
SESSION ID:

From Disclosing Existing Vulnerabilities to
Discovering New Vulnerabilities

HTA-T09

Qinglin Jiang
Senior Security Software Engineer

Ancestry.com

#RSAC

Why is this information important to you?

 Understand the real risk

 Mitigate before you patch

 Verify patch really works

 Have control

 Learn a hacking technique

 Extras: Understand Oracle CPU

2

#RSAC

Goals

 Existing vs. New Vulnerabilities

 Disclosing Existing Vulnerabilities
 Identify vulnerable code

 Create and test exploits

 Oracle CPU example

 Discovering New Vulnerabilities
 Find similarities

 Create and test exploits

3

#RSAC

Existing vs. New Vulnerabilities

 Existing Vulnerabilities
 Researcher – Vendor – Fix – Release

 Full Disclosure Controversy

 New Vulnerabilities
 Are they really new?

 Are they similar?

 How to find them?

4

#RSAC

Disclosing Vulnerabilities – Vendors vs. Consumers

 Manufacturer’ business

 Consumer’s interest

 Researcher/Hacker’s motive

 Discovery – Report – Fix

 Disclosing details or not
 Need to know?

 Protects consumer?

 Right to know?

5

#RSAC

Responsibility

 Vendor’s responsibility

 Researchers/hackers’ responsibility?

 Whom to blame?

 How long does it take to fix a vulnerability
 Years?

 One day?

 Where is the responsibility?

 What’s your take?

6

Disclosing Existing
Vulnerabilities –

Identify

#RSAC

Oracle CPU Example - Identify

 Does Oracle make CPU?

 Understand Oracle CPU contents

 Disassemble and decompile the patch files using HexRays

 Compare the original and patched source files

 Identify vulnerable functions and parameters

8

#RSAC

Oracle CPU Patch contents – Molecules

 Oracle CPUAPR2012 Linux x86

 Patch subdirectory – molecule numbers

9

#RSAC

Inspect Patch details using Molecule number

 Molecule 13769501 contains patched mdopp.o under package
libordsdo11.a

10

#RSAC

Decompile object files using IDAPro HexRays

 Dissembler: IDAPro

 Decompiler: HexRays plugin

 Decompile object files to C files

 idaw –Ohexrays: -nosave:example.c:ALL –A example.o

11

#RSAC

Diff the decompiled files and find vulnerable code

 The difference:

 if (*((_DWORD *)v90 - 5) >= 0x##u)

 return #####;

 The vulnerable code:

 sprintf((char *)(a6 + ####), "%s", *((_DWORD *)v90 - 6))

12

#RSAC

Recap: Disclosing Existing Vulnerability - Identify

 Look up Oracle CPU Patch content

 Examine the CPU molecules and patched object file

 Decompile the patched and the original object files

 Compare the the patched and original C files

 Look up differences and pinpoint fixes

 Identify the vulnerable code

 Works well with small patch files

13

Disclosing Existing
Vulnerabilities - Test

#RSAC

Disclosing Existing Vulnerabilities– Test

 Identify vulnerable functions/statements

 Identify vulnerable parameters

 Create exploit

 Test using debuggers

15

#RSAC

Oracle Molecule info

16

 Search support.oracle.com

 CVE-2012-0552(David Litchfield) map to molecule 13769501

#RSAC

Oracle CPU Advisory

 Look for Vulnerability info in Oracle CPU Advisory: Create Index

17

#RSAC

Identify vulnerable parameters

 Look around the vulnerable code

 Spot an interesting string “work_tablespace”

 “work_tablespace” is a candidate of vulnerable parameters

18

#RSAC

Oracle references

 Find SQL reference in Oracle reference guide: Create Index

19

#RSAC

Creating the exploit

 Statement: Create Index

 Parameters: work_tablespace

 Let’s try a very long string

 CREATE INDEX myindex4 ON mytab4(col) INDEXTYPE IS
MDSYS.SPATIAL_INDEX
PARAMETERS('work_tablespace=AAAAAAAAAAAAAAAAAAAAAA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA….
');

20

#RSAC

Testing exploit: Identify the oracle process and
attach debugger
 SQLPlus: Get Oracle process id

 Gdb: attach debugger to oracle process

21

#RSAC

Testing the exploit - Bingo

 SQL exploit: buffer overflow

 Gdb debugger: Process crashed.

22

#RSAC

Recap: Disclosing Existing Vulnerabilities - Test

 Map molecules to CVEs using support.oracle.com

 Identify vulnerable functions by looking up CPU advisory

 Look up references and code for relevant functions/parameters

 Create attack vectors and test SQL statements

 Identify Oracle process id

 Attach debugger to Oracle process

 Execute test SQL statements and verify the exploit

23

Discovering New
Vulnerabilities

24

#RSAC

Methods to Discover New Vulnerabilities

 Finding New Vulnerabilities is a tedious process
 Scanning tools, Fuzzers, Packet sniffers

 Manual pentesting: new features

 Reverse Engineering

 Similarities between Vulnerabilities
 Developers often make the same mistake(same standard and practice)

 Vulnerabilities are fixed case by case

 Nobody “dares” to touch legacy code until it is broken

 25

#RSAC

Discovering New Vulnerabilities – Oracle example

 Decompile object files in a category, such as libordsdo11.a

 Look around functions like sprintf, fprintf, memcpy and etc.

 Spot interesting codes in decompiled files

 Find references about functions/commands

 Fiddle with relevant function/command parameters

 Test with debuggers and create exploit

 Use the idea to discover CVE-2012-3220

26

#RSAC

Spot interesting code

 Decompile all object files package libordsdo11.a

 Search sprintf, we spot an interesting one in mdgr.o

 sprintf(p, “%s”, v30);

 Look around, we found an interesting string “displayTableNames”

27

#RSAC

Find references

 Trace back code to function call mdgrociReproject

 Georaster API sdo_geor.reproject

 No parameter named displayTableNames

 Look around the interesting code, we found an interesting storage
parameter “compression”

 displayTableNames is possibly in the same category, a hidden
storage parameter

28

#RSAC

Create and verify the exploit

 Call sdo_geor.reporject API with displayTableNames length > 14000

 You just found CVE-2012-3220(Martin Rakmanov)

29

#RSAC

Recap

 Disclosing Existing Vulnerability
 Map a known Vulnerability to a patch file

 Decompile patch and compare with original

 Identify vulnerable functions and parameters

 Create attach vectors and test with debugger

 Discovering New Vulnerability
 Find similar code patterns

 Create and test exploits

30

#RSAC

References

 Contact:
 qinglin.jiang@gmail.com

 Credits:

 Martin Rakhmanov

 Thanks:
 David Litchfield

 Esteban Martinez Fayo

 Dennis Yurichev

31

Q&A

	From Disclosing Existing Vulnerabilities to Discovering New Vulnerabilities
	Why is this information important to you?
	Goals
	Existing vs. New Vulnerabilities
	Disclosing Vulnerabilities – Vendors vs. Consumers
	Responsibility
	Disclosing Existing Vulnerabilities – Identify
	Oracle CPU Example - Identify
	Oracle CPU Patch contents – Molecules
	Inspect Patch details using Molecule number
	Decompile object files using IDAPro HexRays
	Diff the decompiled files and find vulnerable code
	Recap: Disclosing Existing Vulnerability - Identify
	Disclosing Existing Vulnerabilities - Test
	Disclosing Existing Vulnerabilities– Test
	Oracle Molecule info
	Oracle CPU Advisory
	Identify vulnerable parameters
	Oracle references
	Creating the exploit
	Testing exploit: Identify the oracle process and attach debugger
	Testing the exploit - Bingo
	Recap: Disclosing Existing Vulnerabilities - Test
	Discovering New Vulnerabilities
	Methods to Discover New Vulnerabilities
	Discovering New Vulnerabilities – Oracle example
	Spot interesting code
	Find references
	Create and verify the exploit
	Recap
	References
	Q&A

