solution 1: do nothing

◮ Terminate and return⊥
⊥

αi−2

F
αi = βi−1 ⊞ αi−2 αi−1

αi
F

F

αi+1 = β j
i ⊞ αi−1βi+1

Problem: ∄β : (αi , β) ∈ D

Solution 2: Greedy choice:

◮ βmax
i : pi = maxβp(αi → β)βmax

i

αi−2

F
αi = βi−1 ⊞ αi−2 αi−1

αi
F

F

αi+1 = β j
i ⊞ αi−1βi+1

Problem: ∄β : (αi , β) ∈ D

Solution 3: Explore all β j
i :

◮ p(αi → β j
i) ≥

Bn
p1p2...pi−1Bn−i

β0
i

β1
i...

β j
i...

βm−1
i

αi−2

F
αi = βi−1 ⊞ αi−2 αi−1

αi
F

F

αi+1 = β j
i ⊞ αi−1βi+1

Problem: ∄β : (αi , β) ∈ D

Solution 4: Explore some β j
i :

◮ p(αi → β j
i) ≥

Bn
p1p2...pi−1Bn−i

◮ β j
i : (αi+1, βi+1) ∈ D

back-to-the-highway
trick

β0
i

...

β j
i...

Motivation Matsui’s Algorithm Application to ARX Results

Threshold Search

Application of Matsui’s algorithm to ARX (threshold search):

1 Derive an expression for computing the DP of F .

2 Compute the pDDT of F (the highways table).

3 Execute the modified Matsui’s algorithm with the pDDT as input.

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 21 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Outline

1 Motivation

2 Matsui’s Algorithm

3 Application to ARX

4 Results

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 22 / 27

k0

≪ 4

δ
F (x) x

≫ 5

k1

≪ 4

k

δ

F (x) x
≫ 5

Figure: The F-functions of TEA (left) and XTEA (right).

k

≪ 9

k
F (x) x

≫ 14

k

x y

≫ 7/8

k ≪ 2/3

Figure: The F-functions of RAIDEN (left) and SPECK (right).

Results

Cipher Type of #Rounds #Rounds Ref.
Trail Covered Total

TEA Trunc. 5 64 [Moon02+]
Trunc. 7 [Chen12+]
Trunc. 8 [Hong03+, Bogdanov12+]
Full 18 [Sect. 8]

XTEA Trunc. 6 64 [Moon02+]
Trunc. 7 [Chen12+]
Trunc. 8 [Bogdanov12+]
Full 14, 14 [Sect. 8], [Hong03+]

SPECK32 Full 9, 8∗ 22 [Sect. 8],[Abed13+]
SPECK48 Full 10, 10∗ 22/23 [Sect. 8], [Abed13+]
SPECK64 Full 13, 13∗ 26/27 [Sect. 8], [Abed13+]

RAIDEN Full 32 32 [Sect. 8]

(∗) differentials

Results: Update on SPECK (FSE 2014)

Cipher Type of #Rounds #Rounds Ref.
Trail Covered Total

TEA Trunc. 5 64 [Moon02+]
Trunc. 7 [Chen12+]
Trunc. 8 [Hong03+, Bogdanov12+]
Full 18 [Sect. 8]

XTEA Trunc. 6 64 [Moon02+]
Trunc. 7 [Chen12+]
Trunc. 8 [Bogdanov12+]
Full 14, 14 [Sect. 8], [Hong03+]

SPECK32 Full 9, 8∗ 22 [FSE ’14],[Abed13+]
SPECK48 Full 11, 10∗ 22/23 [FSE ’14], [Abed13+]
SPECK64 Full 14, 13∗ 26/27 [FSE ’14], [Abed13+]

RAIDEN Full 32 32 [Sect. 8]

(∗) differentials

Motivation Matsui’s Algorithm Application to ARX Results

Takeaway Message

Threshold search: first application of Matsui’s algorithm to ARX.

The idea is very simple. It is the technique that’s difficult.
– James Joyce on Ulysses

Simple idea:

Matsui + pDDT + Highways and Country roads.

Difficult technique:

Choice of parameters: pthres, HWthres, size of pDDT.
pDDT: complete vs. incomplete; pre-computed vs. dynamic update.
Search strategy: top-to-bottom vs. start-from-the-middle.
Limit #CR: back-to-highway (TEA) vs. limit-by-HW (SPECK).

Depends on the cipher: not a black-box tool to be applied as-is.

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 26 / 27

Motivation Matsui’s Algorithm Application to ARX Results

YAARX: Yet Another ARX Toolkit

General toolkit for analysis of ARX:

https://github.com/vesselinux/yaarx

Documentation:

http://vesselinux.github.io/yaarx/index.html

Complements Gaëtan Leurent’s ARX Toolkit.

Extends The S-function Toolkit by Mouha et al.

Thank you for your attention!

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 27 / 27

https://github.com/vesselinux/yaarx
http://vesselinux.github.io/yaarx/index.html

Motivation Matsui’s Algorithm Application to ARX Results

Questions

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 27 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Backup Slides

Backup Slides

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 27 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Monotonicity of the DP of XOR and ADD

Proposition

The differential probabilities (DP) of XOR and ADD (resp. xdp+ and
adp⊕) are monotonously decreasing with the word size n of the
differences α, β, γ:

pn ≤ . . . ≤ pk+1 ≤ pk ≤ pk−1 ≤ . . . ≤ p1 ,

where pk = DP(αk , βk → γk) : n ≥ k ≥ 1 and xk denotes the k LSB-s
of the difference x.

Corollary

For fixed pthres the pDDT of XOR (ADD) can be computed bitwise over
the words of the differences from LSB to MSB.

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 27 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Bitwise Computation of pDDT for XOR and ADD

Algorithm 1 Compute pDDT for XOR (ADD).
Input: n, pthres, k , pk , αk , βk , γk .
Output: Partial DDT D: (α, β, γ) ∈ D : DP(α, β → γ) ≥ pthres.

1: if n = k then
2: Add (α, β, γ)← (αk , βk , γk) to D
3: return
4: for x , y , x ∈ {0, 1} do
5: αk+1 ← x |αk , βk+1 ← y |βk , γk+1 ← z|γk .
6: pk+1 = DP(αk+1, βk+1 → γk+1)
7: if pk+1 ≥ pthres then
8: Procedure 1(n, pthres, k + 1, pk+1, αk+1, βk+1, γk+1)

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 27 / 27

Motivation Matsui’s Algorithm Application to ARX Results

Computation of Partial DDT: Timings, n = 32

ADD XOR

pthres DDT size Time DDT size Time

0.1 252,940 36, sec. 3,951,388 2.29, min.
0.07 361,420 37, sec. 3,951,388 1.23, min.
0.05 3,038,668 5.35, min. 167,065,948 44.36, min.
0.01 2,715,532,204 17.46, hours. – –

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 27 / 27

TEA r β α log2p

1 F ← FFFFFFFF −3.62
2 0 ← 0 −0.00
3 F ← FFFFFFFF −2.87
4 0 ← F −7.90
5 FFFFFFF1 ← FFFFFFFF −3.60
6 0 ← 0 −0.00
7 FFFFFFF1 ← FFFFFFFF −2.78
8 2 ← FFFFFFF1 −8.66
9 F ← 1 −3.57

10 0 ← 0 −0.00
11 FFFFFFF1 ← 1 −2.87
12 FFFFFFFE ← FFFFFFF1 −7.90
13 F ← FFFFFFFF −3.59
14 0 ← 0 −0.00
15 11 ← FFFFFFFF −2.79
16 0 ← 11 −8.83
17 FFFFFFEF ← FFFFFFFF −3.61
18 0 ← 0 −0.00

∑
r log2pr −62.6

log2pthres −4.32
#hways 68

Time: 21.36 min.

Motivation Matsui’s Algorithm Application to ARX Results

Copyright

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

(LACS, University of Luxembourg) Search for Differential Trails in ARX CT-RSA 2014 27 / 27

https://creativecommons.org/licenses/by-nc-sa/4.0/

CBEAM: E�cient Authenticated Encryption
from Feebly One-Way φ Functions

Author: Markku-Juhani O. Saarinen

Presented by: Jean-Philippe Aumasson

CT-RSA '14, San Francisco, USA
26 February 2014

1 / 19

Sponge Functions

Are based on some keyless cryptographic permutation π.

Proposed and proved by G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche for:

I Collision resistant hash algorithms [eCRYPT Hash Workshop 2007], like Keccak
[SHA3 Winner 2011].

I Pseudorandom extractors (PRFs and PRNGs) [CHES 2010].

I Authenticated Encryption (AE,AEAD) [SAC 2011].

I Keyed Message Authentication Codes (MACs) [SKEW 2011].

I Tree hashing with Sakura [IACR ePrint 2013].

.. and BLINKER two-party protocols [Next talk: Saarinen CT-RSA 2014].

2 / 19

Sponge Functions

Are based on some keyless cryptographic permutation π.

Proposed and proved by G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche for:

I Collision resistant hash algorithms [eCRYPT Hash Workshop 2007], like Keccak
[SHA3 Winner 2011].

I Pseudorandom extractors (PRFs and PRNGs) [CHES 2010].

I Authenticated Encryption (AE,AEAD) [SAC 2011].

I Keyed Message Authentication Codes (MACs) [SKEW 2011].

I Tree hashing with Sakura [IACR ePrint 2013].

.. and BLINKER two-party protocols [Next talk: Saarinen CT-RSA 2014].

2 / 19

Sponge Functions

Are based on some keyless cryptographic permutation π.

Proposed and proved by G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche for:

I Collision resistant hash algorithms [eCRYPT Hash Workshop 2007], like Keccak
[SHA3 Winner 2011].

I Pseudorandom extractors (PRFs and PRNGs) [CHES 2010].

I Authenticated Encryption (AE,AEAD) [SAC 2011].

I Keyed Message Authentication Codes (MACs) [SKEW 2011].

I Tree hashing with Sakura [IACR ePrint 2013].

.. and BLINKER two-party protocols [Next talk: Saarinen CT-RSA 2014].

2 / 19

Sponge-based Authenticated Encryption

π

Encryption.

p.. c..p0 c0 p1 c1

π

d0

π π

d..

π

Absorbtions

b

d
om

ain
b
a
rrier

h0 h..

Squeezing

πb

d
om

ain
b
a
rrier

πIV

I First the key, nonce, sequence numbers, and associated data (all represented by di)
are absorbed in state.

I Then plaintext pi is used to produce ciphertext ci (or vice versa).

I Finally a MAC or hash hi is squeezed from the state.

3 / 19

About π in Sponge Constructions

I π is computed only in one direction. . .

I Its inverse π−1 is not required for decryption or any other purpose.

I The state is of b = r + c bits, where
I r is the rate or �block size�, and determines speed
I c is the capacity and determines an upper bound for security

I For CBEAM, we have a b = 256-bit permutation with r = 64 and c = 192.

I We target Triple-DES security assuming at most 240 invocations of π (8TiB).

4 / 19

About π in Sponge Constructions

I π is computed only in one direction. . .

I Its inverse π−1 is not required for decryption or any other purpose.

I The state is of b = r + c bits, where
I r is the rate or �block size�, and determines speed
I c is the capacity and determines an upper bound for security

I For CBEAM, we have a b = 256-bit permutation with r = 64 and c = 192.

I We target Triple-DES security assuming at most 240 invocations of π (8TiB).

4 / 19

About π in Sponge Constructions

I π is computed only in one direction. . .

I Its inverse π−1 is not required for decryption or any other purpose.

I The state is of b = r + c bits, where
I r is the rate or �block size�, and determines speed
I c is the capacity and determines an upper bound for security

I For CBEAM, we have a b = 256-bit permutation with r = 64 and c = 192.

I We target Triple-DES security assuming at most 240 invocations of π (8TiB).

4 / 19

Background on φ Functions: Keccak's 5× 5 - bit χ

χ is the only nonlinear component of Keccak

Usually implemented with 64× bit-slicing SIMD.

A rotation-invariant φ function:

φ(x) = y ⇒ φ(x ≪ n) = y ≪ n, ∀ n ∈ Z.

Algebraic degree 2.

Each output bit depends on 3 input bits.

5 / 19

Inverse of Keccak's 5× 5 - bit χ

Inverse not required for implementing Keccak.

As an inverse of a φ function, χ−1 is also a φ function.

Higher circuit complexity. Algebraic degree 3.

Each output bit depends all input bits.

6 / 19

Boura-Canteaut Inverse Algebraic Complexity Theorems

C. Boura and A. Canteaut: �On the In�uence of the Algebraic Degree of F−1 on the
Algebraic Degree of G ◦ F .� IEEE Transactions on Information Theory 59(1), January
2013.

These theoretical results indicate that even if the inverse π−1 is not explicitly
computed, an algebraically complex inverse makes the resulting iteration stronger.

We have discovered new φ functions with more radical computational
�asymmetry� than the χ of Keccak.

7 / 19

CBEAM's �S-Box� φ16: A 16× 16 - Bit φ Function

First de�ne a 5× 1 - bit nonlinear function φ5:

φ5(x0, x1, x2, x3, x4) = x0x1x3x4 + x0x2x3 + x0x1x4 + x1x2x3 + x2x3x4+

x0x3 + x1x3 + x2x3 + x2x4 + x3x4 + x1 + x3 + x4.

This is turned into a 16× 16 - bit function φ16 de�ned on V [0 · · · 15] 7→ V ′[0 · · · 15]
via convolution:

V ′[i] = φ5
(
V [i], V [(i − 1) mod 16], V [(i − 2) mod 16],

V [(i − 3) mod 16], V [(i − 4) mod 16]
)
.

Degree is of both φ5 and φ16 is clearly 4. The Algebraic Normal Form (ANF)
polynomial has 13 monomials.

8 / 19

CBEAM's �S-Box� φ16: A 16× 16 - Bit φ Function

First de�ne a 5× 1 - bit nonlinear function φ5:

φ5(x0, x1, x2, x3, x4) = x0x1x3x4 + x0x2x3 + x0x1x4 + x1x2x3 + x2x3x4+

x0x3 + x1x3 + x2x3 + x2x4 + x3x4 + x1 + x3 + x4.

This is turned into a 16× 16 - bit function φ16 de�ned on V [0 · · · 15] 7→ V ′[0 · · · 15]
via convolution:

V ′[i] = φ5
(
V [i], V [(i − 1) mod 16], V [(i − 2) mod 16],

V [(i − 3) mod 16], V [(i − 4) mod 16]
)
.

Degree is of both φ5 and φ16 is clearly 4. The Algebraic Normal Form (ANF)
polynomial has 13 monomials.

8 / 19

What about it's inverse φ−116 ?

I First of all, there is an inverse, which is by no means obvious.

I We tested all 232 5-input Boolean functions to �nd φ5.

I φ−116 has degree 11 for each output bit and 13465 monomials in its ANF

I Each output bit depends on all input bits (only 5
n
in case of φn.)

I The degree of φ−1n grows linearly with n and the number of ANF monomials
exponentially.

9 / 19

What about it's inverse φ−116 ?

I First of all, there is an inverse, which is by no means obvious.

I We tested all 232 5-input Boolean functions to �nd φ5.

I φ−116 has degree 11 for each output bit and 13465 monomials in its ANF

I Each output bit depends on all input bits (only 5
n
in case of φn.)

I The degree of φ−1n grows linearly with n and the number of ANF monomials
exponentially.

9 / 19

Implementation Technique 1: 16-Cycle Hardware

φ5

0123456789101112131415 x

16 - Cycle Hardware Implementation (x and y are rotated at each cycle)

0123456789101112131415 y

Two cyclic shift registers x and y and a single nonlinear φ5 function.
The direction of shift does not matter.

After 16 cycles, y = φ16(x). The hardware area is very small (≈ 100 GE).

10 / 19

Implementation Technique 1: 16-Cycle Hardware

φ5

0123456789101112131415 x

16 - Cycle Hardware Implementation (x and y are rotated at each cycle)

0123456789101112131415 y

Two cyclic shift registers x and y and a single nonlinear φ5 function.
The direction of shift does not matter.

After 16 cycles, y = φ16(x). The hardware area is very small (≈ 100 GE).

10 / 19

Implementation Technique 2: 8-Cycle Hardware

φ5

0123456789101112131415 x

8 - Cycle Hardware Implementation (x and y are rotated at each cycle)

0123456789101112131415 y

φ5

Again two cyclic shift registers x and y but two nonlinear φ5 functions.

After 8 cycles, y = φ16(x). The number of GE is is increased somewhat.

This way we can have speed/area trade-o�s for 1, 2, 4, 8, 16 cycles.

11 / 19

Implementation Technique 3: Rotational Bit-Slicing

0123456789101112131415

01234567891011121314

012345678910111213

0123456789101112

01234567891011

15

1415

131415

12131415

0123456789101112131415

φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5 φ5φ5 φ5

Bitslicing Software Implementation (x, x≪ 1, · · · , x≪ 4 in different registers)

≪ 1

≪ 2

≪ 3

≪ 4

x

y

R0

R1

R2

R3

R4

Get cyclic rotations of input word xi = x ≪ i for 0 ≤ i ≤ 4 into �ve 16-bit registers Ri:
R0, R1, R2, R3, R4. Then compute 16× φ5 in parallel using bitwise logic.

12 / 19

Implementation Technique 4: Massive Parallelism

rw[0] rw[1] rw[2] rw[3] rw[4] rw[5] rw[6] rw[7] rw[8] rw[15]rw[14]rw[13]rw[12]rw[11]rw[10]rw[9]

16× 16 = 256 - bit state r

YMM0

XMM0 XMM1

MMX0 MMX2 MMX3 MMX4

R0 R1 R2 R3 R4 R5 R6 R7

Intel Haswell AVX2 (Gen. 4 Core) arch. has 256-bit YMM registers and instructions.
Most new PCs sold this year have AVX2. Older PCs have at least SSE2, which has
128-bit XMMs.

AVX2 allows 256× of φ5 to be computed with just eight instructions (can be as low as
8 cycles). We have an implementation that computes 16× φ16 in one go.

Massive improvement over traditional S-Box lookups of similar size in both low-end and
high-end software and hardware.

13 / 19

Implementation Technique 4: Massive Parallelism

rw[0] rw[1] rw[2] rw[3] rw[4] rw[5] rw[6] rw[7] rw[8] rw[15]rw[14]rw[13]rw[12]rw[11]rw[10]rw[9]

16× 16 = 256 - bit state r

YMM0

XMM0 XMM1

MMX0 MMX2 MMX3 MMX4

R0 R1 R2 R3 R4 R5 R6 R7

Intel Haswell AVX2 (Gen. 4 Core) arch. has 256-bit YMM registers and instructions.
Most new PCs sold this year have AVX2. Older PCs have at least SSE2, which has
128-bit XMMs.

AVX2 allows 256× of φ5 to be computed with just eight instructions (can be as low as
8 cycles). We have an implementation that computes 16× φ16 in one go.

Massive improvement over traditional S-Box lookups of similar size in both low-end and
high-end software and hardware.

13 / 19

Implementation Technique 4: Massive Parallelism

rw[0] rw[1] rw[2] rw[3] rw[4] rw[5] rw[6] rw[7] rw[8] rw[15]rw[14]rw[13]rw[12]rw[11]rw[10]rw[9]

16× 16 = 256 - bit state r

YMM0

XMM0 XMM1

MMX0 MMX2 MMX3 MMX4

R0 R1 R2 R3 R4 R5 R6 R7

Intel Haswell AVX2 (Gen. 4 Core) arch. has 256-bit YMM registers and instructions.
Most new PCs sold this year have AVX2. Older PCs have at least SSE2, which has
128-bit XMMs.

AVX2 allows 256× of φ5 to be computed with just eight instructions (can be as low as
8 cycles). We have an implementation that computes 16× φ16 in one go.

Massive improvement over traditional S-Box lookups of similar size in both low-end and
high-end software and hardware.

13 / 19

TI MSP430 (16-bit) and Intel AVX2 (256-bit)
TI MSP430 assembly for 16× φ5
with 9 instructions on 16-bit regs:

// r14 = Phi5(r15, .. ,r11)

bic r12, r11

inv r13

and r13, r12

and r11, r13

xor r12, r11

and r11, r15

bis r12, r14

bic r15, r14

xor r13, r14

AVX2 C intrinsics for 256× φ5 with 8
instructions on 256-bit regs:

// t0 = Phi5(x0,x1,x2,x3,x4)

t0 = _mm256_andnot_si256(x3,x4);

t1 = _mm256_andnot_si256(x2,x3);

t2 = _mm256_andnot_si256(x2,t0);

t3 = _mm256_or_si256(x1,t1);

t0 = _mm256_xor_si256(t0,t1);

t1 = _mm256_and_si256(x0,t0);

t0 = _mm256_andnot_si256(t1,t3);

t0 = _mm256_xor_si256(t0,t2);

This is optimal: Eight instructions required in 3-operand architectures (x86 SIMD,
ARM, PPC, MIPS) and nine in sensible 2-operand architectures (MSP430).

14 / 19

TI MSP430 (16-bit) and Intel AVX2 (256-bit)
TI MSP430 assembly for 16× φ5
with 9 instructions on 16-bit regs:

// r14 = Phi5(r15, .. ,r11)

bic r12, r11

inv r13

and r13, r12

and r11, r13

xor r12, r11

and r11, r15

bis r12, r14

bic r15, r14

xor r13, r14

AVX2 C intrinsics for 256× φ5 with 8
instructions on 256-bit regs:

// t0 = Phi5(x0,x1,x2,x3,x4)

t0 = _mm256_andnot_si256(x3,x4);

t1 = _mm256_andnot_si256(x2,x3);

t2 = _mm256_andnot_si256(x2,t0);

t3 = _mm256_or_si256(x1,t1);

t0 = _mm256_xor_si256(t0,t1);

t1 = _mm256_and_si256(x0,t0);

t0 = _mm256_andnot_si256(t1,t3);

t0 = _mm256_xor_si256(t0,t2);

This is optimal: Eight instructions required in 3-operand architectures (x86 SIMD,
ARM, PPC, MIPS) and nine in sensible 2-operand architectures (MSP430).

14 / 19

TI MSP430 (16-bit) and Intel AVX2 (256-bit)
TI MSP430 assembly for 16× φ5
with 9 instructions on 16-bit regs:

// r14 = Phi5(r15, .. ,r11)

bic r12, r11

inv r13

and r13, r12

and r11, r13

xor r12, r11

and r11, r15

bis r12, r14

bic r15, r14

xor r13, r14

AVX2 C intrinsics for 256× φ5 with 8
instructions on 256-bit regs:

// t0 = Phi5(x0,x1,x2,x3,x4)

t0 = _mm256_andnot_si256(x3,x4);

t1 = _mm256_andnot_si256(x2,x3);

t2 = _mm256_andnot_si256(x2,t0);

t3 = _mm256_or_si256(x1,t1);

t0 = _mm256_xor_si256(t0,t1);

t1 = _mm256_and_si256(x0,t0);

t0 = _mm256_andnot_si256(t1,t3);

t0 = _mm256_xor_si256(t0,t2);

This is optimal: Eight instructions required in 3-operand architectures (x86 SIMD,
ARM, PPC, MIPS) and nine in sensible 2-operand architectures (MSP430).

14 / 19

Putting it together: Mixing Function mx

Six rounds of mx make up mx6 = π, the core CBEAM permutation.

mx is composed of addition of a round constant rcr , bit matrix transpose, linear mixing
λ, and nonlinear 256-bit mixing φ:

mxr (s) = (φ ◦ λ)(s⊕ rcr)T .

·T Transpose of the 16× 16 - bit state makes mixing e�cient.

λ Parity operation on 4-bit nibbles.

φ Is just 16 independent invocations of nonlinear φ16.

Due to transpose, mx is usually implemented as double rounds mx2 (�vertical� and
�horizontal� round) in software.

15 / 19

Putting it together: Mixing Function mx

Six rounds of mx make up mx6 = π, the core CBEAM permutation.

mx is composed of addition of a round constant rcr , bit matrix transpose, linear mixing
λ, and nonlinear 256-bit mixing φ:

mxr (s) = (φ ◦ λ)(s⊕ rcr)T .

·T Transpose of the 16× 16 - bit state makes mixing e�cient.

λ Parity operation on 4-bit nibbles.

φ Is just 16 independent invocations of nonlinear φ16.

Due to transpose, mx is usually implemented as double rounds mx2 (�vertical� and
�horizontal� round) in software.

15 / 19

Putting it together: Mixing Function mx

Six rounds of mx make up mx6 = π, the core CBEAM permutation.

mx is composed of addition of a round constant rcr , bit matrix transpose, linear mixing
λ, and nonlinear 256-bit mixing φ:

mxr (s) = (φ ◦ λ)(s⊕ rcr)T .

·T Transpose of the 16× 16 - bit state makes mixing e�cient.

λ Parity operation on 4-bit nibbles.

φ Is just 16 independent invocations of nonlinear φ16.

Due to transpose, mx is usually implemented as double rounds mx2 (�vertical� and
�horizontal� round) in software.

15 / 19

Speed on 64-bit x86

We compare to OpenSSL 1.0.1e AES implementation, which is the de facto standard
AES implementation. Generic assembler optimizations were enabled but we disabled the
full hardware AES for fairness.

Implementation Throughput Cycles/Byte

CBEAM-GCC 58.5 MB/s 32.5
CBEAM-AVX2 117.5 MB/s 16.1
OpenSSL AES-128 106.5 MB/s 17.8
OpenSSL AES-192 86.0 MB/s 22.1
OpenSSL AES-256 71.9 MB/s 26.4

Here r = 64 and therefore 8 bytes are processed per each π invocation. Approximately
same speed for CBEAM holds for encryption, decryption, hashing, etc.

CBEAM implementation is much more compact and is not vulnerable to cache timing
attacks as it is only straight-line code.

16 / 19

Speed on 64-bit x86

We compare to OpenSSL 1.0.1e AES implementation, which is the de facto standard
AES implementation. Generic assembler optimizations were enabled but we disabled the
full hardware AES for fairness.

Implementation Throughput Cycles/Byte

CBEAM-GCC 58.5 MB/s 32.5
CBEAM-AVX2 117.5 MB/s 16.1
OpenSSL AES-128 106.5 MB/s 17.8
OpenSSL AES-192 86.0 MB/s 22.1
OpenSSL AES-256 71.9 MB/s 26.4

Here r = 64 and therefore 8 bytes are processed per each π invocation. Approximately
same speed for CBEAM holds for encryption, decryption, hashing, etc.

CBEAM implementation is much more compact and is not vulnerable to cache timing
attacks as it is only straight-line code.

16 / 19

Speed on 64-bit x86

We compare to OpenSSL 1.0.1e AES implementation, which is the de facto standard
AES implementation. Generic assembler optimizations were enabled but we disabled the
full hardware AES for fairness.

Implementation Throughput Cycles/Byte

CBEAM-GCC 58.5 MB/s 32.5
CBEAM-AVX2 117.5 MB/s 16.1
OpenSSL AES-128 106.5 MB/s 17.8
OpenSSL AES-192 86.0 MB/s 22.1
OpenSSL AES-256 71.9 MB/s 26.4

Here r = 64 and therefore 8 bytes are processed per each π invocation. Approximately
same speed for CBEAM holds for encryption, decryption, hashing, etc.

CBEAM implementation is much more compact and is not vulnerable to cache timing
attacks as it is only straight-line code.

16 / 19

On MSP430 16-bit Sensor Platform

CBEAM is as fast as the fastest AES implementations on this platform but has
signi�cantly smaller footprint.

The numbers for AES are only for cores, modes of operation not included.

IP Core Flash
Size

RAM
Size

Encrypt
Cycles

Decrypt
Cycles

Cycles /
Byte

CBEAM 386 32 4369 4404 550.5
AES-128 [1] 2536 ? 5432 8802 550.1
AES-128 [2] 2423 80 6600 8400 525.0
AES-256 [1] 2830 ? 7552 12258 766.1

The IAIK [1] implementation is commercial and written in hand-optimized assembly.
The Texas Instruments [2] AES core is recommended by the SoC vendor themselves.

17 / 19

On MSP430 16-bit Sensor Platform

CBEAM is as fast as the fastest AES implementations on this platform but has
signi�cantly smaller footprint.

The numbers for AES are only for cores, modes of operation not included.

IP Core Flash
Size

RAM
Size

Encrypt
Cycles

Decrypt
Cycles

Cycles /
Byte

CBEAM 386 32 4369 4404 550.5
AES-128 [1] 2536 ? 5432 8802 550.1
AES-128 [2] 2423 80 6600 8400 525.0
AES-256 [1] 2830 ? 7552 12258 766.1

The IAIK [1] implementation is commercial and written in hand-optimized assembly.
The Texas Instruments [2] AES core is recommended by the SoC vendor themselves.

17 / 19

On MSP430 16-bit Sensor Platform

CBEAM is as fast as the fastest AES implementations on this platform but has
signi�cantly smaller footprint.

The numbers for AES are only for cores, modes of operation not included.

IP Core Flash
Size

RAM
Size

Encrypt
Cycles

Decrypt
Cycles

Cycles /
Byte

CBEAM 386 32 4369 4404 550.5
AES-128 [1] 2536 ? 5432 8802 550.1
AES-128 [2] 2423 80 6600 8400 525.0
AES-256 [1] 2830 ? 7552 12258 766.1

The IAIK [1] implementation is commercial and written in hand-optimized assembly.
The Texas Instruments [2] AES core is recommended by the SoC vendor themselves.

17 / 19

On MSP430 16-bit Sensor Platform

CBEAM is as fast as the fastest AES implementations on this platform but has
signi�cantly smaller footprint.

The numbers for AES are only for cores, modes of operation not included.

IP Core Flash
Size

RAM
Size

Encrypt
Cycles

Decrypt
Cycles

Cycles /
Byte

CBEAM 386 32 4369 4404 550.5
AES-128 [1] 2536 ? 5432 8802 550.1
AES-128 [2] 2423 80 6600 8400 525.0
AES-256 [1] 2830 ? 7552 12258 766.1

The IAIK [1] implementation is commercial and written in hand-optimized assembly.
The Texas Instruments [2] AES core is recommended by the SoC vendor themselves.

17 / 19

Security Theorems

For MonkeyWrap and BLINKER modes with t-bit authentication tags, N invocations of
π, k-bit key, and max q queries:

Adv
priv
enc (A) < q2−k +

N(N + 1)

2c+1
(1)

Adv
auth
enc (A) < q2−k + 2−t +

N(N + 1)

2c+1
(2)

against any single adversary A if K
$← {0, 1}k .

We claim security equivalent or better than Triple-DES with t = 128, k ≥ 128, q ≤ 232

and N ≤ 240.

Security against Di�erential, Linear, and especially Algebraic cryptanalysis. We
recommend the MonkeDuplex-like single-use nonce modes for additional security.

18 / 19

Security Theorems

For MonkeyWrap and BLINKER modes with t-bit authentication tags, N invocations of
π, k-bit key, and max q queries:

Adv
priv
enc (A) < q2−k +

N(N + 1)

2c+1
(1)

Adv
auth
enc (A) < q2−k + 2−t +

N(N + 1)

2c+1
(2)

against any single adversary A if K
$← {0, 1}k .

We claim security equivalent or better than Triple-DES with t = 128, k ≥ 128, q ≤ 232

and N ≤ 240.

Security against Di�erential, Linear, and especially Algebraic cryptanalysis. We
recommend the MonkeDuplex-like single-use nonce modes for additional security.

18 / 19

Conclusions

I Rotation-invariant φ functions are excellent alternatives to traditional SPNs,
especially in sponge constructions where π−1 is not needed.

I Modern SIMD architectures allow fast, parallel computation of φ functions with
�rotational bit-slicing�. Much faster than S-Box lookups.

I Compact straight-line code, hence no cache timing attacks as in AES. Highly
�exible implementations in high- and low-performance platforms.

I Hardware-friendly, can sacri�ce cycles for gates. Suitable especially for
lightweight applications due to small implementation footprint.

I Further research: discovery of surprising features of φ functions, re�ned
quanti�cation of security from feedble one-wayness.

19 / 19

Conclusions

I Rotation-invariant φ functions are excellent alternatives to traditional SPNs,
especially in sponge constructions where π−1 is not needed.

I Modern SIMD architectures allow fast, parallel computation of φ functions with
�rotational bit-slicing�. Much faster than S-Box lookups.

I Compact straight-line code, hence no cache timing attacks as in AES. Highly
�exible implementations in high- and low-performance platforms.

I Hardware-friendly, can sacri�ce cycles for gates. Suitable especially for
lightweight applications due to small implementation footprint.

I Further research: discovery of surprising features of φ functions, re�ned
quanti�cation of security from feedble one-wayness.

19 / 19

Conclusions

I Rotation-invariant φ functions are excellent alternatives to traditional SPNs,
especially in sponge constructions where π−1 is not needed.

I Modern SIMD architectures allow fast, parallel computation of φ functions with
�rotational bit-slicing�. Much faster than S-Box lookups.

I Compact straight-line code, hence no cache timing attacks as in AES. Highly
�exible implementations in high- and low-performance platforms.

I Hardware-friendly, can sacri�ce cycles for gates. Suitable especially for
lightweight applications due to small implementation footprint.

I Further research: discovery of surprising features of φ functions, re�ned
quanti�cation of security from feedble one-wayness.

19 / 19

Beyond Modes:
Building a Secure Record Protocol from
a Cryptographic Sponge Permutation

Author: Markku-Juhani O. Saarinen

Presented by: Jean-Philippe Aumasson

CT-RSA '14, San Francisco, USA
26 February 2014

1 / 19

Background: Complex, Insecure Legacy Protocols

All of the RFC / de facto standard networking security protocols�SSL3, SSH2, TLS,
IPSEC, PPTP, and wireless WPA2 (together with its predecessors)�consist of two
largely independent protocols:

1. The handshake / authentication protocol which establishes a shared secret K .

2. The transport / record protocol which provides communications security.

In addition to the plaintext P , data items required by record protocols to perform
authenticated encryption at each direction usually include at least the following:

S Incremental message sequence number.

IV Initialization vector for block ciphers.

Ke Key for the symmetric encryption algorithm.

Ka Key for the message authentication algorithm.

That is 2× 4 = 8 separate cryptovariables and at least two di�erent algorithms (HMAC
and block cipher) in addition to PRFs that derive these.

2 / 19

Background: Complex, Insecure Legacy Protocols

All of the RFC / de facto standard networking security protocols�SSL3, SSH2, TLS,
IPSEC, PPTP, and wireless WPA2 (together with its predecessors)�consist of two
largely independent protocols:

1. The handshake / authentication protocol which establishes a shared secret K .

2. The transport / record protocol which provides communications security.

In addition to the plaintext P , data items required by record protocols to perform
authenticated encryption at each direction usually include at least the following:

S Incremental message sequence number.

IV Initialization vector for block ciphers.

Ke Key for the symmetric encryption algorithm.

Ka Key for the message authentication algorithm.

That is 2× 4 = 8 separate cryptovariables and at least two di�erent algorithms (HMAC
and block cipher) in addition to PRFs that derive these.

2 / 19

Motivation for BLINKER

Legacy protocols are unsuited for ultra-lightweight applications.

Academic research has focused on lightweight primitives, and suitable lightweight,
general purpose communications protocols have not been proposed.

We need a generic short-distance lightweight link layer security provider that can
function independently from upper layer application functions.

I Design with mathematical and legal provability in mind.

I Aim at simplicity and small footprint: use a single sponge permutation for key
derivation, con�dentiality, integrity, etc. (Instead of distinct algorithms.)

I Use a single state variable in both directions, instead of 8+ cryptovariables.

I Ideally this protocol would be realizable with semi-autonomous integrated
hardware, without much CPU or MCU involvement.

3 / 19

Motivation for BLINKER

Legacy protocols are unsuited for ultra-lightweight applications.

Academic research has focused on lightweight primitives, and suitable lightweight,
general purpose communications protocols have not been proposed.

We need a generic short-distance lightweight link layer security provider that can
function independently from upper layer application functions.

I Design with mathematical and legal provability in mind.

I Aim at simplicity and small footprint: use a single sponge permutation for key
derivation, con�dentiality, integrity, etc. (Instead of distinct algorithms.)

I Use a single state variable in both directions, instead of 8+ cryptovariables.

I Ideally this protocol would be realizable with semi-autonomous integrated
hardware, without much CPU or MCU involvement.

3 / 19

Two-party Synchronization

Legacy protocols use two independent channels: one from Alice to Bob (A→ B)
and another from Bob to Alice (B → A).

Example. Consider the following three transcripts:

T1 : B → A : M2, A→ B : M1, A→ B : M3

T2 : A→ B : M1, B → A : M2, A→ B : M3

T3 : A→ B : M1, A→ B : M3, B → A : M2
These three exchanges have precisely the same valid representation on the two
channels when sent over IPSEC, TLS, SSL, or SSH protocols.

The same authentication codes will match, etc.

4 / 19

Two-party Synchronization

Legacy protocols use two independent channels: one from Alice to Bob (A→ B)
and another from Bob to Alice (B → A).

Example. Consider the following three transcripts:

T1 : B → A : M2, A→ B : M1, A→ B : M3

T2 : A→ B : M1, B → A : M2, A→ B : M3

T3 : A→ B : M1, A→ B : M3, B → A : M2
These three exchanges have precisely the same valid representation on the two
channels when sent over IPSEC, TLS, SSL, or SSH protocols.

The same authentication codes will match, etc.

4 / 19

The Synchronization Problem of Two-Channel Protocols.

Despite individual message authentication, the interwoven order of the sequence of
back-and-forth messages cannot be unambiguously determined and authenticated with
legacy protocols.

This is why transaction records are often authenticated on the application level as
well, adding an another layer of complexity.

Issue also a�ects basic end-user interactive security as portions of server messaging
can be maliciously delayed, encouraging the user to react to partial information.

Legal perspective on unambiguous session transcripts:
Steven J. Murdoch and Ross Anderson: �Security Protocols and Evidence: Where Many

Payment Systems Fail.� Financial Cryptography and Data Security 2014, 3 � 7 March

2014, Barbados.

5 / 19

The Synchronization Problem of Two-Channel Protocols.

Despite individual message authentication, the interwoven order of the sequence of
back-and-forth messages cannot be unambiguously determined and authenticated with
legacy protocols.

This is why transaction records are often authenticated on the application level as
well, adding an another layer of complexity.

Issue also a�ects basic end-user interactive security as portions of server messaging
can be maliciously delayed, encouraging the user to react to partial information.

Legal perspective on unambiguous session transcripts:
Steven J. Murdoch and Ross Anderson: �Security Protocols and Evidence: Where Many

Payment Systems Fail.� Financial Cryptography and Data Security 2014, 3 � 7 March

2014, Barbados.

5 / 19

The Synchronization Problem of Two-Channel Protocols.

Despite individual message authentication, the interwoven order of the sequence of
back-and-forth messages cannot be unambiguously determined and authenticated with
legacy protocols.

This is why transaction records are often authenticated on the application level as
well, adding an another layer of complexity.

Issue also a�ects basic end-user interactive security as portions of server messaging
can be maliciously delayed, encouraging the user to react to partial information.

Legal perspective on unambiguous session transcripts:
Steven J. Murdoch and Ross Anderson: �Security Protocols and Evidence: Where Many

Payment Systems Fail.� Financial Cryptography and Data Security 2014, 3 � 7 March

2014, Barbados.

5 / 19

Recap: Sponge-based Authenticated Encryption

π

Encryption.

p.. c..p0 c0 p1 c1

π

d0

π π

d..

π

Absorbtions

b

d
om

ain
b
a
rrier

h0 h..

Squeezing

πb

d
om

ain
b
a
rrier

πIV

1. Key, nonce, and associated data (di) are absorbed in state.

2. Plaintext pi is used to produce ciphertext ci (or vice versa).

3. MAC hi is squeezed from the state.

4. Why not use that �nal state as IV for reply and go straight to Step 2 ?

6 / 19

Recap: Sponge-based Authenticated Encryption

π

Encryption.

p.. c..p0 c0 p1 c1

π

d0

π π

d..

π

Absorbtions

b

d
om

ain
b
a
rrier

h0 h..

Squeezing

πb

d
om

ain
b
a
rrier

πIV

1. Key, nonce, and associated data (di) are absorbed in state.

2. Plaintext pi is used to produce ciphertext ci (or vice versa).

3. MAC hi is squeezed from the state.

4. Why not use that �nal state as IV for reply and go straight to Step 2 ?

6 / 19

Simpli�cation
Legacy protocol encryption of P to C with 4 cryptovariables:

C = fcs(P, S , IV ,Ke ,Ka).

Decryption can fail in authentication (auth tag is in C):

f −1cs (C , S , IV ,Ke ,Ka) = P or FAIL.

In sponges we have a state Si , plaintext Pi , and some padding info that produces a new
state and ciphertext (including a MAC):

(Si+1,Ci) = enc(Si ,Pi , pad).

The decoding function dec() produces the same Si+1 and Pi from the ciphertext and
equivalent Si and padding, synchronizing the state between sender and receiver:

(Si+1,Pi) = dec(Si ,Ci , pad) or FAIL.

7 / 19

Simpli�cation
Legacy protocol encryption of P to C with 4 cryptovariables:

C = fcs(P, S , IV ,Ke ,Ka).

Decryption can fail in authentication (auth tag is in C):

f −1cs (C , S , IV ,Ke ,Ka) = P or FAIL.

In sponges we have a state Si , plaintext Pi , and some padding info that produces a new
state and ciphertext (including a MAC):

(Si+1,Ci) = enc(Si ,Pi , pad).

The decoding function dec() produces the same Si+1 and Pi from the ciphertext and
equivalent Si and padding, synchronizing the state between sender and receiver:

(Si+1,Pi) = dec(Si ,Ci , pad) or FAIL.

7 / 19

Simpli�cation
Legacy protocol encryption of P to C with 4 cryptovariables:

C = fcs(P, S , IV ,Ke ,Ka).

Decryption can fail in authentication (auth tag is in C):

f −1cs (C , S , IV ,Ke ,Ka) = P or FAIL.

In sponges we have a state Si , plaintext Pi , and some padding info that produces a new
state and ciphertext (including a MAC):

(Si+1,Ci) = enc(Si ,Pi , pad).

The decoding function dec() produces the same Si+1 and Pi from the ciphertext and
equivalent Si and padding, synchronizing the state between sender and receiver:

(Si+1,Pi) = dec(Si ,Ci , pad) or FAIL.

7 / 19

Simpli�cation
Legacy protocol encryption of P to C with 4 cryptovariables:

C = fcs(P, S , IV ,Ke ,Ka).

Decryption can fail in authentication (auth tag is in C):

f −1cs (C , S , IV ,Ke ,Ka) = P or FAIL.

In sponges we have a state Si , plaintext Pi , and some padding info that produces a new
state and ciphertext (including a MAC):

(Si+1,Ci) = enc(Si ,Pi , pad).

The decoding function dec() produces the same Si+1 and Pi from the ciphertext and
equivalent Si and padding, synchronizing the state between sender and receiver:

(Si+1,Pi) = dec(Si ,Ci , pad) or FAIL.

7 / 19

Security Goals

Protocol designers should have provable bounds on these three goals:

priv The ciphertext result C of enc(S ,P, pad) must be indistinguishable from
random when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result
in a FAIL in dec(S ,C , pad) without knowledge of S is bound by a function
of the authentication tag size t and number of trials.

sync Each party can verify that all previous messages of the session have been
correctly received and the absolute order in which messages were sent.

First two are standard Authentication Encryption requirements, the last one is new.

8 / 19

Security Goals

Protocol designers should have provable bounds on these three goals:

priv The ciphertext result C of enc(S ,P, pad) must be indistinguishable from
random when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result
in a FAIL in dec(S ,C , pad) without knowledge of S is bound by a function
of the authentication tag size t and number of trials.

sync Each party can verify that all previous messages of the session have been
correctly received and the absolute order in which messages were sent.

First two are standard Authentication Encryption requirements, the last one is new.

8 / 19

Security Goals

Protocol designers should have provable bounds on these three goals:

priv The ciphertext result C of enc(S ,P, pad) must be indistinguishable from
random when S is random and P may be chosen by the attacker.

auth The probability of an adversary of choosing a message C that does not result
in a FAIL in dec(S ,C , pad) without knowledge of S is bound by a function
of the authentication tag size t and number of trials.

sync Each party can verify that all previous messages of the session have been
correctly received and the absolute order in which messages were sent.

First two are standard Authentication Encryption requirements, the last one is new.

8 / 19

Solution: Just continue to use the state in reply!

Initial state: S0 Initial state: S0

A B

enc(S0,M1) = (S1, C1)

dec(S0, C1) = (S1,M1)

enc(S1,M2) = (S2, C2)

A → B : C1

dec(S1, C2) = (S2,M2)

enc(S2,M3) = (S3, C3)

B → A : C2

A → B : C3

dec(S2, C3) = (S3,M3)

Final state: S3 Final state: S3

Simpli�ed interchange of three messages whose plaintext equivalents are A→ B : M1,
B → A : M2, A→ B : M3, utilizing a synchronized secret state variables Si .

The order of messages cannot be modi�ed and hence this exchange is sync-secure !

9 / 19

So .. it's Half-Duplex ?

Half-duplex links may not seem ubiquitous to developers due to the use of the socket
programming paradigm. Full-duplex illusion is often achieved by time-division duplexing.

I Half-duplex is physically prevalent on sensor networks, IoT and last-hop radio links:
Bluetooth and IEEE 802.15.4 ZigBee are half-duplex.

I In addition to wireless last-hop transports, most RFID, smart card [ISO 7816-4,
ISO 18000-63], and industrial control [MODBUS] communications are
implemented under a query-response model and are therefore e�ectively
half-duplex.

I Half-duplex links can be established wirelessly with unpaired frequencies (same
frequency in both directions), or with (twisted-wire / single contact) serial links.
These are a typical scenarios in lightweight time-divide communications, our
speci�c targets.

10 / 19

So .. it's Half-Duplex ?

Half-duplex links may not seem ubiquitous to developers due to the use of the socket
programming paradigm. Full-duplex illusion is often achieved by time-division duplexing.

I Half-duplex is physically prevalent on sensor networks, IoT and last-hop radio links:
Bluetooth and IEEE 802.15.4 ZigBee are half-duplex.

I In addition to wireless last-hop transports, most RFID, smart card [ISO 7816-4,
ISO 18000-63], and industrial control [MODBUS] communications are
implemented under a query-response model and are therefore e�ectively
half-duplex.

I Half-duplex links can be established wirelessly with unpaired frequencies (same
frequency in both directions), or with (twisted-wire / single contact) serial links.
These are a typical scenarios in lightweight time-divide communications, our
speci�c targets.

10 / 19

So .. it's Half-Duplex ?

Half-duplex links may not seem ubiquitous to developers due to the use of the socket
programming paradigm. Full-duplex illusion is often achieved by time-division duplexing.

I Half-duplex is physically prevalent on sensor networks, IoT and last-hop radio links:
Bluetooth and IEEE 802.15.4 ZigBee are half-duplex.

I In addition to wireless last-hop transports, most RFID, smart card [ISO 7816-4,
ISO 18000-63], and industrial control [MODBUS] communications are
implemented under a query-response model and are therefore e�ectively
half-duplex.

I Half-duplex links can be established wirelessly with unpaired frequencies (same
frequency in both directions), or with (twisted-wire / single contact) serial links.
These are a typical scenarios in lightweight time-divide communications, our
speci�c targets.

10 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.

I Keccak-160/256/512 are distinguished from each other via di�erent rates r , not
via padding or IV; di�erent hardware for di�erent hash sizes?!

I SpongeWrap extended this to domain separation with frame bits between key
material, payload data, and message authentication tag.

I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.

I Keccak-160/256/512 are distinguished from each other via di�erent rates r , not
via padding or IV; di�erent hardware for di�erent hash sizes?!

I SpongeWrap extended this to domain separation with frame bits between key
material, payload data, and message authentication tag.

I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.

I Keccak-160/256/512 are distinguished from each other via di�erent rates r , not
via padding or IV; di�erent hardware for di�erent hash sizes?!

I SpongeWrap extended this to domain separation with frame bits between key
material, payload data, and message authentication tag.

I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.

I Keccak-160/256/512 are distinguished from each other via di�erent rates r , not
via padding or IV; di�erent hardware for di�erent hash sizes?!

I SpongeWrap extended this to domain separation with frame bits between key
material, payload data, and message authentication tag.

I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.

I Keccak-160/256/512 are distinguished from each other via di�erent rates r , not
via padding or IV; di�erent hardware for di�erent hash sizes?!

I SpongeWrap extended this to domain separation with frame bits between key
material, payload data, and message authentication tag.

I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Unambiguous Session Transcripts via Better Domain
Separation

I Keccak only has domain separation between data input and hash output.

I Keccak-160/256/512 are distinguished from each other via di�erent rates r , not
via padding or IV; di�erent hardware for di�erent hash sizes?!

I SpongeWrap extended this to domain separation with frame bits between key
material, payload data, and message authentication tag.

I Sakura added further frame bits yet again to facilitate tree hashing.

We want to have a extensible padding mechanism that allow same hardware to be used
for any purpose.

Key feature in BLINKER: originator bits; whether sponge input is from Alice, Bob,
Both (e.g. DH Secret), or none in particular..

11 / 19

Multiplexing the Sponge

We retain one d-bit word D in Sc for domain separation; Sc = (Sd || Sc ′) with
c ′ = c − d . The iteration for arbitrary absorption, squeezing, and encryption is now:

Si+1 = π(S r
i ⊕Mi || Sd

i ⊕ Di || Sc ′
i).

For decryption we have the following update function:

Si+1 = π(Ci || Sd
i ⊕ Di || Sc ′

i).

In BLINKER, d = 16 bits. We estimate that the capacity su�ers only by few bits.

Even hash and MAC outputs are padded (length padding + domain separation).
This protects against length-extension.

12 / 19

Multiplexing the Sponge

We retain one d-bit word D in Sc for domain separation; Sc = (Sd || Sc ′) with
c ′ = c − d . The iteration for arbitrary absorption, squeezing, and encryption is now:

Si+1 = π(S r
i ⊕Mi || Sd

i ⊕ Di || Sc ′
i).

For decryption we have the following update function:

Si+1 = π(Ci || Sd
i ⊕ Di || Sc ′

i).

In BLINKER, d = 16 bits. We estimate that the capacity su�ers only by few bits.

Even hash and MAC outputs are padded (length padding + domain separation).
This protects against length-extension.

12 / 19

Multiplexing the Sponge

We retain one d-bit word D in Sc for domain separation; Sc = (Sd || Sc ′) with
c ′ = c − d . The iteration for arbitrary absorption, squeezing, and encryption is now:

Si+1 = π(S r
i ⊕Mi || Sd

i ⊕ Di || Sc ′
i).

For decryption we have the following update function:

Si+1 = π(Ci || Sd
i ⊕ Di || Sc ′

i).

In BLINKER, d = 16 bits. We estimate that the capacity su�ers only by few bits.

Even hash and MAC outputs are padded (length padding + domain separation).
This protects against length-extension.

12 / 19

Multiplex Word
Depending on protocol state and the intended usage of message block, multiple bits are
set simultaneously.

Bit Mask When set

0 0x0001 This is a full input or output block (r bits).
1 0x0002 This is the �nal block of this data element.
4 0x0004 Block is an input to sponge (�absorption�).
3 0x0008 Block is output from sponge (�squeezing�).
4 0x0010 Associated Authenticated Data (in).
5 0x0020 Secret key (in).
6 0x0040 Nonce or sequence number (in).
7 0x0080 Encryption / Decryption (in and out).
8 0x0100 Hash block (out).
9 0x0200 Keyed Message Authentication Code (MAC) (out).
10 0x0400 Block for state storage or reloading (in or out).
11 0x0800 Pseudo Random Number Generator (PRNG) (feed or out).
12 0x1000 Originating from Alice � client / slave.
13 0x2000 Originating from Bob � server / master.
14 0x4000 Tree chaining Node.
15 0x8000 Tree �nal Node.

13 / 19

Example: Authentication and Record Protocol Flow (1)

We �rst absorb and transmit the identities Ia and Ib of Alice and Bob into the state.
These are not encrypted as S0 is the Initialization Vector.
We recommend identi�ers Ia and Ibto be random strings of su�cient size (at least 128
bits).

This is an optional step that helps both parties select the correct shared secret K .

(S1,M1) = enc(S0, Ia, 0x108C) | A→ B : M1

(S2,M2) = enc(S1, Ib, 0x208C) | B → A : M2

S3 = enc(S2,K , 0x3024) | no transmission

K may be derived with a lightweight asymmetric key exchange method such as
Curve25519 [Bernstein 2006] or derived from passwords.
It is never transmitted, but just absorbed in the secret state to produce S3 from S2.

14 / 19

Example: Authentication and Record Protocol Flow (1)

We �rst absorb and transmit the identities Ia and Ib of Alice and Bob into the state.
These are not encrypted as S0 is the Initialization Vector.
We recommend identi�ers Ia and Ibto be random strings of su�cient size (at least 128
bits).

This is an optional step that helps both parties select the correct shared secret K .

(S1,M1) = enc(S0, Ia, 0x108C) | A→ B : M1

(S2,M2) = enc(S1, Ib, 0x208C) | B → A : M2

S3 = enc(S2,K , 0x3024) | no transmission

K may be derived with a lightweight asymmetric key exchange method such as
Curve25519 [Bernstein 2006] or derived from passwords.
It is never transmitted, but just absorbed in the secret state to produce S3 from S2.

14 / 19

Example: Authentication and Record Protocol Flow (1)

We �rst absorb and transmit the identities Ia and Ib of Alice and Bob into the state.
These are not encrypted as S0 is the Initialization Vector.
We recommend identi�ers Ia and Ibto be random strings of su�cient size (at least 128
bits).

This is an optional step that helps both parties select the correct shared secret K .

(S1,M1) = enc(S0, Ia, 0x108C) | A→ B : M1

(S2,M2) = enc(S1, Ib, 0x208C) | B → A : M2

S3 = enc(S2,K , 0x3024) | no transmission

K may be derived with a lightweight asymmetric key exchange method such as
Curve25519 [Bernstein 2006] or derived from passwords.
It is never transmitted, but just absorbed in the secret state to produce S3 from S2.

14 / 19

Example: Authentication and Record Protocol Flow (2)

Two random nonces Ra and Rb are required for challenge-response authentication
and to make the session unique.

(S4,M3) = enc(S3,Ra, 0x10CC) | A→ B : M3

(S5,M4) = enc(S4,Rb, 0x20CC) | B → A : M4

We may now perform mutual authentication with tags of t bits:

(S6,M5) = enc(S5, 0
t , 0x1208) | A→ B : M5

(S7,M6) = enc(S6, 0
t , 0x2208) | B → A : M6

Checking M5 and M6 completes mutual authentication. By an inductive process we see
that the session secret S7 is now dependent upon randomizers from both parties and
the original shared secret is not leaked if the sponge satis�es our security axioms.

15 / 19

Example: Authentication and Record Protocol Flow (2)

Two random nonces Ra and Rb are required for challenge-response authentication
and to make the session unique.

(S4,M3) = enc(S3,Ra, 0x10CC) | A→ B : M3

(S5,M4) = enc(S4,Rb, 0x20CC) | B → A : M4

We may now perform mutual authentication with tags of t bits:

(S6,M5) = enc(S5, 0
t , 0x1208) | A→ B : M5

(S7,M6) = enc(S6, 0
t , 0x2208) | B → A : M6

Checking M5 and M6 completes mutual authentication. By an inductive process we see
that the session secret S7 is now dependent upon randomizers from both parties and
the original shared secret is not leaked if the sponge satis�es our security axioms.

15 / 19

Example: Authentication and Record Protocol Flow (3)

After this, plaintexts Pa (for A→ B) and Pb (for B → A) can be encrypted,
transmitted and authenticated by repeating the following exchange:

(Si+1,Ma) = enc(Si ,Pa, 0x108C) | A→ B : Ma

(Si+2,Ta) = enc(Si+1, 0
t , 0x1208) | A→ B : Ta

(Si+3,Mb) = enc(Si+2,Pb, 0x208C) | B → A : Mb

(Si+4,Tb) = enc(Si+3, 0
t , 0x2208) | B → A : Tb

Due to explicit padding it is easy to show inductively that the entire message �ow is
authenticated if appropriate checks are made.

16 / 19

Semi-Autonomous Hardware and Lightweight Demo Software

BLOCK IN

PADDING IN

SEND/RECV IN

BLOCK OUT

CLK IN

RST IN

CLR STATE IN

r r

d
Logic and π

ERROR OUT

If we incorporate K management in the comms hardware session secrets never have to
leave (and cannot leave) a speci�c hardware component and are inaccessible to
MCU/CPU app.

Such separation is very di�cult (and costly) to achieve with SSL and other legacy
protocols which generally require CPU/MCU interaction to create encryption and
authentication keys from session secrets.

17 / 19

Semi-Autonomous Hardware and Lightweight Demo Software

BLOCK IN

PADDING IN

SEND/RECV IN

BLOCK OUT

CLK IN

RST IN

CLR STATE IN

r r

d
Logic and π

ERROR OUT

If we incorporate K management in the comms hardware session secrets never have to
leave (and cannot leave) a speci�c hardware component and are inaccessible to
MCU/CPU app.

Such separation is very di�cult (and costly) to achieve with SSL and other legacy
protocols which generally require CPU/MCU interaction to create encryption and
authentication keys from session secrets.

17 / 19

18 / 19

Conclusions

I Provably secure lightweight record protocols can be built from a single π
permutation. No need for separte PRF, HMAC, Block Cipher, and a mode of
operation. Signi�cantly reduces implementation ROM / Flash footprint.

I Working memory required to implement the entire two-way BLINKER protocol is
only slightly more than b bits for the state. Legacy protocols require additional
storage for two sequence counters / nonces, authenticators, cipher round keys, etc.

I Explicit padding and continuous authentication resolves synchronization issues
and allows straight-forward inductive security proofs based only on a single
assumption.

I Provable transcripts: �nal �state hash� proves the integrity of an entire
transaction rather than an individual message.

I BLINKER: a class of lightweight half-duplex protocols. Especially suited for IoT,
Smart Card, RFID, NFC, and other last-lap security.

19 / 19

Conclusions

I Provably secure lightweight record protocols can be built from a single π
permutation. No need for separte PRF, HMAC, Block Cipher, and a mode of
operation. Signi�cantly reduces implementation ROM / Flash footprint.

I Working memory required to implement the entire two-way BLINKER protocol is
only slightly more than b bits for the state. Legacy protocols require additional
storage for two sequence counters / nonces, authenticators, cipher round keys, etc.

I Explicit padding and continuous authentication resolves synchronization issues
and allows straight-forward inductive security proofs based only on a single
assumption.

I Provable transcripts: �nal �state hash� proves the integrity of an entire
transaction rather than an individual message.

I BLINKER: a class of lightweight half-duplex protocols. Especially suited for IoT,
Smart Card, RFID, NFC, and other last-lap security.

19 / 19

Conclusions

I Provably secure lightweight record protocols can be built from a single π
permutation. No need for separte PRF, HMAC, Block Cipher, and a mode of
operation. Signi�cantly reduces implementation ROM / Flash footprint.

I Working memory required to implement the entire two-way BLINKER protocol is
only slightly more than b bits for the state. Legacy protocols require additional
storage for two sequence counters / nonces, authenticators, cipher round keys, etc.

I Explicit padding and continuous authentication resolves synchronization issues
and allows straight-forward inductive security proofs based only on a single
assumption.

I Provable transcripts: �nal �state hash� proves the integrity of an entire
transaction rather than an individual message.

I BLINKER: a class of lightweight half-duplex protocols. Especially suited for IoT,
Smart Card, RFID, NFC, and other last-lap security.

19 / 19

Conclusions

I Provably secure lightweight record protocols can be built from a single π
permutation. No need for separte PRF, HMAC, Block Cipher, and a mode of
operation. Signi�cantly reduces implementation ROM / Flash footprint.

I Working memory required to implement the entire two-way BLINKER protocol is
only slightly more than b bits for the state. Legacy protocols require additional
storage for two sequence counters / nonces, authenticators, cipher round keys, etc.

I Explicit padding and continuous authentication resolves synchronization issues
and allows straight-forward inductive security proofs based only on a single
assumption.

I Provable transcripts: �nal �state hash� proves the integrity of an entire
transaction rather than an individual message.

I BLINKER: a class of lightweight half-duplex protocols. Especially suited for IoT,
Smart Card, RFID, NFC, and other last-lap security.

19 / 19

Conclusions

I Provably secure lightweight record protocols can be built from a single π
permutation. No need for separte PRF, HMAC, Block Cipher, and a mode of
operation. Signi�cantly reduces implementation ROM / Flash footprint.

I Working memory required to implement the entire two-way BLINKER protocol is
only slightly more than b bits for the state. Legacy protocols require additional
storage for two sequence counters / nonces, authenticators, cipher round keys, etc.

I Explicit padding and continuous authentication resolves synchronization issues
and allows straight-forward inductive security proofs based only on a single
assumption.

I Provable transcripts: �nal �state hash� proves the integrity of an entire
transaction rather than an individual message.

I BLINKER: a class of lightweight half-duplex protocols. Especially suited for IoT,
Smart Card, RFID, NFC, and other last-lap security.

19 / 19

	V.Velichkov
	J.P.Aumasson1
	J.P.Aumasson2

