
SESSION ID:

Honeywords:
A New Tool for Protection from Password
Database Breach

DSP-W02

Kevin Bowers
Senior Research Scientist
RSA Laboratories
kbowers@rsa.com

Ronald L. Rivest
Vannevar Bush Professor
MIT EECS
CSAIL
rivest@mit.edu
(some slides adapted from those of Ari Juels)

mailto:kbowers@rsa.com
mailto:rivest@mit.edu

#RSAC

Outline

 Motivation – theft of password hash files

 Honeywords – enables detection of theft, prevents impersonation
 Honeywords are ``decoy passwords’’ (many for each user)

 Separate ``honeychecker’’ aids in password checking

 How to generate good honeywords?

 Experimental results (can you tell honeywords from real passwords?)

 Implementation guidance (Django)

2

Motivation: Theft of
Password Hash Files

3

#RSAC

Good and bad news about password breaches

 The good news: when talking about password (or PII) breaches, a
convenient recent example is always available!
 October 2013: Adobe lost 130 million ECB-encrypted passwords

 The bad news: This is all bad news.

450,000 passwords
July 2012

#RSAC

Passwords usually stored in hashed form

 P = Alice’s password

 System stores mapping “Alice” h(P) in database, for a suitable
hash function h.

 When someone (perhaps Alice) tries to log in as Alice,
system computes h(P’) of submitted password P’
and compares it to h(P). If equal, login is allowed.

 Hash function h should be easy to compute, hard to invert.
Such ``one-wayness’’ makes a stolen hash not so useful to
adversary.

5

#RSAC

Password hashing

 To defeat precomputation attack, a per-user ``salt’’ value s is used:
system stores mapping “Alice”(s,h(s,P)). Hash h(s,P’) computed for
submitted password P’ and compared.

 Hashing with salting forces adversary who steals hashes and salts to
find passwords by brute-force offline search: adversary repeatedly
guesses P’ until a P’ is found such that h(s,P’) = h(s,P)

 Also, hashing can be hardened (slowed) in various ways (e.g. bcrypt)

 This all seems good, but…

#RSAC

Password hashing

 Real passwords are often weak and easily guessed.
 Study of 69M Yahoo passwords [B12] shows that:

 1.08% of users had same password (is your password “123456” ?)

 About half had strength no more than 22 bits (4M tries to break)

 Password-hash crackers now use models or sets of real passwords:
 [WAdMG09] uses probabilistic context-free grammar

 Crackers use, e.g., RockYou 2009 database of 32 million passwords

 We assume in this talk that hashes can be cracked and passwords are
effectively stored in the clear.

#RSAC

Adversarial game

 Adversary compromises system
ephemerally, steals password hashes

 Adversary cracks hash, finding P

 Impersonate user(s) and logs in.

 Adversary almost always succeeds,
and is often undetected.

“Alice”, P

“Alice”:
 s,h(s,P)

Honeywords are
“Decoy Passwords”

9

#RSAC

Decoys

 Decoys, fake objects that look real, are a time-honored
counterintelligence tool.

 In computer security, we have “honey objects”:
 Honeypots [S02]

 Honeytokens, honey accounts

 Decoy documents [BHKS09] (many others by Keromytis, Stolfo, et al.)

 Honey objects seem undervalued.

10

#RSAC

``Honeywords’’ proposed 2013 by Juels & Rivest

 ACM CCS 2013

11

Honeywords: Making Password
Cracking Detectable

#RSAC

Terminology

Alice:
P1
P2
…
Pi
…
Pn

#RSAC

Terminology

Alice:
P1
P2
…
Pi = P
…
Pn

True password

#RSAC

Terminology

Alice:
P1
P2
…
Pi = P
…
Pn

Honeywords
(decoys)

#RSAC

Terminology

Alice:
P1
P2
…
Pi
…
Pn

Sweetwords

#RSAC

Honeyword design questions

 Verification: How does the check whether a submitted password P’ is
the true password Pi?
 How is index i verified without storing i alongside passwords?

 Generation: How to generate honeywords?
 How to make realistic decoy passwords?

(Many other design questions, e.g., how to respond when breach is detected…)

#RSAC

Honeywords: Verification

 The authentication system stores
a mapping from Alice to her set of
passwords

 A “honeychecker” stores the index
of the correct password for Alice

Computer System

Alice:
P1
P2
…
Pi
…
Pn

Honeychecker

Alice:
i

#RSAC

Honeywords: Verification

 Alice authenticates by submitting
her password P

 The computer system checks her
password against all those it
stores

 If a match is found, the index of
that match is sent to the
honeychecker for verification

 If the index is correct, Alice is
authenticated

Computer System

Alice:
P1
P2
…
Pi
…
Pn

Honeychecker

Alice:
i

i
P

P =

True

#RSAC

The adversarial game

What is i?

“Alice”, Pj
With ideal honeywords, adversary
guesses correctly (j = i), with
probability only 1/n

Computer System

Alice:
P1
P2
…
Pi
…
Pn

#RSAC

The adversarial game

Which is the
(true)
password?

Computer System

Alice:
5512lockerno.
tribal_3
cshcsh.meowr.18
28/07/89rm
anto_2001_jesu
CRFRALAASS$4
!v0nn3

#RSAC

Honeywords: Verification

 An attacker will submit a sweetword
 The computer system checks the

password against all those it stores
 If a match is found, the index of that

match is sent to the honeychecker
for verification

 If the index is incorrect, an alarm is
raised

Computer System

Alice:
P1
P2
…
Pi
…
Pn

Honeychecker

Alice:
i

2
Pj

Pj =

False

2 ≠

#RSAC

Honeywords: Verification Rule

 If true password Pi submitted, user authentication succeeds.
 Submitted password P’ not in P1 … Pn is handled as typical

password authentication failure.
 If honeyword Pj is submitted, an alarm is raised by the

honeychecker.
 This is strong indication of theft of password hash file!

 Honeywords (if properly chosen) will rarely be submitted otherwise.

 No change in the user experience!

#RSAC

Some nice features of this design
 System just transmits sweetword index j to

honeychecker
 Little modification needed

 We get benefits of distributed security
 Compromise of either component isn’t fatal
 No single point of compromise
 Compromise of both is just hashed case

 Honeychecker can be minimalist, (nearly)
input-only
 Only (rare) output is alarm

j

Computer
System

Honey
checker

#RSAC

Another nice feature – offline operation
 Honeychecker can be offline
 E.g., honeychecker sits downstream in security operations center (SOC)
 Not active in authentication itself, but gives rapid alert in case of breach
 If honeychecker goes down, users can still authenticate (using usual

password); we really just lose breach detection (detection of password file
theft).

How to generate good
honeywords ?

25

#RSAC

Honeyword generation

Which is Alice’s real password?

Alice:
• QrMdmkQt
• AP9LXEEa
• m7xnQVV4
• kingeloi
• y5BJKWhA

#RSAC

Honeyword generation:
Chaffing with a password model

Alice:

• qivole

• paloma

• 123asdf

• Compaq

• asdfway

 Password-hash crackers
learn model from lexicon of
breached passwords (e.g.,
RockYou database)
 Make guesses from model

probability distribution
 Simple (splicing) generator

in our paper yields…

#RSAC

But there are problem cases…

Which is Alice’s real password?

Alice:
• hi4allaspls
• #1spongebobsmymansodonttouchhim
• Travis46
• #1bruinn
• KJGS^!*ss

#RSAC

Honeyword generation:
Chaffing by tweaking

Alice:
• yamahapacificer321456789876

54321
• yamahapacificer123456789876

54321
• yamahapacificer123456789012

34567
• yamahapacificer621456789876

54322

 [ZMR10] observed users tweak
passwords during reset (e.g.,
HardPassword1, HardPassword2, …)

 Proposed tweak-based cracker

 Idea: ``Tweak’’ password to
generate honeywords!

 E.g., tweak numbers in true
password…

#RSAC

Honeyword generation:
A research challenge

 Blink-182 is a rock band

 Blink-182 is semantically significant
 Tweaking would break it

 Generation is unlikely to yield it

 Dealing with such passwords is a
special challenge—like natural
language processing

 Subject of an upcoming paper

Alice:
• Blink123
• Graph128
• Froggy%71
• Blink182
• Froggy!83

#RSAC

How good does honeyword generation have to be?

 Suppose user chooses password P with probability U(P)

 Suppose honeyword procedure generates P with probability G(P)

 Given sweetword list P1, …, Pn, adversary’s best strategy is to pick
Pj maximizing U(Pj) / G(Pj)

 For example, given chaffing-with-a-password-model, a particularly
dangerous password is
 #1spongebobsmymansodonttouchhim
(much more likely to be picked by user than as a honeyword!)

#RSAC

How good does honeyword generation have to be?

 We imagine practical choice of, say, n = 20
 With perfect honeyword distribution U ≈G and adversary picks a

honeyword (and sets off alarm!) with probability 95%
 Perfect honeyword distribution isn’t required: even if adversary can

rule out all but two sweetwords, we still detect a breach
systematically with high probability
 E.g., 50% guessing success means prob. 2-m of compromising m

accounts without detection

#RSAC

How good does honeyword generation have to be?

 Generation strategies can be hybridized as a hedge against
failure of one strategy, e.g.,

• qivole!
• 123asdf
• PleaseDismantle

TheGreenLine89
• Froggy%71

• qivole#
• 111asdf
• PleaseDismantle

TheGreenLine12
• Froggy!88

?

Experimental Results

34

#RSAC

Experimental Goals

 We attempt to measure how hard an attacker’s task is to complete
 Assume the password file is stolen and all hashes are reversed

 Attacker must then determine the real password from a set of sweetwords

 Additional information about the user is not provided

 Test is performed both algorithmically (using a probabilistic model
built from real passwords) and manually (leveraging Mechanical Turk)

#RSAC

Experimental Design
Real

Password

Real
Password
Tweak 1

Real
Password
Tweak 2

Base
Password

1

Base 1
Tweak 1

Base 1
Tweak 2

Base
Password

2

Base 2
Tweak 1

Base 2
Tweak 2

Filtered
RockYou
Database

Generator

Mechanical Turkers

Classification
Program

“Real”
Passwords

Training Set

Test
•Base 1 Tweak 2
•Base 2 Tweak 1
•Real Tweak 2
•Base Password1
•Real Password
•Base 2 Tweak 2
•Base Password 2
•Real Tweak 1
•Base 1 Tweak 1

Results

Results

#RSAC

Results

0%
25%
50%
75%

100%

Overall

Overall

Ideal

Humans

Algorithm

37

0%
25%
50%
75%

100%

Base
Generation

Tweaking

By Component

Ideal

Humans

Algorithm

 Even with only 9 choices, the attacker was unable to correctly guess
the real password even just half of the time.

Implementation
Guidance (Django)

38

#RSAC

Implementing Honeywords

 Goal: Walk through an implementation of honeywords, demonstrating
components and pieces that are required for deployment

 High level presentation to identify major steps

 General principles should be easily translated to most frameworks

 Example implementation done in Django
https://www.djangoproject.com/

 Code will be presented at the very end for those interested
 Email for more information or access to the code.

https://www.djangoproject.com/

#RSAC

Current Authentication

 Website calls authenticate(username, password)

 User’s encoded hashed password is retrieved from the User DB

 Supplied password is encoded using the same parameters

 Server checks if the computed hash matches the stored hash

encoded

algorithm iterations salt hash

User DB

authenticate (username, password) (username, password)

?
== hash hash(password, algorithm, iterations, salt) (password, algorithm, iterations, salt)

#RSAC

hash4
hash3

hash2

Desired Authentication

 Website calls authenticate(username, password)

 User’s encoded hashed passwords are retrieved from the User DB

 Supplied password is encoded using the same parameters

 Server checks if the computed hash is in the stored hashes

 Index of matching hash is checked by the honeychecker

encoded

algorithm iterations salt hash1

User DB

authenticate (username, password) (username, password)

 hash(password, algorithm, iterations, salt) (password, algorithm, iterations, salt) username, 3
Honeychecker

True/False

#RSAC

How do we get there?

 Modify the password verification function to implement new logic

 Enable communication with a remote system (honeychecker)

 Change what is stored as the user’s password

 Build the honeychecker to store indices and verify them

 Modify the encoding function to generate honeywords and store their
hashes, as well as notifying the honeychecker of the correct index

42

Changing the Verifier

43

#RSAC

Hashers

 Verification happens within a “hasher”
 Implements both the verify and encode functions

 Different hashers implement different hashing
algorithms

 System maintains an ordered list of hashers
 At verification, they are tried in order
 Password is re-encoded if it doesn’t use the

first listed hasher
 Placing a new hasher at the top of the list will

upgrade users automatically as they log in

44

Hashers

PBKDF2PasswordHasher
BCryptPasswordHasher
SHA1PasswordHasher
MD5PasswordHasher

HoneywordHasher

#RSAC

Honeyword Hasher

 Needs a unique name (algorithm)

 Needs to communicate with the honeychecker

 Modify the implementation of

 verify(password, encoded) – verifies that stored encoded password is an
encoding of the submitted password

 encode(password, salt, iterations) – given a password, salt and number of
iterations computes the encoded password that will be stored in the database

 Additional functions that we will override

 salt() – used to generate a salt value when the user changes or upgrades their
password

45

Storing Sweetwords

46

#RSAC

Django Authentication

 Django maintains a database of users and their hashed passwords
 Usernames (max 30 characters) must be unique
 Password (max 128 characters) is actually a tuple describing the:

 <algorithm>: Algorithm used to compute the hash
 <iterations>: Number of times to apply the hashing algorithm
 <salt>: A user-specific salt
 <hash>: The Base64 encoding of the resulting hash value

 What django calls the encoded password is the concatenation of those strings separated by dollar
signs: <algorithm>$<iterations>$<salt>$<hash>

 This string is what actually gets stored in the password field of the user database
 There is no room in the password field to store more than 2 hashes
 To avoid breaking things, we’d prefer not to replace the User model

47

User DB

encode(‘passw0rd’, ‘pbkdf2_sha256’, 12000, ‘nR9uayYDhouC’) =

‘pbkdf2_sha256$12000$nR9uayYDhouC$yIVCfAB/UfLaEVAo0HSoPcSzwShmNYdmhRLB6pCu0yg=‘

#RSAC

Where can we store the sweetwords?

 Store the sweetwords in their own table, User DB stores a key into that table

 Need a key, known to the hasher, that can be used as an index into this table

 Hasher knows algorithm, iterations and salt

 Hasher can override the salt-generation function, giving even more control

 Use the salt as the key

 Sweetwords database then stores a mapping from a salt to a number of
sweetword hashes

 The salt should be changed every time the user changes password

 Ideally old sweetwords are deleted when they are no longer in use

48

Honeychecker

49

#RSAC

Honeychecker

 Stores the index corresponding to a user

 Ideally runs on a separate machine or at least separate VM

 API supports updates (additions) and index checking

 update_index(salt, index)

 check_index(salt, index)

 Ideally old, unused salt/index pairs are removed from the honeychecker

 To further harden the system, these calls should only be allowed from known
servers over trusted channels

 Probably want to backend the honeychecker by a database as well

50

Verification Function

51

#RSAC

Verify

 Coming back to the verify function in the HoneywordHasher…

 In the ideal model, the verify function checks if the hash of the submitted password is in the local
database.

 If not, the password was either mis-typed or an online guessing attack is occurring

 If so, the index in the database is sent to the honeychecker for verification

 If the index is correct, the user is authenticated

 If the index is incorrect, it is likely that the database has been stolen and appropriate action should be taken.

 The parameters needed to hash the submitted password are stored in the database as well and
must be extracted from the encoded password

 This is complicated a little in our case because we had to create a separate sweetword database

#RSAC

Verify(password, encoded)

53

encoded

algorithm iterations salt dummy

Sweetword
DB

Honeychecker

 .index () hash hashes

password

hash(password, salt, iterations) password salt iterations

True/False (Alarm)

Encoding Function

54

#RSAC

Encode

 The other half of implementing honeywords is creating them and storing them in the
databases

 When a user submits a new password (or upgrades an old password) the encode
function must:

 Create the honeywords

 Combine them with the real password to form the sweetword list

 Randomly order that list

 Store the hashes of all sweetwords in the Sweetword database

 Inform the honeychecker of the new index associated with the user

 Return something of the correct form to be stored in the User database

55

#RSAC

encode(new_password, salt, iterations)

56

new_password gen(new_password, base_count,
training)

 Sweetwords

Honeychecker

tweak(sweetword,
tweak_count)

Sweetword
DB

salt

index

new_password
real_tweak1
base1
base1_tweak1

iterations

hash(sweetword, salt, iterations) salt iterations

Key

Value

#RSAC

encode(new_password, salt, iterations)

57

salt iterations

 hash(dummy, salt, iterations)

algorithm iterations salt $ $ $ dummy hash Honeychecker

Return

dummy

#RSAC

Helpers

 Base password generation
 Download generation script from Ron’s webpage:

 http://people.csail.mit.edu/rivest/honeywords/gen.py
 Edit the file to ensure unique generation and inclusion of at least one digit (to allow tweaking)

 Tweaking
 Tweak your base password as many times as you like (or can)

 Need to ensure tweaks are unique

 Reordering
 Base and tweaks are then randomly ordered

 Salt generation
 Because salts are used as key, we need to ensure they are unique

58

http://people.csail.mit.edu/rivest/honeywords/gen.py

#RSAC

Reviewing our checklist

Modify the password verification function to implement new logic

Enable communication with a remote system (honeychecker)

Change what is stored as the user’s password

Build the honeychecker to store indices and verify them

Modify the encoding function to generate honeywords and store their
hashes, as well as notifying the honeychecker of the correct index

• The full code implementing everything on this list is included at the end
of these slides.

59

Discussion and
Conclusions

60

#RSAC

The larger landscape

 Honeywords are a kind of poor-man’s distributed security system

 There are other, practical approaches to password-breach protection
 Hashing (see Password Hashing Competition)

 [Y82] (and many others), Dyadic Security

 Honeywords strike attractive balance between ease of deployment
and security
 Little modification to computer system

 Honeychecker is minimalist

 Conceptually simple

Code

62

#RSAC

HoneywordHasher

from django.contrib.auth.hashers import PBKDF2PasswordHasher
import xmlrpclib

Define HoneywordHasher derived from PBKDF2PasswordHasher
class HoneywordHasher(PBKDF2PasswordHasher):
 # Give our hasher a unique algorithm name to later identify
 algorithm = “honeyword_base9_tweak3_pbdkf2_sha256”
 # Setup the honeychecker
 honeychecker = xmlrpclib.ServerProxy(<uri>)

63

#RSAC

HoneywordHasher.hash(self, password, salt, iterations)

 # Compute pbkdf2 over password
 hash = pbkdf2(password, salt, iterations, digest=self.digest)
 # Base64 encode the result
 return base64.b64encode(hash).decode(‘ascii’).strip()

64

#RSAC

HoneywordHasher.salt(self)

from django.utils.crypto import get_random_string

def salt(self)
 salt = get_random_string() # Generate a candidate salt
 # Check if the salt already exists, if so, create another one
 while Honeywords.objects.filter(salt=salt).exists():
 salt = get_random_string()
 return salt # Return the unique salt

65

#RSAC

HoneywordHasher.verify(self, password, encoded)

 # Pull apart the encoded password that was stored in the database
 algorithm, iterations, salt, dummy= encoded.split(‘$’, 3)
 # Grab the honeyword hashes from the database
 hashes = pickle.loads(Sweetwords.objects.get(salt = salt).sweetwords)
 # Use a helper function to hash the provided password
 hash = self.hash(password, salt, int(iterations))
 if hash in hashes: # Make sure the submitted hash is in the local database
 #Check with the honeychecker to see if the index is correct
 return honeychecker.check_index(salt, hashes.index(hash))
 return False #Return false if the hash isn’t even in the local database

66

#RSAC

HoneywordHasher.encode(self, password, salt, iterations)

#Put the real password in the list
sweetwords = [password]
Add generated honeywords to the list as well
sweetwords.extend(honeywordgen.gen(password, <bases>,

[<pwfiles>]))
Add tweaks of all the sweetwords to the list
for i in range(<bases+1>):
 sweetwords.extend(honeywordtweak.tweak(passwords[i], <tweaks>))
Randomly permute the sweetword order
random.shuffle(sweetwords)

67

#RSAC

HoneywordHasher.encode(self, password, salt, iterations)

hashes = []
for swd in sweetwords: # Hash all of the passwords
 hashes.append(self.hash(swd, salt, iterations))
Update the honeychecker with a new salt and index
self.honeychecker.update_index(salt, sweetwords.index(password))
Create a new honeyword entry for the local database
h = Sweetwords(salt = salt, sweetwords = pickle.dumps(hashes))
h.save() #Write to the database
Return what is expected for storage in the User database
return “%s$%d$%s$%s” % (self.algorithm, iterations, salt, hashes[0])

68

#RSAC

honeywordgen.py
Modifying generation parameters
 Downloaded from: http://people.csail.mit.edu/rivest/honeywords/gen.py
 Black = existing code

Blue = additions
Red = deletions

 #### PARAMETERS CONTROLLING PASSWORD GENERATION
nL = 8 # password must have at least nL letters
nD = 1 # password must have at least nD digit
nS = 0 # password must have at least nS special (non-letter non-digit)

69

http://people.csail.mit.edu/rivest/honeywords/gen.py

#RSAC

honeywordgen.py (cont)
Ensure generated passwords are unique
def generate_passwords(n, pw_list):
""" print n passwords and return list of them """
ans = []
for t in range(n):
 pw = make_password(pw_list)
 while pw in ans:
 pw = make_password(pw_list)
 ans.append(pw)
return ans

70

#RSAC

honeywordgen.py
Make a generation function, remove system parameters
def main()gen(password, n, filenames):
 # get number of passwords desired
 if len(sys.argv) > 1:
 n = int(sys.argv[1])
 else:
 n = 19
 # read password files
 filenames = sys.argv[2:] # skip "gen.py" and n
 pw_list = read_password_files(filenames)
 …
import cProfile
cProfile.run("main()")
main()

71

#RSAC

Tweaking function - pseudocode

 Identify the piece of the password you will tweak (input, length)
 If that piece is numeric, replace with different digits of same length

str(random.randrange(pow(10, length))).zfill(length)

 If symbols, create a translation table

symbolchars = [‘!’, ‘@’, ‘#’, ‘$’, ‘%’, ‘^’, ‘&’, ‘*’, ‘(‘, ‘)’, ‘_’, ‘+’, ‘=‘, ‘-’, ‘`’, ‘~’, ‘<‘, ‘>’,
‘?’, ‘/’, ‘\\’, ‘\’’, ‘”’, ‘;’, ‘:’, ‘{‘, ‘}’, ‘[‘, ‘]’, ‘|’, ‘.’, ‘\,’, ‘ ‘]

shuffled = random.shuffle(copy.deepcopy(symbolchars))
translation = str.maketrans(symbolchars, shuffled)
input.translate(translation)

72

#RSAC

Sweetwords Database

from django.db import models

class Sweetwords(models.Model)
 # Our index is the salt value.
 salt = models.CharField(max_length=128)
 # Allow the sweetwords field to store a huge number of hashes
 sweetwords = models.CharField(max_length = 65536)

73

#RSAC

Honeychecker

from SimpleXMLRPCServer import SimpleXMLRPCServer
indices = { } # Maps the salt to the correct index for that salt

def check_index(salt, index):
 if salt in indices: # User exists
 #If index matches, user is authenticated
 # Otherwise a honeyword was submitted – should probably alert
 return indices[salt] == index
 return False

74

#RSAC

Honeychecker (cont)

def update_index(salt, index):
 indices[salt] = index #Add new salt/index pairing to dictionary

def main(): # Setup server, register functions and then start running
 honeychecker = SimpleXMLRPCServer((“<ip_addr>”, <port>))
 honeychecker.register_function(check_index, ‘check_index’)
 honeychecker.register_function(update_index, ‘update_index’)
 honeychecker.server_forever()

main() # Call main to get things going once everything is setup

75

#RSAC

settings.py
Change the settings file
INSTALLED_APPS = (
…
‘django.contrib.staticfiles’,
‘honeywords’,
)
PASSWORD_HASHERS = (
‘honeywords.hashers.HoneywordHasher’,
‘django.contrib.auth.hashers.PBKDF2PasswordHasher’,
…
)

76

#RSAC

Create the tables and go!

 Now you need to make those settings take effect

 python manage.py sql honeywords

 python manage.py syncdb

 That’s it. Your up and running!

 As users log in their passwords will be converted to honeywords, the
honeychecker will be notified of the new mapping, and their password
will be better protected in case you are ever breached.

77

#RSAC

References

 http://people.csail.mit.edu/rivest/honeywords/

 https://docs.djangoproject.com/en/dev/topics/auth/passwords/

 https://docs.djangoproject.com/en/1.6/intro/tutorial01/

78

https://docs.djangoproject.com/en/dev/topics/auth/passwords/
https://docs.djangoproject.com/en/dev/topics/auth/passwords/
https://docs.djangoproject.com/en/1.6/intro/tutorial01/

	Honeywords: �A New Tool for Protection from Password Database Breach
	Outline
	Motivation: Theft of Password Hash Files
	Good and bad news about password breaches
	Passwords usually stored in hashed form
	Password hashing
	Password hashing
	Adversarial game
	Honeywords are “Decoy Passwords”
	Decoys
	``Honeywords’’ proposed 2013 by Juels & Rivest
	Terminology
	Terminology
	Terminology
	Terminology
	Honeyword design questions
	Honeywords: Verification
	Honeywords: Verification
	The adversarial game
	The adversarial game
	Honeywords: Verification
	Honeywords: Verification Rule
	Some nice features of this design
	Another nice feature – offline operation
	How to generate good honeywords ?
	Honeyword generation
	Honeyword generation: �Chaffing with a password model
	But there are problem cases…
	Honeyword generation: �Chaffing by tweaking
	Honeyword generation: �A research challenge
	How good does honeyword generation have to be?
	How good does honeyword generation have to be?
	How good does honeyword generation have to be?
	Experimental Results
	Experimental Goals
	Experimental Design
	Results
	Implementation Guidance (Django)
	Implementing Honeywords
	Current Authentication
	Desired Authentication
	How do we get there?
	Changing the Verifier
	Hashers
	Honeyword Hasher
	Storing Sweetwords
	Django Authentication
	Where can we store the sweetwords?
	Honeychecker
	Honeychecker
	Verification Function
	Verify
	Verify(password, encoded)
	Encoding Function
	Encode
	encode(new_password, salt, iterations)
	encode(new_password, salt, iterations)
	Helpers
	Reviewing our checklist
	Discussion and Conclusions
	The larger landscape
	Code
	HoneywordHasher
	HoneywordHasher.hash(self, password, salt, iterations)
	HoneywordHasher.salt(self)
	HoneywordHasher.verify(self, password, encoded)
	HoneywordHasher.encode(self, password, salt, iterations)
	HoneywordHasher.encode(self, password, salt, iterations)
	honeywordgen.py�Modifying generation parameters
	honeywordgen.py (cont)�Ensure generated passwords are unique
	honeywordgen.py�Make a generation function, remove system parameters
	Tweaking function - pseudocode
	Sweetwords Database
	Honeychecker
	Honeychecker (cont)
	settings.py�Change the settings file
	Create the tables and go!
	References

