

Hijacking the Cloud: Systematic Risk in Datacenter Management Networks

SESSION ID: CSV-W04A

Michael Cotton

Chief Security Architect
Digital Defense Inc.
@mcotton256

Out of Band Vectors...

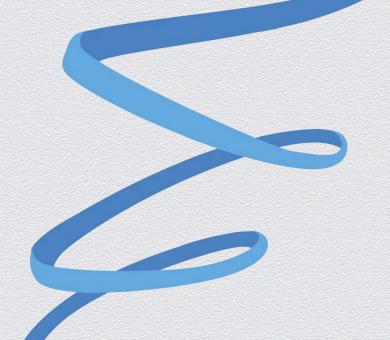
- Renewed Focus in Security
 - Break Traditional Paradigms
 - Not CVE / Common-Config Flaws
 - Trust Relationships / Network
 Architecture
- Not a Theoretical Talk
 - Technical Details
 - Highlight Specific Tactics
 - Video Demonstrations

Datacenter Management Networks

- Central Command and Control Networks for Large Deployments
 - Large Datacenters: 1,000+ Servers: Can't manage manually
 - Still need to do Inventory / Power-Control / BIOS etc.
- Handles Tasks Typically Associated with Physical Access
 - Network Controllable Power/On-Off Control
 - BIOS Reconfiguration and Remote Access
 - KVM and Remote CD-ROM Capability
 - Node Re-Imaging / Re-Installation

Side-Channel Attack Vectors

- Side-Channels present a tremendous threat
 - Break Traditional Security Controls
 - Completely Bypass Existing Protections (examples)
 - RSA 4096 Bit Key Extraction Attack (Dec. 2013)
 - Extracting Passwords using Laser Microphone
 - Reading Keystrokes from Computers on Same Power Segment
 - One Huge Limiting Factor
 - Typically they require *Physical Proximity*


Datacenter Networks & Side-Channels

- But Physical Proximity isn't Always Necessary
 - Some Vectors Contain:
 - All the Advantages of Traditional Side-Channel Attacks
 - Without the Need for Physical Proximity
 - Two Attack Surfaces Come to Mind in Relation to Datacenters:
 - Virtualization / Physical Layer Attack Surface
 - People have talked about this to death (intense scrutiny)
 - Networked Baseboard Attack Surface
 - This is what we'll be covering today (Lateral Movement)

Management Network Access

VLAN Segmentation & Shared NIC

- Baseboard controllers, used to typically come on dedicated NICS.
 - Now everyone switching to Shared NIC / VLAN segmentation
 - Dedicated "BMC" slot (pictured) replaced in low/mid server range
 - ETH0 now has one RJ-45 jack, two MAC addresses:

Baseboards: Network Recon

- Shared NIC makes this really interesting
 - Normal Method: Send RMCP-Hello Message to Every IP Address
 - Indirect Method: Finds cloaked / misconfigured BMCs using MAC (large subnets)
 - Can Give you 'Side Door' Access into important systems (Domain Controller etc.)
 - If model has two onboard ETH controllers the following is often true:
 - ETH0: d4:ae:52:c8:67:75
 - ETH1: d4:ae:52:c8:67:76 (eth0+1)
 - ETH0/BMC: d4:ae:52:c8:67:77 (eth0+2)
 - Correlation can also be done off-subnet:
 - Depends on environment: netbios/snmp/etc hand arp out

Baseboard Recon: Cloaked Addresses

- Using MAC to find the side-door into important systems:
 - Use Thomas Habets version of arping w/ RARP
 - Can locate cloaked ip's on large subnets: (vendor/moved/dhcp/etc.)
 - arping –w 2 d4:ae:52:c8:67:77 (use +mac method)
 - arping –w 2 192.168.0.120 (vendor static default)

```
root@linux:~/arping-2.13/src# arping -w 2 192.168.0.120

ARPING 192.168.0.120 from 10.10.10.142 eth0

Unicast reply from 192.168.0.120 [D4:AE:52:C8:67:77] 1.171ms

Unicast reply from 192.168.0.120 [D4:AE:52:C8:67:77] 1.194ms

Unicast reply from 192.168.0.120 [D4:AE:52:C8:67:77] 1.205ms

Sent 3 probes (1 broadcast(s))

Received 3 response(s)

root@linux:~/arping-2.13/src#
```


BMC: VLAN Segmentation

- This doesn't bother most IT professionals because
 - BMC's should *always* be separated on their own VLANs
 - We're not here to talk about bad-network setups...
- Some Typical VLAN Network Access Controls:
 - VLAN-ID: BMC Can be Queried through Local Bus
 - NIC Port: Same RJ-45 Jack (Not Port Controlled)
 - MAC Address: Layer 2 Controllable (Spoofable)
 - ifconfig eth0 hw ether 02:08:5C:3F:05

Flipping The NIC:

- Leverage System-Bus Trump
 - Local Bus PW Override
 - Dedicated Hosting Scenario
 - Shared NIC Hardware
 - Query VLAN Information
 - Knock BMC NIC Off
 - Put Eth0 Online
 - Spoof MAC
 - Same IP / VLAN Etc.

```
root@target:~# ipmitool lan print 1
Set in Progress
                        : Set Complete
Auth Type Support
                        : NONE MD2 MD5 PASSWORD
Auth Type Enable
                         : Callback : MD2 MD5
                        : User
                                   : MD2 MD5
                        : Operator : MD2 MD5
                         : Admin
                                    : MD2 MD5
                         : OEM
IP Address Source
                         : Static Address
IP Address
                         : 192.168.0.120
Subnet Mask
                        : 255.255.255.0
MAC Address
                        : d4:ae:52:c8:67:77
SNMP Community String
                        : public
IP Header
                        : TTL=0x40 Flags=0x40 Precedence=0x00 TOS=0x10
Default Gateway IP
                        : 192.168.0.1
Default Gateway MAC
                        : 00:00:00:00:00:00
Backup Gateway IP
                        : 0.0.0.0
Backup Gateway MAC
                        : 00:00:00:00:00:00
802.1q VLAN ID
                        : Disabled
802.1q VLAN Priority
RMCP+ Cipher Suites
                        : 0,1,2,3,4,5,6,7,8,9,10,11,12,13
Cipher Suite Priv Max
                        : agagggggggggggg
```


We're Online, Now What?

- Target Management Server
 - Large deployments usually do:
 - Inventory sweeps for new hosts using RMCP/IPMI...
 - Send Power On/Off/Reboot Through RMCP/IPMI
 - You don't need to go to the management server...
 - The management server will come to you
 - All it needs is a plausible peer to talk to
 - Often can do this 'on demand' through client hosting apps.

IPMI Discovery & Inventory...

Sweeping for Inventory: NMS

Executive Summary

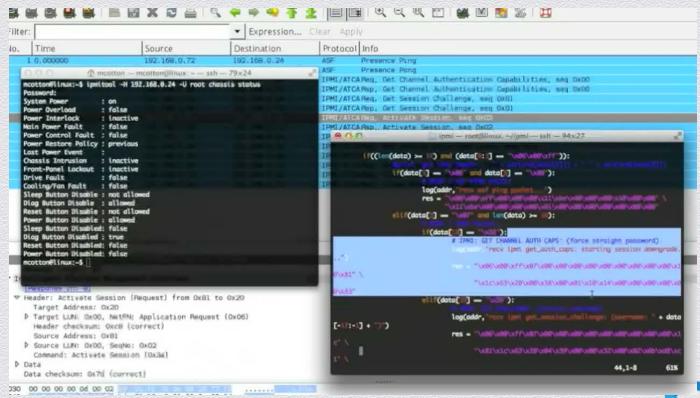
A fundamental element of any Device Management is discovery and inventory of the devices an organization is looking to manage. Discovery needs to be non-invasive, easy to administer, efficient, thorough, accurate, broad in scope and responsive to network changes.


Prerequisites

These are the prerequisites for performing discovery and inventory:

Credentials: The discovery process communicates to the devices using the following supported protocols:

New Discovery Wizard-Step 6 of 8		
IPMI Config You may co	uration infigure the IPMI parameters.	
Enable IF	MI Discovery	
User Name:	Foot	
Eassword:	******	


Rogue Agent: Session Downgrade Attacks

- Discovery sweeps encourage 1 username/pass
 - Typically very complex: password capture == massive exposure
- Tools try to be *very* compatible
 - Client will talk at highest level of security *the agent allows*
 - (Similar to SNMPv3 vs. SNMPv2 management systems)
 - If agent only claims to support lower, they'll downgrade (straight-key)
- NMS inventory/monitor sweep subnets, authing to 623/udp
 - Used for both discovery of new nodes, status checks of existing nodes.
 - rogue agent => straight-key-auth downgrade => password

Rogue Agent: Password Capture (Demo)

VLAN Internal Firewall Rules

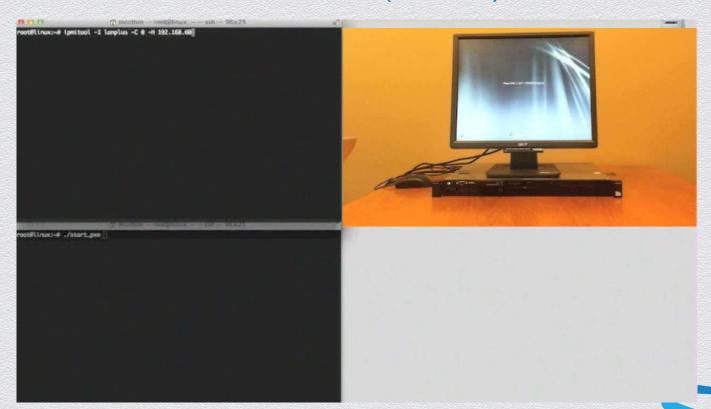
- Somewhat different for every site:
 - Often times MAC filtering / VLAN-ID is the only traffic protection in place.
 - Often times can bypass basic ACLs due to nature of protocol:
 - Dealing with a UDP connectionless protocol for RMCP/IPMI
 - Client can request simple-session; Spoof commands blindly
 - Know Control Server: src_ip, src_mac, ~dst_ip, dst_port
 - Also know when server is doing inventory sweeps
 - Ideal case for Firewall Rule Bypass Tactics
 - Related / Establish Rule Sets etc.

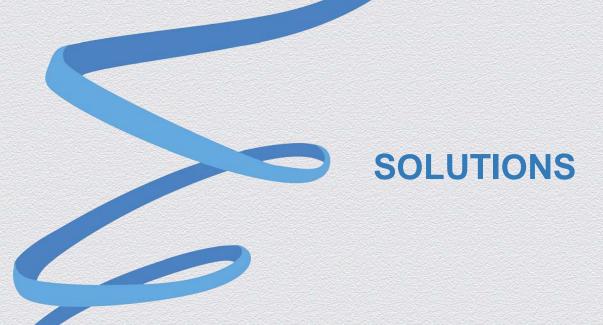
Management VLAN: Node Re-Imaging:

- Typically Done using either Remote-ISO or Network Boot (PXE):
 - Quick Install of 'Gold' OS's
 - Power Cycle Node
 - Change Boot Device
 - Boot to Imaging Ramdisk
 - Partition & Copy Gold-Image
 - Quickly Turn up Dedicated Hosts
 - Install Client Configuration / Accounts.
 - Setup Hostname / IP Etc.

How an Attacker Might Use it (Demo)

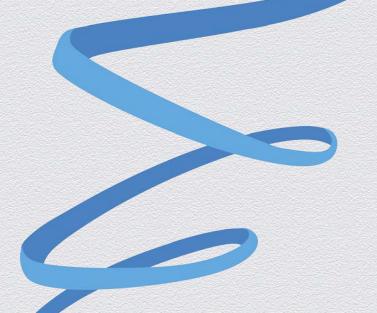
- Take System Offline / Force Remote Boot
- RamDisk boots & modifies installed OS (slightly)
 - Detect OS partitions (parted)
 - Mount offline ntfs/ext4 partitions (r/w)
 - Backdoor binaries (No kernel protections anymore)
 - Dump hashes (true system32/config/sam access)
 - No need to rely on repair sam anymore
 - Steal data etc.
 - Clean Up & Reboot Back to Primary OS




Baseboard: Offline Attacks (Demo)

Management Network: Solutions

- Ensure Integrity of Management Network (Degrades)
 - Heavily Protected / Segmented VLAN Access
 - Review: Internal Firewall Rules Against Rogue Agent Vectors
 - Be Aware of Shared NIC Issues
 - Lock Down: Network Management Systems
 - Focus on Client Protocol Lock-Down As Well
 - Ban Straight-Key Auth: Force at least MD5 (salted)
 - Use Full Allowed Password/Key Length (16 or 20)


Wrap Up / Takeaways:

- Look Outside Traditional Paradigms
 - Datacenters Have Complex Security Boundaries
 - Consider Non-CVE/Common Configuration Vulns
 - Consider Creative Attacker Tactics
- Examine Trust Relationships
 - Often Times at Play in recent Data Breaches
 - Don't Blindly Associate Network Position w/ Trust
 - Don't Neglect Security on 'Segmented' Interfaces

Thank You!

Questions: Mike.Cotton@ddifrontline.com